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Abstract
In the field of theoretical particle physics, a major research direction is constructing
theories that go beyond the Standard Model (SM) of particle physics. The SM is a
very successful scientific theory, being able to describe and predict many observable
phenomena. However, the SM suffers from several shortcomings, and it is evident
that it is not sufficient as a final theory for describing the fundamental particles
and their interactions. Some examples of its shortcomings are that it is not able to
describe dark matter, neutrino masses, or the matter-antimatter asymmetry.

In this thesis, the issue at hand concerns some of the more aesthetic problems
of the SM, namely that its gauge group, and the structure of the SM in general,
can be regarded as rather ad hoc. One way of solving this is by having a Grand
Unified Theory (GUT), where all of the SM gauge couplings unify into one at a
high energy. Above that energy, the gauge group consists of only one simple factor,
corresponding to one single interaction. Such theories can also provide descriptions
for physics beyond the SM. One popular GUT gauge group is SO(10), which the
models treated in this thesis will be based on. Specifically, two models will be
discussed, where the difference is the intermediate symmetry group between SO(10)
and the SM.

It has previously been shown that it is impossible to achieve unification in these
two models at tree-level. However, when considering the matching between different
gauge couplings at a higher order in perturbation theory, threshold effects must also
be taken into account. We then investigate if this can save the two models. Many
of the equations encountered are not possible to solve analytically, which is why
a numerical analysis is a large part of the work performed in this thesis. As a
result of that analysis, we find that it is possible to achieve unification in both
of the investigated models. This comes at the cost of relatively large threshold
corrections. We also find that taking into account the effects of kinetic mixing, in
the model where it is possible, makes it easier to achieve unification among the
gauge couplings.

Key words: Grand Unified Theory, renormalization group equations, threshold
effects, kinetic mixing, gauge coupling unification.
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Sammanfattning
Inom fältet teoretisk partikelfysik, så ligger mycket fokus på att skapa teorier som
går bortom partikelfysikens standardmodell. Standardmodellen är en mycket fram-
gångsrik vetenskaplig teori, som kan beskriva och förutspå många observerbara
fenomen. Dock har standardmodellen ett antal problem, som gör det tydligt att
den inte är tillräcklig som en slutgiltig teori för att beskriva fundamentalpartiklar
och deras interaktioner. Några exempel på standardmodellens brister är att den
inte kan beskriva mörk materia, neutrinomassor, eller asymmetrin mellan materia
och antimateria.

I denna rapport ligger dock fokus på några mer estetiska problem med stan-
dardmodellen, nämligen att dess gaugegrupp, och modellens struktur i allmänhet,
kan ses som en efterkonstruktion gjord för att passa observationer. Ett sätt att
lösa detta är genom att ha en storförenad teori, där alla gaugekopplingar i stan-
dardmodellen förenas vid en hög energi. För energier över den föreningen finns det
bara en gaugegruppsfaktor, och därför även bara en växelverkan. Sådana teorier
kan även beskriva viss fysik bortom standardmodellen. En vanlig gaugegrupp för
storförenade teorier är gruppen SO(10), vilken modellerna som behandlas här är
baserade på. Två olika modeller kommer att undersökas, där skillnaden mellan de
två är den mellanliggande symmetrigruppen mellan SO(10) och standardmodellen.

Det har visats tidigare att det är omöjligt att uppnå förening i båda dessa
modeller vid lägsta ordningen i störningsräkning. När man undersöker matchnings-
villkoren mellan olika gaugekopplingar vid en högre ordning, så måste man även
ta hänsyn till tröskeleffekter. Vi undersöker då huruvida detta kan rädda de två
modellerna. Många av ekvationerna som dyker upp här går inte att lösa analytiskt,
vilket är varför en numerisk analys är en stor del av denna rapport. Vi ser från resul-
taten av den analysen att det är möjligt att uppnå förening i båda modellerna. Det
kräver dock relativt höga tröskeleffekter. Vi finner också att inkludering av kinetisk
blandning, i modellen där det är möjligt, gör det lättare att uppnå förening.

Nyckelord: Storförenad teori, renormeringsgruppsekvationer, tröskeleffekter,
kinetisk blandning, gaugekopplingsförening.
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Chapter 1

Introduction

Physics is about describing the world. In order to do this, we can create theories,
which are mathematical models that describe a certain phenomenon. Valid physical
theories can then be used to make predictions about outcomes of experiments.
Particle physics deals with the very smallest constituents of what makes up the
world around us, and how they interact with each other. In a sense, particle physics
is therefore a field which is more fundamental than others.

Symmetries are an important part of the world, and in most areas of physics,
symmetries play some part. One example of this is Noether’s theorem, which re-
lates symmetries to conserved quantities in classical and quantum mechanics. Some
symmetries are easily seen in everyday life, such as translational or rotational sym-
metries, whereas other symmetries are more obscure. In either case, they are evident
in the mathematical language used in physics. In theories of particle physics in par-
ticular, we are concerned with gauge symmetries, which are local transformations of
the theory. These abstract symmetries are the very thing that generates the inter-
actions between fundamental particles, by requiring that the theory remains gauge
invariant, i.e. that the description of reality is not changed by removing redundant
degrees of freedom in the mathematical model.

The best theory of particle physics that is available for us today is called the
Standard Model (SM). It is a mathematical description of the fundamental particles
that make up a large part of the Universe as we know it, including leptons, quarks,
and scalar bosons. It also describes how these particles interact with each other,
through the electromagnetic force, the weak force, and the strong force. These
three forces are in turn mediated by different gauge bosons, which correspond to
the gauge symmetries of the model. Over the years, the different particles described
in the SM have been observed experimentally, which supports the underlying theory.
The last piece of the puzzle that was required to complete the SM came in 2012,
when the Higgs boson was discovered by the ATLAS and CMS collaborations at
CERN [1, 2]. The SM is also highly successful when it comes to making accurate
predictions of experimental results.
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2 Chapter 1. Introduction

However, as beautiful as it may be, the SM still suffers from a number of signif-
icant shortcomings, as there are observed phenomena that cannot be described by
the SM. First of all, the SM does not account for the effects of gravity, although such
effects are disappearingly small when treating individual particles. The SM does
also not provide a description for dark matter (DM), nor is it able to describe the
matter–antimatter asymmetry observed in the Universe. It does also not include
neutrino masses, and is therefore, by extension, not able to describe the neutrino
oscillation phenomenon either. For example, neutrino oscillations were observed as
early as 1998 [3].

There are also some aesthetic problems with the SM. What this means is that
the structure of the SM can be considered ad hoc, in the sense that it is made
to fit previous observations, instead of being based on some physical concepts. It
also contains a number of parameters that need to be determined by fitting to
experimental data. The values of these parameters cannot really be understood on
a fundamental level. Although these shortcomings do not necessarily imply that
the SM is wrong, they could be a sign that vital pieces of the puzzle are missing,
and that the SM is only part of the picture—perhaps an effective theory only valid
at lower energies.

As there are many reasons why the SM is not sufficient as the one and only
theory of particle physics, new theories are needed that describe physics beyond the
SM. One example of such an extended model is a Grand Unified Theory (GUT),
where all of the gauge couplings unify at a high energy scale. This is possible,
since the gauge couplings, i.e. the interaction strengths, of the theory become scale
dependent as a result of renormalization. At the scale of unification, all three
of the SM forces therefore merge into the same force. Not only would a GUT
solve many of the aesthetic problems with the SM discussed earlier, but it would
also accommodate new physics beyond the SM, such as providing a description of
neutrino masses through the seesaw mechanism [4]. The first GUT based on a
simple gauge group was proposed in 1974 [5], and had SU(5) as its gauge group.
The investigation of GUTs then continued in the years to come [6], as new gauge
groups and model structures were suggested.

The work performed in this thesis will focus on two different models, that both
can be used in the creation of a GUT. Both models are based on having SO(10)
as the unification gauge group. Such models are more complex than the original
suggestions, but can also accommodate more physics. In these two models, it is not
possible to achieve unification among the gauge couplings with tree-level matching
conditions. However, so-called threshold effects appear when matching the cou-
plings at a higher order in perturbation theory, which are a result of particles with
masses around the symmetry breaking scales. Specifically, it will be investigated if
threshold effects can save these two models, and thereby allowing unification.
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1.1 Outline
This thesis is structured in the following way. In Ch. 2, we present necessary back-
ground theory for the project, including the SM, renormalization group running,
and GUTs. Then, in Ch. 3, the two different models are presented, both based
on SO(10) as a GUT gauge group, but with different intermediate symmetries. In
Ch. 4, we discuss how these two models are affected by incorporating threshold
effects. Finally, in Ch. 5, the numerical methods and results are presented, and in
Ch. 6, we summarize and conclude the thesis.





Chapter 2

Background

This chapter will discuss some of the background theory that is relevant for the
analysis performed in later chapters. It should by no means be considered as a
complete description of the theoretical framework, but rather as a highlight of the
most relevant areas, while also providing references to further reading. Theories
based on gauge symmetries will be discussed, along with the gauge sector of the
SM. Renormalization group running of coupling constants will then be explained,
followed by an introduction to GUTs. The effects of kinetic mixing will also be
included, as that is relevant for one of the models considered later. Then, threshold
effects will be discussed, before we end the chapter with a discussion of proton
decay.

2.1 Gauge theories
The theoretical framework of particle physics is mainly quantum field theories
(QFTs), which incorporate special relativity, classical field theory, and quantum
mechanics [7]. Therefore, they are equipped to deal with some of the highest ener-
gies and shortest distances that are available to us—making them the right tool for
treating fundamental particles and their interactions. The foundation for any QFT
is a Lagrangian density L, often just called the Lagrangian of the theory. From
this Lagrangian, written in terms of the fields of the theory, all other results can
be derived.

A fundamental part of QFTs, and of physics in general, is symmetries. In parti-
cle physics, symmetries are operations that leave the Lagrangian invariant, and such
operations can be seen as group elements. Of particular interest are symmetries
that are local transformations of the fields, which means that the transformations
themselves depend on the spacetime position xµ. These are called gauge symme-
tries, and the groups that the operations are part of are called the gauge groups
of the theory. Since gauge symmetries depend on the local coordinates, we will be

5



6 Chapter 2. Background

dealing with Lie groups, which are groups with elements that can be parametrized
by continuous variables [8]. In a Lie group, a general element can be written as

g = eiα
aTa

. (2.1)

Here, and henceforth, summation is implied over the group indices a. Also, αa are
the group parameters, and T a denotes the generators of the group. Under a gauge
transformation, a field ψ then transforms as

ψ → eiα
aTa

ψ . (2.2)

Different fields can transform under different representations of the gauge group,
depending on the type of particle it describes.

That the Lagrangian remains gauge invariant is an important criterion. To-
gether with the requirement of Lorentz invariance, it determines which terms are
allowed in the Lagrangian, and which terms are not. Therefore, it has a large
impact on the physics described by the theory. Let us consider a theory with a
semi-simple gauge group

G = G1 ×G2 × . . .×Gn . (2.3)

Some of these factors may be Abelian, meaning that their group elements commute,
while some may be non-Abelian. For gauge invariance, we must introduce a gauge
field for each of these factors. For an Abelian factor Gi we get a gauge field Ai

µ,
whereas for a non-Abelian factor Gj we get a gauge field Aj,a

µ . The difference is
that the latter also has a group index a, taking the same number of different values
as the number of generators in the group. For non-Abelian gauge theories, we use
the Yang–Mills theory [9], which is the simplest example of a non-Abelian gauge
theory. Gauge invariance then requires us to replace the derivative ∂µ with the
gauge covariant derivative

Dµ = ∂µ − i

n∑
i=1

giA
i,a
µ T i,a . (2.4)

Here, gi is the gauge coupling corresponding to the group factor Gi, T i,a is the
properly normalized generators of that group, and Ai,a

µ is the corresponding gauge
field. Note again that the group index a is only relevant for terms coming from non-
Abelian factors. The kinetic terms containing other fields then result in interaction
terms with the gauge bosons, since

iψ̄ /Dψ = . . .+

n∑
i=1

giA
i,a
µ ψ̄γµT i,aψ . (2.5)

Thus, we see that interactions, or “forces”, as they are often called, mediated by
gauge bosons follow directly from requiring the Lagrangian to be gauge invariant.
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Finally, we can then construct the gauge field strengths

F i,a
µν = ∂µA

i,a
ν − ∂νA

i,a
µ + gif

i,abcAi,b
µ Ai,c

ν , (2.6)

where f i,abc are the structure constants of the gauge group factor Gi, given by[
T i,a, T i,b

]
= f i,abcT i,c . (2.7)

Note that for an Abelian group, the structure constants vanish, since its generators
commute. These gauge field strengths appear in the Lagrangian as gauge invariant
terms on the form F i,a

µν F
i,a,µν .

2.2 The Standard Model
The SM of particle physics is probably the most well-known QFT there is, as it
is the theory for particle physics that is used today. There is a vast number of
aspects that can be considered when discussing the SM, but the focus here will be
on the gauge sector: the gauge groups, representations under those groups, and the
resulting gauge interactions. The gauge group of the SM is

GSM = SU(3)C × SU(2)L × U(1)Y . (2.8)

The subscript of each group refers to the names of the charges, or quantum num-
bers, that they correspond to. The factor SU(2)L × U(1)Y is the gauge group for
electroweak theory [10–12], describing weak and electromagnetic interactions. The
label L refers to that only left-handed chiral particles are charged under SU(2)L,
while Y is the Abelian hypercharge. Furthermore, the SU(3)C factor is the gauge
group for Quantum Chromodynamics (QCD) [13, 14], describing the strong inter-
actions between quarks. The C therefore refers to the color charge of quarks.

Given the gauge group, we can also write down the gauge field strengths

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + g3Cf

abcGb
µG

c
ν ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2Lε

abcW b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ ,

(2.9)

where Ga
µ, W a

µ , and Bµ are the gauge fields for SU(3)C, SU(2)L, and U(1)Y , re-
spectively. Also, εabc are the structure constants of SU(2), which are the same as
the elements of the Levi-Civita tensor. We can note that the gauge field corre-
sponding to the Abelian group has no group index, while a = 1, 2, 3 for SU(2) and
a = 1, . . . , 8 for SU(3). The number of possible indices corresponds to the number
of generators in the group, which for SU(N) is N2 − 1. The covariant derivative
becomes

Dµ = ∂µ − ig3CG
a
µT

a − ig2LW
b
µT

b − ig1YBµY , (2.10)

where T a in the second term denotes the generators of SU(3)C, and T b in the third
term denotes the generators of SU(2)L. Also, gauge fields transform as part of the
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adjoint representation of each group, meaning that we have the three representa-
tions

(8,1)0, (1,3)0, (1,1)0 . (2.11)

When writing representations like this, the first boldface number denotes the rep-
resentation under SU(3)C, the second one is the representation under SU(2)L, and
the subscript is the corresponding hypercharge value. The same convention will
be used throughout this thesis, with boldface numbers denoting the dimension of
representations under non-Abelian groups, and subscripts denoting charges under
Abelian groups. Therefore, 8 and 3 in Eq. (2.11) are the adjoint representations
of SU(3)C and SU(2)L, respectively, since the dimensions of those are the same as
the number of generators for each group. Also, 1 denotes the trivial representation,
which means that the field in question is neutral under that particular group.

We are also interested in the other particle content of the SM, and how it
transforms under the gauge group factors. The Weyl fermions have representations
given by

QL ∼ (3,2)1/6 , uR ∼ (3,1)2/3 , dR ∼ (3,1)−1/3 ,

LL ∼ (1,2)−1/2 , `R ∼ (1,1)−1 ,
(2.12)

where there are three generations of each field, and the subscripts L and R denote
left- and right-handed fields, respectively. Also, in the scalar sector, we have the
complex scalar Higgs, with a representation given by

Φ ∼ (1,2)1/2 . (2.13)

The boldface numbers 2 and 3 now denote the fundamental representations of
SU(2)L and SU(3)C, respectively. This means that the fields are doublets or triplets
under the corresponding group. The representation matrices of the generators in
the fundamental representation of SU(2)L and SU(3)C are the three Pauli matrices,
as well as the eight Gell-Mann matrices, normalized appropriately. This particle
content then gives us the expected behavior—the left-handed quarks (QL) and
leptons (LL) as well as the complex Higgs (Φ) are the only ones being doublets under
SU(2)L, while all of the quarks (QL, uR, dR) are the only ones having color charge
and transforming non-trivially under SU(3)C. Also, the hypercharge assignments
for each field give the correct electric charges after electroweak symmetry breaking.

2.2.1 The Higgs mechanism

When discussing the gauge structure of the SM, we must also mention the Higgs
mechanism [15–18]. Not only is it a vital part of the SM and the physics it describes,
but it also illustrates the concept of symmetry breaking in gauge theories—which
is essential for the later analysis of the different models. Because of this, it can
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be instructive to look at the details. In the SM, symmetry breaking occurs in the
electroweak sector. What happens is that the electroweak gauge group is broken as

SU(2)L × U(1)Y → U(1)Q , (2.14)

by introducing a complex scalar Higgs field. As mentioned earlier, this field can be
written as

Φ =

[
φ+

φ0

]
∼ (1,2)1/2 , (2.15)

which means that it is neutral under SU(3)C, a doublet under SU(2)L, and has
hypercharge 1

2 . Minimizing the potential of this scalar field, given by

V (Φ) = −µ2
(
Φ†Φ

)
+
λ

4

(
Φ†Φ

)2
, (2.16)

we find that it takes a non-zero value in the vacuum, giving the vacuum expectation
value (VEV)

〈Φ〉0 = 〈0|Φ|0〉 =

[
0√
2µ2

λ

]
≡ 1√

2

[
0
v

]
. (2.17)

This VEV breaks the previous symmetry of the vacuum, since now not all
directions in that abstract space are equal. We can find the effects this has on the
couplings and charges by looking at the kinetic term

LHiggs,kin = (DµΦ)
†(DµΦ) , (2.18)

in the Lagrangian of the scalar field. For this we need to take a closer look at the
covariant derivative. There are four generators of the subgroup SU(2)L× U(1)Y of
GSM, and four corresponding gauge fields. The covariant derivative then becomes

Dµ = ∂µ − ig1Y Y Bµ − ig2LT
aW a

µ . (2.19)

Expanding the Higgs field around the VEV in Eq. (2.17) then gives the term
(Dµ 〈Φ〉0)†(Dµ 〈Φ〉0) in the Lagrangian, which becomes a mass term for certain
gauge bosons. To show this, we need that in the fundamental representation of
SU(2) we have T a = σa

2 , where σa are the Hermitian Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (2.20)

Expanding the term containing the VEV, we then find that

(Dµ 〈Φ〉0)
†(Dµ 〈Φ〉0) = 〈Φ〉†0

(
ig1Y Y Bµ +

1

2
ig2Lσ

aW a
µ

)
×
(
−ig1Y Y B

µ − 1

2
ig2Lσ

aW a,µ

)
〈Φ〉0

=
v2

8

[(
g1YBµ − g2LW

3
µ

)2
+ g22L

(
(W 1

µ)
2 + (W 2

µ)
2
)]
.

(2.21)
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This expression is not diagonal, which means that the actual mass eigenstates will
be linear combinations of these gauge fields. We can rewrite the mass term as

(Dµ 〈Φ〉0)
†(Dµ 〈Φ〉0) =

[
W 1

µ W 2
µ

]
MW

[
W 1,µ

W 2,µ

]
+

1

2

[
Bµ W 3

µ

]
MG

[
Bµ

W 3,µ

]
, (2.22)

and we can find the mass states by diagonalizing the two mass matrices. We have

MG =
v2

4

[
g21Y −g1Y g2L

−g1Y g2L g22L

]
, (2.23)

which has one massless eigenstate (m = 0) given by

Aµ =
1√

g21Y + g22L

(
g2LBµ + g1YW

3
µ

)
. (2.24)

This is the massless photon, which corresponds to the remaining unbroken symme-
try U(1)Q. The other eigenstate of MG is given by

Z0
µ =

1√
g21Y + g22L

(
g2LW

3
µ − g1YBµ

)
, (2.25)

with a mass eigenvalue of mZ = v
2

√
g21Y + g22L. This is the massive Z boson, which

now has acquired a mass due to the symmetry breaking. The same thing happens
to the two eigenstates of MW , which are the two W bosons. An important result
is the effect this has on the charges of the remaining unbroken symmetry, and the
corresponding coupling constant. Using the previous expressions, we see that

1

g1Y
Aµ − 1

g2L
Z0
µ =

√
g21Y + g22L
g1Y g2L

Bµ ,

1

g2L
Aµ +

1

g1Y
Z0
µ =

√
g21Y + g22L
g1Y g2L

W 3
µ .

(2.26)

Inserting into the covariant derivative in Eq. (2.19), and collecting all terms con-
taining Aµ, we find that

Dµ ⊃ −i
g1Y g2L√
g21Y + g22L

Y Aµ − i
g1Y g2L√
g21Y + g22L

T 3Aµ = −i
g1Y g2L√
g21Y + g22L

(Y + T 3)Aµ .

(2.27)
We can then identify the electric charge

Q = Y + T 3 , (2.28)

as well as the coupling constant

g1Q =
g1Y g2L√
g21Y + g22L

. (2.29)
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This then finally gives that, at the scale of symmetry breaking, we have the match-
ing condition

α−1
1Q ≡ 4π

g21Q
= 4π

g21Y + g22L
g21Y g

2
2L

=
4π

g21Y
+

4π

g22L
≡ α−1

1Y + α−1
2L . (2.30)

This kind of process happens many times during the evolution of the Universe, and
in the following chapters; a scalar field acquires a VEV and breaks a symmetry,
resulting in a matching condition between the couplings of the different groups.

2.3 Running of couplings

2.3.1 Renormalization
One major problem that arises in perturbation theory is that certain Feynman di-
agrams have infinite amplitudes, when considering diagrams up to a finite order.
These infinities come from divergent spacetime integrals, stemming from the prop-
agators running in loops in the diagrams. For example, a photon propagator with
four-momentum kµ running in a loop gives the factor∫

d4k

(4π)2
1

k2 + iε
. (2.31)

The first step in remedying this issue is finding a way of quantifying the divergencies
of the problematic integrals, and thus enabling comparison of the severity of the
divergencies of different integrals. This process is called regularization, and there
are several different ways of going about it. One of the most useful approaches
is known as dimensional regularization [19, 20], and is done by performing the
calculations with a spacetime dimension of d = 4 − ε, and later letting ε → 0
to retrieve the original result with four dimensions. It then turns out that these
integrals can be rewritten on a few different forms with given results, an example
of which is ∫

ddl

(2π)d
1

[l2 −∆]
n =

(−1)ni

(4π)d/2
Γ
(
n− d

2

)
Γ(n)

(
1

∆

)n− d
2

. (2.32)

Series expanding such expressions around the small parameter ε then for example
gives

1

(4π)d/2
Γ

(
2− d

2

)(
1

∆

)2−d/2

≈ 1

(4π)2

(
2

ε
− γ − log(∆) + log(4π)

)
, (2.33)

and the divergent terms can be identified as those that diverge when ε→ 0. Here,
γ denotes the Euler–Mascheroni constant. Another notable way of regularizing
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divergent integrals is the Pauli–Villars regularization prescription [21], which is
based on modifying the propagators as

1

k2 + iε
→ 1

k2 + iε
− 1

k2 − Λ2 + iε
. (2.34)

Here, Λ is a parameter that is inserted to measure how the integral diverges, just
like ε in the previous case. The original result is then retrieved in the limit Λ → ∞.
Such a parameter can also be introduced as a cutoff for the integration limit in the
divergent integrals [7], thereby making the change∫ ∞

0

dk →
∫ Λ

0

dk . (2.35)

The same limit as earlier, i.e. Λ → ∞, is then taken to check the divergency.
Having a measure of how badly the different integrals diverge then allows us

to renormalize the theory, in order to remove the divergencies. This is done by
rescaling the fields, masses, and coupling constants in the Lagrangian. Doing that
relates the bare quantities in the original Lagrangian to the physical ones, which
are actually measured in experiments. By doing this we can then separate the
Lagrangian as

L = L0 + δL , (2.36)
where L0 contains the physical quantities, and δL contains the so-called countert-
erms. The important part is that these counterterms remove all of the divergencies
from the physical part. In the minimal subtraction scheme [22, 23], the divergent
part, and nothing else, is absorbed by the counterterms. However, in other renor-
malization schemes, we can also choose to remove superfluous constants along with
the divergent terms. For example, in commonly used modified minimal subtraction
scheme, the extra constants appearing in Eq. (2.33) are removed as well.

A key point is that regularizing divergent integrals and renormalizing the theory
introduces a dependence on the energy scale µ, also called the renormalization scale,
for the physical parameters in the theory that appear in L0. What is of interest to
us is the so-called β-function, which describes the scale dependence of the coupling
constants. The relation is given by the differential equation

dgi
d log(µ)

= βi(g1, g2, . . . , gn) . (2.37)

The β-function on the right-hand side can be calculated from the counterterms
appearing in the renormalized theory, and can therefore be calculated to different
orders in perturbation theory, corresponding to how many loops are allowed in
those diagrams.

2.3.2 One-loop order
For the time being, we will assume that no more than one of the factors in the gauge
group is Abelian. If there are several Abelian group factors, a phenomenon called
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kinetic mixing can be taken into account [24]. This will be discussed in section 2.5.
To one-loop order, the β-function for the coupling gi becomes

βi(g1, g2, . . . , gn) =
bi

16π2
g3i , (2.38)

and is therefore only a function of that specific coupling. The coefficient bi is given
by

bi = −1

3
[11C2 (Gi)− 4κFC(Fi)− κSC(Si)] . (2.39)

In the following parts, we will let T a
r denote the representation matrices of group

generators Ta in the representation r, where a again is the group index running
from 1 to the total number of generators of the group. In Eq. (2.39), C(r) is a
group invariant sometimes called the Dynkin index, defined by

Tr
[
T a
r , T

b
r

]
= C(r)δab. (2.40)

Also, C2(Gi) is the quadratic Casimir in the adjoint representation of the group Gi

(denoted by r = Gi), given by

T a
Gi
T a
Gi

= C2(Gi)I , (2.41)

where a sum over the group indices is implied and the identity matrix I acts on the
same space as the representation matrices. These two invariants are related by

C(r) =
d(r)

d(G)
C2(r) , (2.42)

where d(r) is the dimension of the representation r, and d(G) is the dimension of the
adjoint representation [8]. The dimension of a group representation is the dimension
of the space that the representation matrices act on (e.g. d(r) = 3 if T a

r are 3 × 3
matrices). In Eq. (2.39), it is also implied that the last two terms contain a sum over
all the particle content in the theory, where Fi denotes the fermion representations
under the group Gi, and Si denotes the scalar representations under that same
group. Then, for each such term, κF is 1 for Dirac fermions and 1/2 for Weyl
fermions, and κS is 1 for complex scalars and 1/2 for real scalars. It can be noted
that C(r) = 0 for the trivial representation, meaning that only fields transforming
non-trivially under the group Gi contribute to the running of the corresponding
coupling constant.

Because of this relatively simple form of the β-function at one-loop order, it is
possible to solve the equation analytically for each of the coupling constants. If
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we let a dot denote a derivative with respect to log(µ), the differential equation
becomes

ġi =
bi

16π2
g3i , (2.43)

which is separable, since it can be written as

ġi
g3i

=
bi

16π2
. (2.44)

Integrating, we find that

− 1

2

1

g2i
=

bi
16π2

log(µ) + C , (2.45)

where C is an integration constant. Usually, what we are interested in is actually
α−1
i , where αi =

g2
i

4π , which means that this form is useful. Also, initial values are
often given by experimental data at µ =MZ, where MZ ≈ 91.1876GeV is the mass
of the Z boson. This means that we end up with expressions on the form

α−1
i (µ) = − bi

2π
log

(
µ

MZ

)
+ α−1

i (MZ) . (2.46)

Of course, if the initial values are given at some other energy scale, MZ can just be
exchanged for that scale.

2.3.3 Two-loop order
The β-function can also be calculated to two-loop order, which makes things con-
siderably more complicated. It is now given by

βi(g1, g2, . . . , gn) =
bi

16π2
g3i +

∑
j

Bij

(16π2)2
g3i g

2
j , (2.47)

where the sum runs over all the group factors j = 1, 2, . . . , n. This means that
in general, the β-function for the coupling gi is no longer a function of only that
coupling, and the system of n differential equations instead becomes coupled. The
two-loop coefficients in front of the mixed terms have been calculated previously in
different cases [25–29], and can be neatly expressed as [30]

Bij = −34

3
[C2(Gi)]

2
δij + κF

[
4C2(Fj) +

20

3
C2(Gi)δij

]
C(Fi)

+ κS

[
4C2(Sj) +

2

3
C2(Gi)δij

]
C(Si) ,

(2.48)

where the notation for the group coefficients is the same as in the one-loop case,
and the sum over all particle content is implied in the same way. The differential
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equation in Eq. (2.37) can no longer be solved analytically, and we now must resort
to numerical methods. For this purpose, it can be useful to rewrite the equation in
terms of α−1

i , instead of gi. We get

dα−1
i

d log(µ)
=

d

d log(µ)

(
4π

g2

)
= − bi

2π
−
∑
j

Bij

8π2α−1
j

, (2.49)

where we again used that g2j = 4π/α−1
j . Finally, we can rewrite this equation as to

use derivatives with respect to µ, instead of with respect to log(µ), which might be
useful in certain numerical scenarios. The chain rule gives

dα−1
i

d log(µ)
=

(
d log(µ)

dµ

)−1
dα−1

i

dµ
= µ

dα−1
i

dµ
, (2.50)

which then gives
dα−1

i

dµ
= − bi

2πµ
−
∑
j

Bij

8π2α−1
j µ

. (2.51)

2.3.4 Running in the Standard Model
Let us then look at the running of the coupling constants in the SM, where the
gauge group is

GSM = SU(3)C × SU(2)L × U(1)Y . (2.52)
Given how the particle content transforms under the gauge group, we can use the
expressions in Eqs. (2.39) and (2.48) to list the β-function coefficients to both orders
in perturbation theory. To one-loop order, we get

b =
[
b1Y b2L b3C

]
=
[
41
10 − 19

6 −7
]
, (2.53)

where the indices 1Y , 2L, and 3C again correspond to U(1)Y , SU(2)L, and SU(3)C,
respectively. Inserting in Eq. (2.46), we then get the analytical solutions

α−1
1Y = − 41

20π
log

(
µ

MZ

)
+ α−1

1Y (MZ) ,

α−1
2L =

19

12π
log

(
µ

MZ

)
+ α−1

2L (MZ) ,

α−1
3C =

7

2π
log

(
µ

MZ

)
+ α−1

3C(MZ) ,

(2.54)

which describe the running of the coupling constants at one-loop order. In a similar
way, we get to two-loop order

B =

B1Y,1Y B1Y,2L B1Y,3C

B2L,1Y B2L,2L B2L,3C

B3C,1Y B3C,2L B3C,3C

 =


199
50

27
10

44
5

9
10

35
6 12

11
10

9
2 −26

 . (2.55)
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As mentioned earlier, this leads to three coupled differential equations that must be
solved numerically. When solving them, as well as when plotting the exact one-loop
solutions, initial values based on data from the Particle Data Group [31] are used.
The values used here are given by

α−1
1Y (MZ) = 59.011 ,

α−1
2L (MZ) = 29.586 ,

α−1
3C(MZ) = 8.503 .

(2.56)

Figure 2.1 shows a plot of α−1
i for the three different couplings, as functions of µ,

with a logarithmic horizontal axis. The one-loop order running is plotted directly
from the analytical expressions, while the two-loop results are plotted using a nu-
merical differential equation solver. We then see that in this case, the corrections
added by the two-loop order terms make a relatively small impact.

104 107 1010 1013 1016 1019

µ [GeV]
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20

30

40

50

60

α
−

1
i

(µ
)

α−1
1Y

α−1
2L

α−1
3C

Figure 2.1: The running of the three gauge couplings in the SM, to one-loop order
(dashed) and two-loop order (solid).

2.4 Grand Unified Theories
One major aesthetic issue with the SM is the question of why the gauge group
consists of the three particular factors in Eq. (2.8), and what motivates the seem-
ingly unwarranted difference in coupling strength between the different interactions.
Many suggested extensions of the SM are therefore GUTs. In a GUT, the gauge
couplings unify at some high energy scale, above which the gauge group only has
one single factor, and therefore also only one gauge coupling. Through symmetry
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breaking, this unified gauge group is broken down to the SM factors at lower ener-
gies, which is what we are able to observe in experiments. From the plot in figure
2.1, it is evident that such unification does not occur in the SM, and therefore also
that something more needs to be added to the model.

2.4.1 Grand Unification gauge groups
SU(5)

One of the simplest candidates for having a single simple group as the gauge group
is the group SU(5), which was first proposed in 1974 [5]. We can examine how the
particle content transforms under this group, in order to reproduce the correct SM
particle content at lower scales. The fermions are embedded in this group as [32]

10⊕ 5 , (2.57)

where the boldface number is the dimension of the representation of the field under
SU(5). To see how the SM fermions are ordered in these multiplets, we can observe
how these representations are broken down into GSM. We get

10 → (3,1)−2/3 ⊕ (3,2)1/6 ⊕ (1,1)1 = ucR ⊕QL ⊕ `cR ,

5 → (3,1)1/3 ⊕ (1,2)−1/2 = dcR ⊕ LL ,
(2.58)

where we used our knowledge of the SM representations from earlier, to see how the
SM fermions fit into these larger representations. Also, the superscript c denotes
charge conjugation. Finally, there are scalars in the representations

5H ⊕ 24H , (2.59)

while the gauge bosons are in the adjoint 24. The subscript H here just points
out the fact that these are representations of scalar fields, which can be seen as
generalized Higgses. They are chosen in the easiest way that still reproduces the
correct SM content. Specifically, the 24H is the representation that acquires a VEV
at some scale in order to break SU(5) to GSM, while 5H is needed to reproduce the
SM Higgs, which in turn is needed for electroweak symmetry breaking. The latter
follows from

5H → (3,1)−1/3 ⊕ (1,2)1/2 = (3,1)−1/3 ⊕ Φ . (2.60)

As we can see, this also produces an extra scalar in the representation (3,1)−1/3,
which is an SU(3) triplet. Since this is not part of the SM, we can let that field
have a very large mass, in order to prevent it from affecting physics at low scales.

SO(10)

Another candidate of a simple gauge group for grand unification is SO(10) [33–37].
In a model with this gauge group, the fermions can be embedded in a single 16-
dimensional irreducible representation 16F, where we now use the subscript F to
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label the fermion representation. This can be seen from that when breaking SO(10)
into GSM, we get

16F → (3,2)1/6 ⊕ (1,2)−1/2 ⊕ (3,1)1/3 ⊕ (3,1)−2/3 ⊕ (1,1)1 ⊕ (1,1)0

= QL ⊕ LL ⊕ dcR ⊕ ucR ⊕ `cR ⊕ (1,1)0 .
(2.61)

Therefore, this single representation yields all SM fermions, which is a very com-
pelling argument for this gauge group. We also get an extra representation (1,1)0,
which is completely neutral under the SM. This can just be seen as the missing
right-handed neutrino, which has not been observed interacting with the SM. Fur-
thermore, the gauge bosons again reside in the adjoint representation 45 of SO(10).
Now, there are also different possible scalars that all reproduce the SM Higgs, for
example 10H, 126H, or 120H.

However, directly breaking SO(10) to GSM is not the only way of creating a GUT
based on this group. Since SO(10) is a group of rank 5, while GSM is a group of rank
4, there are many different ways of breaking the GUT gauge group down to the
SM gauge group. Specifically, SO(10) can be broken to an intermediate symmetry,
which in turn can be broken to GSM at an even lower scale. Which breaking chain
is used significantly changes the behavior of the couplings at different energies,
as both the matching conditions and the β-functions change. A summary of the
different possible breaking chains is given in Ref. [37]. Such breaking chains are
also the foundation of the different models that will be treated in this thesis.

2.4.2 Normalization of Abelian charges

When embedding the SM into a larger unified gauge group, one has to consider the
appropriate normalization of the hypercharge Y that should be used [38]. Being
the generator of the Abelian group U(1)Y , the normalization of Y can be chosen
quite arbitrarily when considering the SM alone. However, the generators of other
larger groups, such as SU(N) or SO(N), must be normalized in specific ways, in
order to satisfy

Tr
[
T a
r T

b
r

]
= C(r)δab . (2.62)

Here, C(r) again denotes the Dynkin index of the representation denoted by r.

SU(5)

Let us first consider the case of having SU(5) as the simple gauge group at high
energies. There are then 24 generators T a of that group, each represented by a
n × n matrix in a n-dimensional representation. However, one of these generators
corresponds to the the U(1)Y generator, three correspond to the three SU(2)L
generators, and eight correspond to the eight SU(3)C generators of the subgroup
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GSM. There are two possible fermion representations we can look at. First of all,
let us look at a field in the fundamental representation, where, as we saw earlier,

5 → (3,1)1/3 ⊕ (1,2)−1/2 = dcR ⊕ LL . (2.63)

One such 5-plet therefore contains the right-handed down quark triplet, as well as
the left-handed lepton doublet. From the SM charge assignments shown earlier, we
then see that the hypercharge Y in this representation would become

Y = diag

(
1

3
,
1

3
,
1

3
,−1

2
,−1

2

)
, (2.64)

giving
Tr
[
Y 2
]
=

5

6
. (2.65)

Now, if we let the SU(5) generator T i be the one corresponding to hypercharge,
the normalization condition in Eq. (2.62) requires that

Tr
[
(T i)2

]
= C(5) =

1

2
. (2.66)

Inserting a normalization factor so that T i = kY then gives

1

2
= k2 Tr

[
Y 2
]
=

5

6
k2 =⇒ k =

√
3

5
. (2.67)

We can also look at the fermions embedded in the 10-dimensional representation
10. Hopefully, this will result in the same hypercharge normalization. In this
representation, we saw earlier that

10 → (3,1)−2/3 ⊕ (3,2)1/6 ⊕ (1,1)1 = ucR ⊕QL ⊕ `cR , (2.68)

and as a result, we have

Y = diag

(
−2

3
,−2

3
,−2

3
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
, 1

)
, (2.69)

which then gives
Tr
[
Y 2
]
=

5

2
. (2.70)

However, the normalization condition (2.62) now instead becomes

Tr
[
(T i)2

]
= C(10) =

3

2
. (2.71)

Again inserting a normalization factor for the hypercharge then gives

3

2
= k2 Tr

[
Y 2
]
=

5

2
k2 =⇒ k =

√
3

5
. (2.72)
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We therefore get the same hypercharge normalization, no matter which repre-
sentation we choose to look at. This normalization also affects the gauge couplings
of the theory, since the covariant derivative then becomes

Dµ = ∂µ − ig1Y,SMY Bµ − . . . = ∂µ − ig1Y,GUTT
iBµ − . . . , (2.73)

where we left out the terms from the other gauge group factors. Here, Bµ is
the gauge field from U(1)Y . In order to preserve this covariant derivative when
exchanging Y for T i, we must then change the coupling in the opposite way, giving

g1Y,GUT =

√
5

3
g1Y,SM . (2.74)

Since αi =
g2
i

4π , this then also leads to

α−1
1Y,GUT =

3

5
α−1
1Y,SM . (2.75)

SO(10)

The same kind of normalization must be done for the unification gauge group that
is most relevant in this work, which is SO(10). This group, which is of higher rank,
instead has 45 different generators T a. These generators also need to be normalized.
All of the SM fermions in a generation (including even a right-handed neutrino)
can under this group be embedded into a single 16-dimensional representation 16F,
which means that we get

Tr
[
Y 2
]
= 6

(
1

6

)2

+ 3

(
2

3

)2

+ 3

(
−1

3

)2

+ 2

(
−1

2

)2

+ (−1)2 =
10

3
. (2.76)

This result is independent of exactly how the different fields are ordered in the 16-
plet, as it only depends on the number of times each value of Y appears. Comparing
this with the generator T i of SO(10) corresponding to U(1)Y , which according to
Eq. (2.62) needs to satisfy

Tr
[
(T i)2

]
= C(16) = 2 , (2.77)

we can again insert a factor k so that T i = kY . We then find that

2 = k2 Tr
[
Y 2
]
=

10

3
k2 =⇒ k =

√
3

5
. (2.78)

Interestingly enough, we end up with exactly the same hypercharge normalization
as we did when embedding the SM in SU(5). Thus, we again get

g1Y ,GUT =

√
5

3
g1Y ,SM . (2.79)

This normalization of the coupling constant was used throughout the previous part,
when calculating the running in the SM. It is usually just referred to as the GUT
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normalization of hypercharge, as it appears when considering both of these GUT
gauge groups.

2.5 Kinetic mixing
As mentioned earlier, the case where there is more than one Abelian factor in
the gauge group requires special attention. The reason for this is gauge invari-
ance, which, as mentioned earlier, often is the determining factor in which terms
are allowed in the Lagrangian. For a non-Abelian group, the corresponding field
strength tensor F a,µν is not gauge invariant by itself. Therefore, we need terms
such as F a,µνF a

µν , which appear in the gauge portion of the Lagrangian. However,
for an Abelian group, Fµν is gauge invariant by itself [39]. As long as there is
only one Abelian factor, as is the case in the SM, this does not make a difference.
Consider instead the case of a gauge group on the form

G = G0 × U(1)1 × . . .× U(1)N , (2.80)

which has N different Abelian factors, and G0 only contains non-Abelian factors.
Let also F i,µν , i = 1, . . . , N , denote the field strength tensors corresponding to
these different Abelian groups. The point is that now terms on the form F i,µνF j

µν ,
even when i 6= j, are both gauge invariant and Lorentz invariant, and can there-
fore appear in the Lagrangian. In general [40, 41], the kinetic gauge terms in the
Lagrangian are on the form

Lgauge,kin = F i,µνξijF
j
µν , (2.81)

where the symmetric matrix ξ no longer is the identity, or even necessarily diago-
nal. This is what constitutes the mixing; gauge bosons corresponding to different
Abelian gauge groups become coupled to each other, with coupling strengths given
by the off-diagonal elements in the matrix. Since a real N ×N symmetric matrix
contains 1

2N(N + 1) free parameters, this means that 1
2N(N − 1) new parameters

are introduced into the model.
We now have possible Feynman diagrams1 on the form

Ai
µ Aj

µ (2.82)

where i 6= j, and the blob can be a result of the mixing term, or fermions that are
charged under both U(1)i and U(1)j simultaneously. Consequently, this kind of
diagram gives rise to an effective interaction between a particle that is only charged
under one of the two groups, and a particle that is only charged under the other one.

1This Feynman diagram, and all following ones, are created using the TikZ-Feynman package,
from Ref. [42].
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Thus, a field having a certain charge under one of the Abelian groups automati-
cally implies some effective charge under the other Abelian groups. For the purpose
of this work, the important implication of this is that it changes the β-functions,
as more diagrams need to be considered during the renormalization process. For-
tunately, the β-functions up to two-loop order have been calculated previously
[43, 44]. What happens is that the β-functions seen earlier become extended with
extra terms depending on the off-diagonal elements in ξ, which sometimes are called
kinetic mixing coefficients. We can write this as

β(gi) = β0(gi) + βk(gi) , (2.83)

where β0(gi) are the β-functions from section 2.3, where there is no kinetic mixing,
and βk(gi) is the additional contribution coming from taking mixing into account.
For convenience, we only write out the coupling gi as the argument, and use that
as a label for the function, even though the β-function can depend on the other
couplings as well.

2.5.1 Two-group mixing
Let us now look in more detail at the case where there are two Abelian factors in
the gauge group, U(1)1 and U(1)2. This is the case that will be relevant for one
of the models later. The kinetic gauge term for these two groups becomes

Lgauge,kin = −1

4
F 1,µνF 1

µν − 1

4
F 2,µνF 2

µν − χ

2
F 1,µνF 2

µν

= −1

4

[
F 1,µν F 2,µν

][1 χ
χ 1

][
F 1
µν

F 2
µν

]
,

(2.84)

where χ is the mixing parameter. This expression is essentially a quadratic form,
and can therefore be diagonalized by changing the gauge boson basis according to[

A1
µ

A2
µ

]
=

1√
2

[
1√
1−χ

− 1√
1+χ

1√
1−χ

1√
1+χ

][
B1

µ

B2
µ

]
= R

[
B1

µ

B2
µ

]
, (2.85)

where R denotes the given matrix containing the properly normalized eigenvectors
of the matrix in Eq. (2.84). That expression now becomes

Lgauge,kin = −1

4
F ′1,µνF ′1

µν − 1

4
F ′2,µνF ′2

µν , (2.86)

where the primes denote that we have moved to a different basis. By diagonalizing
this expression, we have in a sense removed the mixing by finding the physical
gauge bosons.

However, this does not completely remove the effects of kinetic mixing. What
we now must look at is how the covariant derivative has changed, since that is
what gives rise to interaction terms between other fields and the gauge bosons,
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and therefore also the interactions mediated by the gauge bosons. The covariant
derivative becomes

Dµ = ∂µ − ig1Q1A
1
µ − ig2Q2A

2
µ = ∂µ − i

[
Q1 Q2

][g1 0
0 g2

][
A1

µ

A2
µ

]
= ∂µ − i

[
Q1 Q2

][g1 0
0 g2

]
R

[
B1

µ

B2
µ

]
= ∂µ − i

[
Q1 Q2

]
G

[
B1

µ

B2
µ

]
.

(2.87)

The diagonal matrix containing the two original gauge couplings g1 and g2 has then
been replaced by the gauge coupling matrix

G =

[
g1 0
0 g2

]
R =

1√
2

[
g1√
1−χ

− g1√
1+χ

g2√
1−χ

g2√
1+χ

]
≡
[
g11 g12
g21 g22

]
. (2.88)

We could stop here, but for the sake of convenience we can note that the kinetic
term remains diagonal under orthogonal transformations O of the gauge field basis,
since OOT = I. Therefore, if we let[

B1
µ

B2
µ

]
=

1√
g221 + g222

[
g22 g21
−g21 g22

][
Aµ

A′
µ

]
= O

[
Aµ

A′
µ

]
, (2.89)

where O is the given orthogonal matrix, the kinetic gauge term remains diagonal.
The point of this transformation is that if we now insert it into the covariant
derivative in Eq. (2.87), we get

Dµ = ∂µ − i
[
Q1 Q2

]
GO

[
Aµ

A′
µ

]
= ∂µ − i

[
Q1 Q2

]
G̃

[
Aµ

A′
µ

]
, (2.90)

where the mixing matrix now is

G̃ = GO =

[
g1

χg1√
1−χ2

0 g2√
1−χ2

]
≡
[
g g̃
0 g′

]
. (2.91)

This basis, where the coupling matrix is triangular, is the one that is usually used
for computations. It can be noted that if the mixing is removed by setting χ = 0,
this matrix returns to the original diagonal matrix containing only g1 and g2.

2.5.2 Matching conditions
When including kinetic mixing, the matching conditions between two groups with
multiple Abelian factors take a special form. Let us consider the case where a group
consisting of n Abelian factors is broken to a group consisting of n′ Abelian factors,
where n′ < n. Following the formalism in Refs. [40, 44], the tree-level matching
conditions at the point of symmetry breaking can be written on matrix form as(

G′G′T )−1
= P

(
GGT

)−1
PT . (2.92)

In this expression, G′ is the gauge coupling matrix for the group after symmetry
breaking, with n′ Abelian factors, while G is the gauge coupling matrix before
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symmetry breaking, with n Abelian factors. Also, P is the projection operator of
the Abelian charges, describing how the charges of the larger group are combined
into the charges of the smaller group. It is worth noting that the expressions in
Eq. (2.92) are invariant under orthogonal rotations of the gauge coupling matrix,
making it valid whichever basis is chosen.

If a gauge group contains k non-Abelian factors as well, the above matrices
simply become a block of a larger gauge coupling matrix, where the non-Abelian
couplings are diagonal elements. In that case, we denote the purely Abelian gauge
coupling matrix by g, giving

(
GGT

)−1
= diag

(
(ggT )−1,

1

4π
α−1
1 , . . . ,

1

4π
α−1
k

)
, (2.93)

where α−1
i denotes the non-Abelian gauge couplings. The projection operator P

can then just be filled with zeros and ones, so it leaves these couplings unaffected.
The expression in Eq. (2.92) then remains the same.

2.6 Threshold corrections

When considering the matching of coupling constants at symmetry breaking, i.e
between an effective theory and a larger one, threshold corrections arise at higher-
loop orders [45–47]. When breaking a group Gm to a subgroup Gn at a scale Mm→n,
the matching condition with threshold corrections becomes

α−1
n (Mm→n) = α−1

m (Mm→n)−
λmn
12π

. (2.94)

If the matching condition contains a linear combination of different couplings, each
term gets the corresponding correction, in the sense that each term α−1

n (Mm→n)

in the tree-level matching condition is exchanged for α−1
n (Mm→n)+

λm
n

12π . We have,
to one-loop order [30],

λmn =
∑

i∈vectors
kVi

C (Vi) +
∑

i∈scalars

κSi
kSi

C (Si) ln

(
MSi

Mm→n

)
. (2.95)

Here, Vi and Si denote representations of vector and scalar fields, respectively, while
kVi and kSi are the total numbers of dimensions those fields have, as part of other
group representations. Also, κSi

is a factor accounting for that scalar particles can
be real or complex, taking the value 1 or 2 for the respective cases. We assume that
there are no superheavy fermions, as well as that superheavy vector bosons have
masses that are the same as the symmetry breaking scale. This is why there is no
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fermion term, and no scale dependence in the vector boson term. For readability,
we let

ηi ≡ ln

(
MSi

Mm→n

)
, (2.96)

which means that

λmn =
∑

i∈vectors
kVi

C (Vi) +
∑

i∈scalars

κSi
kSi

C (Si) ηi . (2.97)

For the case when we include the effects of kinetic mixing, and consider the matching
conditions discussed in section 2.5.2, the most general expression for the threshold
corrections take a more complicated form, as shown in Ref. [48]. However, when
we consider the breaking of two Abelian groups to one Abelian group, as will be
the case for one of the models analyzed later, the expression in Eq. (2.94) can still
be used.

The parameters ηi have physical significance, since they determine how large
the masses MSi

of the scalar fields are in relation to the symmetry breaking scale
Mm→n. Specifically, we get

MSi
=Mm→ne

ηi . (2.98)

In order for fields to be relevant for the threshold corrections, they need to have
masses close to the symmetry breaking scale. For that reason, we usually want to
limit the size of the values of ηi. For example, ηi ∈ [−3, 3] roughly corresponds
to masses within one order of magnitude from the symmetry breaking scale. How
viable a model is can then be determined from how large ηi has to be in order to
achieve unification.

2.7 Proton decay
When creating new models, it is essential that they are verified by some kind of
experimental data. This poses a problem when creating GUTs, since such theories
are valid at much higher energies than those that can be achieved in accelerators in
the foreseeable future. Fortunately, even though it might not be possible to observe
the GUT couplings directly, there are remnants left behind when the GUT is broken
down to the SM at lower energies. One very important possible smoking gun of
GUTs is the observation of proton decay. Several currently running experiments are
looking for proton decay, but to no avail. This non-observation puts a lower bound
on the proton lifetime in different decay channels, for it to be sufficiently probable
that no decay has been observed. From the Super-Kamiokande observatory [49, 50],
we have the bounds 

τ
(
p→ e+π0

)
> 1.67× 1034 yr

τ
(
p→ µ+π0

)
> 7.78× 1033 yr

τ (p→ νK+) > 6.61× 1033 yr

. (2.99)
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In the SM, protons are completely stable and cannot decay. However, when
looking at GUTs, proton decays are possible—being mediated by the exotic par-
ticles appearing in those larger theories. What is needed is some kind particle
mediating an interaction between leptons and quarks, which violates baryon num-
ber conservation. Such particles are usually called leptoquarks. In SO(10), the
proton decay can be mediated by leptoquark gauge bosons coming from the ad-
joint representation 45. The interaction then comes from the Dirac term in the
Lagrangian, given by

LDirac = iψ̄ /Dψ , (2.100)
where ψ ∼ 16F. The covariant derivative in SO(10) is

Dµ = ∂µ − ig10G
a
µT

a , (2.101)

where g10 is the single gauge coupling, T a are the group generators, and Ga
µ are

the gauge boson fields. Since the 16F contains all SM fermions, this term gives the
necessary interactions. The decay can also be mediated by leptoquark scalars, in
the Yukawa sector. One example of a tree-level Feynman diagram for proton decay
is then shown in Eq. (2.102), where X denotes one of the leptoquark gauge bosons.
This diagram illustrates the decay channel p → e+π0, which is the one with the
most constraining experimental bound.

u e+

u d

d d

X

p

π0

(2.102)

We can then find the approximate decay rate in this channel with the highest
lower bound, given by the expression [51, 52]

Γ
(
p→ e+π0

)
' mp

64πf2π

g4GUT

M4
GUT

A2
Lα

2
HFq . (2.103)

Here, fπ ≈ 139MeV is the pion decay constant, AL ≈ 2.726 is a renormalization
factor, αH ≈ 0.012GeV3 is the hadronic matrix element, and Fq ≈ 7.6 accounts
for quark mixing. Also, mp ≈ 938.27MeV is the proton mass value from Ref. [31],
and gGUT ≡ g10(MGUT) is the single gauge coupling at MGUT. Since the lifetime
of the proton (just based on the decay in this particular channel) is the inverse of
the corresponding decay rate, i.e.

τ
(
p→ e+π0

)
=

1

Γ (p→ e+π0)
, (2.104)

inserting the numerical factors gives the condition

τ
(
p→ e+π0

)
'
(
7.47× 1035yr

)( MGUT

1016GeV

)4(
α−1
GUT

33.3

)2

. (2.105)
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We can then use this expression together with the experimental bounds given in
Eq. (2.99), to put a limit on MGUT. However, this limit also depends on the value
of the coupling constant of the unification gauge group SO(10), at the scale of
unification. The value of α−1

GUT = 4π
g2
GUT

may differ for different combinations of the
two scales MI and MGUT. Consequently, this constraint does technically not result
in a fixed lowest allowed value of MGUT. However, we will see later that the value
of αGUT almost only depends on MGUT, giving what effectively is a lower limit for
MGUT.





Chapter 3

Description of models

In this thesis, two different SO(10)-based models will be investigated. The two
specific breaking chains that define these models are

SO(10) → SU(5)× U(1)X → GSM , (3.1)

as well as

SO(10) → SU(3)C × SU(2)L × U(1)R × U(1)B−L → GSM . (3.2)

The breaking of the GUT group into the intermediate gauge group happens at the
so-called unification scale, denoted by µ = MGUT. That is the point where the
different couplings unify into one. The intermediate symmetry is then broken down
to the SM at a lower scale µ = MI, called the intermediate scale. At each sym-
metry breaking scale, the different couplings from the groups involved are related
by matching conditions. These conditions form a system of equations, that we can
solve to find the two symmetry breaking scales.

These two are not the only possible ways of breaking SO(10) to GSM. What
makes these two particular breaking chains stand out from the others is that, as we
will see later, it is not possible to achieve unification at MGUT without threshold
corrections. This makes them especially interesting cases to study, since we can
investigate if impossible models can be saved by adding these corrections. We will
also examine the effects of kinetic mixing, in the second model. Throughout the
rest of this chapter, the properties of these two intermediate gauge groups will be
investigated, and the problems that prevent unification within them will be brought
to light.

When placing the scalar fields in these models, we will follow the extended
survival hypothesis [53], stating that the only scalars at a given scale are those
that will later take a VEV. This is a way of building a model in a minimalistic
way. It is worth noting that this is not the only way of creating models with these
intermediate symmetries, and changing the particle content may change the results.

29
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3.1 Model 1: The flipped SU(5) group
The first of the intermediate gauge groups is given by

G51 = SU(5)× U(1)X , (3.3)

which is sometimes referred to as the flipped SU(5) group [54–56]. An important
note to make is that the SM hypercharge now becomes

Y =
1

5
(X − Y ′) , (3.4)

where X is the Abelian charge from U(1)X , and Y ′ is the Abelian charge from
within SU(5). This charge assignment is what characterizes the flipped SU(5)
model, as it forces mixing between the two groups. Without it, the problem would
just be reduced to unifying the SM couplings at MI.

3.1.1 Particle content
Similarly to when we just had SU(5), the fermions are embedded in this group as

101 ⊕ 5−3 ⊕ 15 , (3.5)

where the boldface numbers again denote the representation of the field under
SU(5), and the subscript is the Abelian charge from U(1)X . The fermion represen-
tations are then broken down into representations under GSM, using the hypercharge
embedding in Eq. (3.4). We then get

101 → (3,1)1/3 ⊕ (3,2)1/6 ⊕ (1,1)0 = dcR ⊕QL ⊕ (1,1)0 ,

5−3 → (3,1)−2/3 ⊕ (1,2)−1/2 = ucR ⊕ LL ,

15 → (1,1)1 = `cR .

(3.6)

We can note a few differences, compared to having only SU(5) as the gauge group.
First of all, we see that some of the SM fermion representations have changed
places—giving the group its name. The fields ucR and dcR have swapped their places
in the 10- and 5-dimensional representations. Also, we must have a third repre-
sentation under G51, the 15, which now decomposes into the right-handed lepton
singlet. In its previous place, there is now a SM neutral representation (1,1)0. This
can be seen as the right-handed neutrino that is missing in the SM. Following the
earlier reasoning, we now have scalars in the representations

5−2 ⊕ 240 ⊕ 502 ⊕ 45−2 , (3.7)

while the vector bosons are in 240. We see that

5−2 → (3,1)−1/3 ⊕ (1,2)1/2 = (3,1)−1/3 ⊕ Φ , (3.8)
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which means that the 5−2 is needed to reproduce the SM Higgs. The other scalars
are the ones taking VEVs, which are required for symmetry breaking. When this
group is considered as an intermediate symmetry below SO(10), we can note that

16F → 101 ⊕ 5−3 ⊕ 15 , (3.9)

which is what we would expect.

3.1.2 Charge normalization
When considering the group G51 as an intermediate symmetry between the SM and
SO(10), there are two Abelian charges that require normalizing. First, the charge
X, coming from the group factor U(1)X . From Eq. (3.9), we see how the fermion
representation breaks down, which means that

Tr
[
X2
]
= 10(1)2 + 5(−3)2 + 1(5)2 = 80 . (3.10)

From Eq. (2.62) we get the normalization condition

Tr
[
T aT b

]
= C(16)δab = 2δab , (3.11)

for generators in the representation 16F, and normalizing one of the SO(10) gen-
erators as T i = kXX, we then get

2 = k2X Tr
[
X2
]
= 80k2X =⇒ kX =

1√
40
. (3.12)

Furthermore, we need to normalize the hypercharge

Y =
1

5
(X − Y ′) , (3.13)

where Y ′ is the Abelian charge from within SU(5). Taking into account the cor-
responding values of Y ′ for the representations in Eq. (3.6), we get for the 16F in
SO(10),

Tr
[
Y 2
]
=

1

25

[
6

(
1− 1

6

)2

+ 3

(
1−

(
−2

3

))2

+ 1(1− 1)2

+ 3

(
−3− 1

3

)2

+ 2

(
−3−

(
−1

2

))2

+ 1(5− 0)2

]
=

10

3
,

(3.14)

which is reasonable considering that the representations were just moved around,
as compared to the SU(5) group. Normalizing another generator of SO(10) as
T j = kY Y , we then again get

2 = k2Y Tr
[
Y 2
]
=

10

3
k2Y =⇒ kY =

√
3

5
, (3.15)

giving the same hypercharge normalization as earlier.
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3.1.3 Running of couplings
Since this group only contains two simple factors, there are only two gauge couplings
that need to be considered. As we will see later on, this simplifies the model
quite a bit, as both the number of equations and the number of coefficients are
reduced. Looking at the β-function coefficients for the running of these two coupling
constants, we get to one-loop order

b =
[
b1X b5

]
=
[
22
3

8
3

]
, (3.16)

where the indices 1X and 5 now instead refer to the couplings corresponding to
U(1)X and SU(5), respectively. Inserting this in Eq. (2.46), we can then write out
the analytical one-loop solutions as

α−1
1X = − 11

3π
log

(
Q

MI

)
+ α−1

1X(MI) ,

α−1
5 = − 4

3π
log

(
Q

MI

)
+ α−1

5 (MI) .

(3.17)

Also, the coefficients for the two-loop β-functions now become

B =

[
B1X,1X B1X,5

B5,1X B5,5

]
=

[
79
10

1548
5

129
10

14594
15

]
. (3.18)

Let us then look at the matching conditions at the two different points where
symmetry breaking occurs. At the intermediate scale MI, we have

α−1
1X(MI) =

1
24

(
25α−1

1Y (MI)− α−1
2L (MI)

)
α−1
5 (MI) = α−1

2L (MI)

α−1
5 (MI) = α−1

3C(MI)

. (3.19)

We can note something interesting here, which is unique for this model and a result
of that both of the non-Abelian factors in GSM originate from the single SU(5)
factor. That is that α−1

5 (MI) can be eliminated from the two last equations of this
system, resulting in the systemα

−1
1X(MI) =

1
24

(
25α−1

1Y (MI)− α−1
2L (MI)

)
α−1
3C(MI)− α−1

2L (MI) = 0
. (3.20)

Therefore, the intermediate scale MI can be found just from the second equation
alone, and is consequently uniquely determined by the running of the SM couplings,
as it is the scale of the intersection between the two non-Abelian couplings in the



3.1. Model 1: The flipped SU(5) group 33

SM. An analytical expression can be found for the intermediate scale, in the one-
loop case. Inserting the one-loop SM solutions from Eq. (2.54) into the second
equation in Eq. (3.20), we get

19

12π
ln

(
MI

MZ

)
+ α−1

2L (MZ) =
7

2π
ln

(
MI

MZ

)
+ α−1

3C(MZ) , (3.21)

which gives

MI =MZ exp

{
12π

23

[
α−1
2L (MZ)− α−1

3C(MZ)
]}

. (3.22)

The same equation can also be solved for MI in the two-loop case, but must instead
be done so numerically. Inserting the SM initial values in Eq. (3.22), and doing the
numerical computations, we find the two different values of MI shown in table 3.1.
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Figure 3.1: The running of the gauge couplings when G51 is broken to the SM gauge
group, to one-loop order (dashed) and two-loop order (solid). The plot also shows, as
vertical lines, the fixed intermediate scales MI from table 3.1 where the symmetry breaking
occurs.

One-loop Two-loop
MI[GeV] 9.28× 1016 2.74× 1016

Table 3.1: The intermediate scale MI where G51 is broken into GSM.

Figure 3.1 shows the running of the coupling constants corresponding to these
solutions. What we can see is that at scales higher than MI, α−1

1X and α−1
5 just
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go further apart, and will continue doing so. Since we want unification at a scale
larger than MI, this is a bad sign. We cannot achieve unification of the couplings
by simply placing the two scales MI and MGUT appropriately. Thus, there is not
really any point in looking at the matching conditions at the unification scale, since
it is clear there is no solution for MGUT > MI. It would seem like this model needs
to be discarded, but as we will see later, it is possible to save it by considering
threshold corrections at the different symmetry breaking scales.

3.2 Model 2: The SU(3) × SU(2) × U(1) × U(1)
group

The other intermediate gauge group that will be treated is

G3211 = SU(3)C × SU(2)L × U(1)R × U(1)B−L , (3.23)

which is discussed in e.g. Refs. [57, 58]. We can note that this group is very
similar to the gauge group GSM of the SM, as the only difference is that there are
now two different Abelian charges. This similarity can also be seen in the different
particle representations, and will have interesting effects on the later analysis. When
breaking G3211 down to GSM, the representations under the non-Abelian group
factors are left unchanged, while the two Abelian charges mix according to

Y =
B − L

2
−R , (3.24)

to form the SM hypercharge Y .

3.2.1 Particle content
The fermions are embedded as

(3,2)0, 13 ⊕ (1,2)0,−1 ⊕ (3,1)− 1
2 ,−

1
3
⊕ (3,1) 1

2 ,−
1
3
⊕ (1,1) 1

2 ,1
⊕ (1,1)− 1

2 ,1
, (3.25)

where the two boldface numbers again denote the representations under SU(3)C
and SU(2)L, respectively, while the first subscript is the Abelian charge R, and the
second subscript is the Abelian charge B−L. Following the hypercharge embedding
in Eq. (3.24), we find that these representations decompose as

(3,2)0, 13 → (3,2)1/6 = QL ,

(1,2)0,−1 → (1,2)−1/2 = LL ,

(3,1)− 1
2 ,−

1
3
→ (3,1) 1

3
= dcR ,

(3,1) 1
2 ,−

1
3
→ (3,1)−2/3 = ucR ,

(1,1) 1
2 ,1

→ (1,1)1 = `cR ,

(1,1)− 1
2 ,1

→ (1,1)0 .

(3.26)
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Furthermore, we have scalar representations at the intermediate scale

(1,2)− 1
2 ,0

⊕ (1,1)1,2 ⊕ (1,2)− 1
2 ,0

, (3.27)

where we see that
(1,2)− 1

2 ,0
→ (1,2) 1

2
= Φ (3.28)

reproduces the scalar SM Higgs, while the other representations are needed for
the symmetry breaking itself. When this group is considered as an intermediate
symmetry below SO(10), we find that

16F → (3,2)0, 13 ⊕ (1,2)0,−1 ⊕ (3,1)− 1
2 ,−

1
3
⊕ (3,1) 1

2 ,−
1
3
⊕ (1,1) 1

2 ,1
⊕ (1,1)− 1

2 ,1
,

(3.29)
which again agrees with what we would expect.

3.2.2 Charge normalization
When treating models based on the gauge group G3211, there are again two Abelian
charges, R and B−L, that need to be normalized correctly. This can again be done
by observing how the representation 16F, containing all of the fermions, decomposes
to representations under G3211 in Eq. (3.29). For both charges, we can again use
the condition

Tr[(T i)2] = C(16) = 2 . (3.30)

Let us first look at the charge R, for which we get

Tr[R2] = 6(0)2 + 2(0)2 + 3

(
−1

2

)2

+ 3

(
1

2

)2

+

(
1

2

)2

+

(
−1

2

)2

= 2 . (3.31)

As a result, it does not require any normalizing. For the second Abelian charge
B − L, we instead get

Tr[(B−L)2] = 6

(
1

3

)2

+2(−1)2+3

(
−1

3

)2

+3

(
−1

3

)2

+(1)2+(1)2 =
16

3
. (3.32)

As this is not properly normalized, we can insert a normalization factor so that

T i = kB−L(B − L) , (3.33)

which then gives

2 = k2B−L Tr
[
(B − L)2

]
=

16

3
k2B−L =⇒ kB−L =

√
3

8
. (3.34)
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3.2.3 Running of couplings
This gauge group contains four simple factors, which means that there are now four
gauge couplings. This case therefore becomes a bit more complicated to deal with,
compared to the previous one. Using the representations of the particle content
discussed earlier, we find that

b =
[
b1B−L b1R b2L b3C

]
=
[
9
2

14
3 −3 −7

]
, (3.35)

where the subscripts 1B − L and 1R refer to the two different Abelian couplings,
and the indices 2L and 3C again refer to the couplings corresponding to SU(2)L
and SU(3)C, respectively. Inserting into Eq. (2.46), we get the analytical one-loop
solutions

α−1
1B−L = − 9

4π
log

(
Q

MI

)
+ α−1

1B−L(MI) ,

α−1
1R = − 7

3π
log

(
Q

MI

)
+ α−1

1R(MI) ,

α−1
2L =

3

2π
log

(
Q

MI

)
+ α−1

2L (MI) ,

α−1
3C =

7

2π
log

(
Q

MI

)
+ α−1

3C(MI) .

(3.36)

Now, the 16 different coefficients for the two-loop β-functions are given by

B =


B1B−L,1B−L B1B−L,1R B1B−L,2L B1B−L,3C

B1R,1B−L B1R,1R B1R,2L B1R,3C

B2L,1B−L B2L,1R B2L,2L B2L,3C

B3C,1B−L B3C,1R B3C,2L B3C,3C

 =


25
2

15
2

9
2 4

15
2 8 3 12
3
2 1 8 12
1
2

3
2

9
2 −26

 .
(3.37)

Let us then look at the matching conditions at the point of symmetry breaking.
At the intermediate scale MI, we get

α−1
1Y (MI) =

2
5α

−1
1B−L(MI) +

3
5α

−1
1R(MI)

α−1
2L (MI) = α−1

2L (MI)

α−1
3C(MI) = α−1

3C(MI)

. (3.38)

However, we encounter a problem here, which stems from that we are matching
three couplings (for scales below MI) to four couplings (for scales above MI). Writ-
ten in the way it is in Eq. (3.38), the system of equations for matching gives a unique
solution, as long as we are finding the SM couplings from the given G3211 couplings.
However, just like in the previous case, our initial values from experimental data
are given at MZ, which means that the system must be solved from lower scales
and up. Unfortunately, the system of equations is not uniquely invertible, since
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many different combinations of α−1
1B−L(MI) and α−1

1R(MI) can give the same value
of α−1

1Y (MI). One way of fixing this is to insert an extra equation, such as

α−1
1B−L(MI) = xα−1

1R(MI) , (3.39)

where x now is another variable to be solved for, along with MI. With this extra
equation, the system can be inverted and written as



α−1
1B−L (M1) = x

(
2
5x+ 3

5

)−1
α−1
1Y (MI)

α−1
1R (MI) =

(
2
5x+ 3

5

)−1
α−1
1Y (MI)

α−1
2L (MI) = α−1

2L (MI)

α−1
3C(MI) = α−1

3C(MI)

. (3.40)

It is important to keep in mind that x does not correspond to some physical quantity,
but is rather just a remnant of forcing the system to be invertible in the way we
need it to be. Therefore, it results in a system that has an infinite number of
solutions, each one depending on the value of x. During the later analysis, we will
be able to remove the dependence on this parameter.

Unlike in the previous case with G51, these matching conditions are not enough
to solve for the intermediate scale MI. We can immediately identify a problem
standing in the way of unification for this model—namely that the slopes of α−1

1B−L

and α−1
1R, corresponding to the two Abelian couplings, are very similar. As a result,

it is difficult to find an intersection between the two, unless they start at very similar
initial values at MI. This would correspond to a value of x near 1. However, then
those two Abelian couplings pass nowhere near the intersection between α−1

2L and
α−1
3C , as seen in figure 3.2c. It is still possible to get one of the Abelian couplings

to unify with the two non-Abelian ones, by modifying the value of x. This is also
shown in figure 3.2, for x = 1.4 and x = 0.6. Unfortunately, the price that must
be paid for moving one of the Abelian couplings so that it reaches the common
intersection of α−1

2L and α−1
3C is that the other one gets pushed too far down, in

order to still satisfy the relation

α−1
1Y (MI) =

2

5
α−1
1B−L(MI) +

3

5
α−1
1R(MI) . (3.41)

In all of these plots, the intermediate scale MI is chosen (rather arbitrarily) to be
MI = 1010 GeV. Setting it differently changes the plots, although the general be-
havior remains the same. Thus, we find that it is not possible to achieve unification
in the model, at tree-level matching.
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Figure 3.2: The running of the gauge couplings when G3211 is broken to the SM gauge
group, to one-loop order (dashed) and two-loop order (solid). The plots also show, as
vertical lines, the intermediate scale MI where G3211 is broken to the SM. Here, the
intermediate scale is chosen to be MI = 1010 GeV, while x takes three different values.

3.2.4 Adding kinetic mixing

When we have G3211 as the intermediate symmetry group, kinetic mixing can occur
between MI and MGUT, since we have two different Abelian factors. Following
the earlier discussion in section 2.5, we will be working in the basis where the
gauge coupling matrix is triangular, where we have g = g1R, g′ = g1B−L, as well
as the off-diagonal coupling g̃. The β-functions for these couplings become more
complicated than before, and the extra contributions are given below1. We will let
the superscripts (1) and (2) denote contributions at one- and two-loop order. Note
that, just like earlier, the full two-loop function contains both contributions.

1The coefficients in these β-functions are computed using the PyR@TE Python package [59–61].
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The running of the coupling g1R is only affected at two-loop order, where the
additional terms coming from the mixing are

β
(2)
k (g1R) = 8g31Rg̃

2 + 4
√
6g31Rg1B−Lg̃ . (3.42)

The β-function for g1B−L is instead affected at both one- and two-loop order, since

β
(1)
k (g1B−L) =

14

3
g1B−Lg̃

2 +

√
6

3
g21B−Lg̃ ,

β
(2)
k (g1B−L) = 8g21Rg1B−Lg̃

2 + 45g31B−Lg̃
2 + 8

√
6g21B−Lg̃

3

+ 8g1B−Lg̃
4 + 3g22Lg1B−Lg̃

2 + 12g23Cg1B−Lg̃
2

+ 4
√
6g21Rg

2
1B−Lg̃ + 12

√
6g41B−Lg̃ .

(3.43)

The two couplings g2L and g3C corresponding to the non-Abelian groups also only
get extra contributions at two-loop level. We find that

β
(2)
k (g2L) = g32Lg̃

2 ,

β
(2)
k (g3C) =

3

2
g33Cg̃

2 .
(3.44)

Finally, the off-diagonal coupling g̃ has β-function contributions given by

β
(1)
k (g̃) =

√
6

3
g21Rg1B−L +

√
6

3
g1B−Lg̃

2 +
28

3
g21Rg̃ +

9

2
g21B−Lg̃ +

14

3
g̃3 ,

β
(2)
k (g̃) = 6

√
6g21Rg

3
1B−L + 24g21Rg̃

3 + 4
√
6g41Rg1B−L + 16

√
6g21Rg1B−Lg̃

2

+ 12
√
6g31B−Lg̃

2 + 45g21B−Lg̃
3 + 8

√
6g1B−Lg̃

4 + 16g41Rg̃

+
105

2
g21Rg

2
1B−Lg̃ +

25

2
g41B−Lg̃ + 8g̃5 + 6g22Lg

2
1Rg̃ +

9

2
g22Lg

2
1B−Lg̃

+ 24g23Cg
2
1Rg̃ + 4g23Cg

2
1B−Lg̃ + 3g22Lg̃

3 + 12g23Cg̃
3 .

(3.45)

The full two-loop β-function for this coupling then becomes β(g̃) = β
(1)
k (g̃)+β

(2)
k (g̃),

since it did not exist before adding kinetic mixing.
We must also look at how the matching conditions between the Abelian cou-

plings change as a result of kinetic mixing. This happens when two Abelian factors
are broken into one, so the effects need only be considered at MI. To find the
matching condition, we have the SM couplings

(
G′G′T )−1

=
1

4π

α−1
1Y 0 0
0 α−1

2L 0
0 0 α−1

3C

 . (3.46)

The expression on the right-hand side of Eq. (2.92), corresponding to the G3211

couplings, requires a bit more work. The Abelian part of the gauge coupling matrix
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is given by

(
ggT

)−1
=

([
g1R g̃
0 g1B−L

][
g1R g̃
0 g1B−L

])−1

=

[
g21R g̃(g1R + g1B−L)
0 g21B−L

]−1

=

[
g−2
1R −g̃(g1R + g1B−L)g

−2
1Rg

−2
1B−L

0 g−2
1B−L

]
=

[ 1
4πα

−1
1R − 1

(4π)2 g̃(g1R + g1B−L)α
−1
1Rα

−1
1B−L

0 1
4πα

−1
1B−L

]
,

(3.47)
which then gives

(
GGT

)−1
=

(ggT )−1
0 0

0 1
4πα

−1
2L 0

0 0 1
4πα

−1
3C

 , (3.48)

since the non-Abelian couplings just appear as diagonal elements. Finally, we need
to insert the projection operator P . Taking into account the GUT normalizations√

3
5 of the hypercharge and

√
3
8 of the B − L charge, we have

P =


√

3
5

√
2
5 0 0

0 0 1 0
0 0 0 1

 . (3.49)

Inserting into Eq. (2.92), we then get

1

4π

α−1
1Y 0 0
0 α−1

2L 0
0 0 α−1

3C



=


√

3
5

√
2
5 0 0

0 0 1 0
0 0 0 1


(ggT )−1

0 0
0 1

4πα
−1
2L 0

0 0 1
4πα

−1
3C



√

3
5 0 0√
2
5 0 0

0 1 0
0 0 1

 .
(3.50)

Writing out the three different equations given by this matrix relation, we then
find that the matching conditions for the non-Abelian couplings are unchanged, i.e.α

−1
2L (MI) = α−1

2L (MI)

α−1
3C(MI) = α−1

3C(MI)
. (3.51)
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However, for the Abelian couplings, we now get

α−1
1Y (MI) =

3

5
α−1
1R +

2

5
α−1
1B−L − 1

4π

√
6

5
g̃(g1R + g1B−L)α

−1
1Rα

−1
1B−L

=
3

5
α−1
1R +

2

5
α−1
1B−L −

√
6

5

√
α̃(

√
α1R +

√
α1B−L)α

−1
1Rα

−1
1B−L .

(3.52)

We can assure ourselves by noting that removing the kinetic mixing by setting
α̃ = 0 in this expression returns

α−1
1Y (MI) =

2

5
α−1
1B−L(MI) +

3

5
α1R(MI) , (3.53)

which is the same matching condition as we had earlier, without mixing. Just like
then, we need to insert extra equations in order to able to solve this system from
lower energies and up. Aside from the condition

α−1
1B−L (MI) = xα−1

1R (MI) , (3.54)

we also need a second condition, for example

α−1
1R (MI) = y2α̃−1 (MI) . (3.55)

Again, x and y do not represent any particular physical quantities, and will be
removed later during an optimization process. Inserting these two new relations
into Eq. (3.52) then gives

α−1
1B−L (MI) = x

(
2

5
x+

3

5
−

√
6

5
y
(
x+

√
x
))−1

α−1
1Y (MI) ,

α−1
1R (MI) =

(
2

5
x+

3

5
−

√
6

5
y
(
x+

√
x
))−1

α−1
1Y (MI) ,

α̃−1 (MI) =
1

y2

(
2

5
x+

3

5
−

√
6

5
y
(
x+

√
x
))−1

α−1
1Y (MI) .

(3.56)

Together with the conditions in Eq. (3.51), Eq. (3.56) provides the matching
conditions at MI, between G3211 and GSM. The general behavior of the different
couplings, and their dependence on the parameter x, is then the same as in the
previous section. There is however one striking difference; that the initial conditions
of α−1

1R and α−1
1B−L can be changed by changing the value of the newly inserted

parameter y. As shown by the example in figure 3.3, modifying these parameters
allows for the couplings to intersect without having any corrections at all. In the
plot, couplings with and without kinetic mixing are shown, illustrating the effects
of the changed β-functions and the addition of the extra parameter y. Note that
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the plot only shows the running to one-loop order to avoid cluttering, but the same
manipulation is also possible at two-loop order.
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Figure 3.3: The running of the gauge couplings when G3211 is broken to the SM gauge
group. In this plot, everything is to one-loop order. The plot also shows, as a vertical
line, the intermediate scale MI where G3211 is broken to the GSM. The dashed lines are
without kinetic mixing effects, while the solid lines are with kinetic mixing effects. Here,
we have chosen MI = 1010 GeV, x = 0.99, and y = 0.19. The value of y is only applicable
for the cases with mixing.

However, that is quite misleading when considering a larger GUT as part of the
picture. The matching conditions at MGUT are not affected by any of the afore-
mentioned effects resulting from going from a gauge group with multiple Abelian
factors to one with fewer, but we must consider what happens to the extra off-
diagonal term g̃. When breaking SO(10) to G3211, a linear combination of the 45
generators gives the generator corresponding to U(1)R, while another gives the
generator corresponding to U(1)B−L. Thus, no mixing term appears as a direct
result of the symmetry breaking. Rather, it becomes nonzero at lower energies as
a result of the renormalization group running. Therefore, when later running the
couplings from lower energies and up, the extra constraint g̃ = 0 must be imposed
at MGUT [62, 63]. The complete matching conditions then become

α−1
1B−L(MGUT) = α−1

1R(MGUT)

α−1
1R(MGUT) = α−1

2L (MGUT)

α−1
2L (MGUT) = α−1

3C(MGUT)

g̃(MGUT) = 0

. (3.57)



3.2. Model 2: The SU(3)× SU(2)× U(1)× U(1) group 43

As a result, not all combinations of x and y are allowed for a certain choice of the
two scalesMI andMGUT. Keeping the values of x andMI from the plot in figure 3.3,
but modifying y so that g̃ = 0 at a value chosen as MGUT = 1016 GeV, we instead
get the plot in figure 3.4. Note that α−1

1B−L is slightly covered in the plot, due to
x being so close to one. It is also shown how the off-diagonal term g̃ behaves. We
see that the addition of kinetic mixing is not enough to achieve unification without
threshold effects, but it can still reduce the size of the corrections needed to save
the model, as it can move the couplings closer to each other. This will be explored
further in Ch. 5.
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Figure 3.4: (a) The running of the gauge couplings in the group G3211, including the
effects of kinetic mixing, to one-loop order (dashed) and two-loop order (solid). The plot
also shows, as a vertical line, the intermediate scale MI where G3211 is broken to the GSM.
Here, MI = 1010 GeV and x = 0.99, while y = 0.019 at one-loop order and y = 0.020
at two-loop order. (b) The running of the off-diagonal coupling g̃ from MI = 1010 GeV,
where x = 0.99, y = 0.019 at one-loop order, and y = 0.020 at two-loop order are chosen
so that g̃ = 0 at µ = 1016 GeV.





Chapter 4

Threshold effects

As noted in the previous chapter, it is not possible to achieve unification at tree-level
matching in either of the two discussed models. However, at higher orders, extra
correction terms appear in the matching conditions when symmetries are broken,
which can allow us to achieve unification again. Such corrections are the focus of
this chapter. How the matching conditions change was discussed in Ch. 2, and here
we will apply that to the two models. In order to do that, we must also choose
the mass scales of the fields that appear from the decomposition of the GUT fields,
when breaking the GUT symmetry. This will follow the same idea as in the last
chapter; that the model should be as minimalistic as possible. Thus, only fields
that are needed to reproduce the SM will be placed at lower scales. Also, it will
be assumed that the parameters ηi are independent of each other. It is possible,
depending on the scalar potential, that there are correlations between scalar masses.

4.1 Threshold corrections in model 1
Let us first look at how the addition of threshold corrections alters the G51 model.
First of all, we need to know which fields live at which scales, in order to calculate
the different coefficients in the expression for the threshold corrections. From a table
of group representation decompositions [64], we can see which fields are produced
from breaking the GUT symmetry. Then, we can follow the spirit of the extended
survival hypothesis, and only place the necessary fields at MI, while the rest are
put at MGUT. This is illustrated in table 4.1, where it is shown which fields lie at
which scales, when following the breaking chain of model 1.

Knowing the representation of each field that is named in the table, we can
insert the proper factors in Eq. (2.97), in order to calculate λmn . For the threshold
corrections at MGUT, we find that

λ101X = 8 + ηS1 + 8ηS2 + 8ηS3 + 27ηS5 + 18ηS6 + ηS7 + 5ηS8 ,

λ105 = 3 + ηS1
+ 3ηS2

+ 3ηS3
+ 7ηS5

+ 3ηS6
+ ηS7

.
(4.1)

45
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Group: SO(10) G51 G51 GSM

Scale: > MGUT MGUT MI MI

10H S1(5)2 5−2 φ(3,1)−1/3

45H S2(10)−4, S3(10)4, 240 A1(8,1)0, A2(3,2)1/6,
S4(1)0 A3(3,2)−1/6, A4(1,3)0,

A5(1,1)0

126H S5(15)−6, S6(10)6, 502, R1(8,2)1/2, R2(6,3)1/3,
S7(5)2, S8(1)10 R3(6,1)2/3, R4(3,2)1/6,

R5(3,1)1/3, R6(1,1)0

45−2 T1(8,2)−1/2, T2(6,1)−1/3,
T3(3,3)−1/3, T4(3,2)−1/6,
T5(3,1)−1/3, T6(3,1)−2/3,
T7(1,2)−1/2

45 10−4, 104, 10 240 (3,2)1/6, (3,2)−1/6

Table 4.1: The fields at different scales when having G51 as the intermediate symmetry
between SO(10) and GSM.

For the threshold corrections at MI, we instead find that

λ511Y =
1

5
+

2

5
ηφ +

1

5
ηA2

+
1

5
ηA3

+
24

5
ηR1

+
12

5
ηR2

+
16

5
ηR3

+
1

5
ηR4

+
2

5
ηR5

+
24

5
ηT1

+
4

5
ηT2

+
6

5
ηT3

+
1

5
ηT4

+
2

5
ηT5

+
8

5
ηT6

+
3

5
ηT7

,

λ512L = 3 + 3ηA2 + 3ηA3 + 4ηA4 + 8ηR1 + 24ηR2 + 3ηR4

+ 8ηT1 + 12ηT3 + 3ηT4 + ηT7 ,

λ513C = 2 + ηφ + 6ηA1
+ 2ηA2

+ 2ηA3
+ 12ηR1

+ 15ηR2
+ 5ηR3

+ 2ηR4
+ ηR5

+ 12ηT1
+ 5ηT2

+ 3ηT3
+ 2ηT4

+ ηT5
+ ηT6

.

(4.2)

Now we can look at how the matching conditions are modified by the addition of
these corrections, by using Eq. (2.94). At the intermediate scale MI, we get the
matching conditions

α−1
1X(MI) =

1
24

(
25α−1

1Y (MI)− α−1
2L (MI) +

1
12π

(
25λ511Y − λ512L

))
α−1
5 (MI) = α−1

2L (MI) +
λ51
2L

12π

α−1
5 (MI) = α−1

3C(MI) +
λ51
3C

12π

. (4.3)
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Just like in the case without any corrections, α−1
5 (MI) can be eliminated from the

two last equations of this system. This results inα
−1
1X(MI) =

1
24

(
25α−1

1Y (MI)− α−1
2L (MI) +

1
12π

(
25λ511Y − λ512L

))
α−1
3C(MI)− α−1

2L (MI) +
1

12π (λ
51
3C − λ512L) = 0

, (4.4)

which again shows that MI can be found from just the second equation, thus only
depending on the difference between the two corrections λ512L and λ513C. At the
unification scale MGUT, we instead get the system

α−1
10 (MGUT) = α−1

1X(MGUT) +
λ10
1X

12π

α−1
10 (MGUT) = α−1

5 (MGUT) +
λ10
5

12π

, (4.5)

which can simplified to the single equation

α−1
5 (MGUT)− α−1

1X(MGUT) +
1

12π
(λ105 − λ101X) = 0 . (4.6)

The interesting part that makes this model stand out from other ones, is that
the two variables MI and MGUT again are somewhat decoupled in this system
of equations. What this means is that MI can be found separately from MGUT,
just given the threshold corrections at the intermediate scale. Then, that value
along with the threshold corrections at the unification scale can be used to find the
corresponding value of MGUT.

We can also note that analytical expressions again can be found for each scale,
in the one-loop case. Inserting the known one-loop SM solutions into Eq. (4.4), we
get

19

12π
ln

(
MI

MZ

)
+ α−1

2L (MZ) +
λ512L
12π

=
7

2π
ln

(
MI

MZ

)
+ α−1

3C(MZ) +
λ513C
12π

, (4.7)

which gives

MI =MZ exp

{
12π

23

[
α−1
2L (MZ)− α−1

3C(MZ) +
1

12π

(
λ512L − λ513C

)]}
. (4.8)

Using this, along with the other initial values at MI, Eq. (4.6) gives the unification
scale. This is done by inserting the known one-loop solutions for the G51 couplings,
giving

MGUT =MI exp

{
π

5

[
λ101X − λ105

12π
+

25

24

(
− 109

30π
ln

(
MI

MZ

)
+α−1

1Y (MZ)− α−1
2L (MZ) +

λ511Y − λ512L
12π

)]}
.

(4.9)

The system of equations can also be solved for the two-loop case, but must then
instead be done so numerically, as will be done in the next chapter.
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4.2 Threshold corrections in model 2
We can now also examine how threshold corrections change the model based on
the intermediate gauge group G3211. Following the same procedure as before when
deciding which fields go at which scale, the fields at different scales are shown in
table 4.2.

Group: SO(10) G3211 G3211 GSM

Scale: > MGUT MGUT MI MI

10H S1(3,1)0,− 2
3
, S2(3,1)0, 23 , (1,2)− 1

2 ,0
φ(1,2)1/2

S3(1,2) 1
2 ,0

45H S4(3,2) 1
2 ,−

2
3
, S5(3,2)− 1

2 ,−
2
3
, (1,1)0,0 (1,1)0

S6(3,2) 1
2 ,

2
3
, S7(3,2)− 1

2 ,
2
3
,

S8(8,1)0,0, S9(3,1)0, 43 ,

S10(3,1)0,− 4
3
, S11(1,3)0,0,

S12(1,1)1,0, S13(1,1)0,0,
S14(1,1)−1,0

126H R1(8,2) 1
2 ,0

, R2(8,2)− 1
2 ,0

, (1,2)− 1
2 ,0

, (1,1)0

R3(1,2) 1
2 ,0

, R4(3,2) 1
2 ,

4
3
, (1,1)1,2

R5(3,2)− 1
2 ,

4
3
, R6(3,2) 1

2 ,−
4
3
,

R7(3,2)− 1
2 ,−

4
3
, R8(6,1)1,− 2

3
,

R9(6,1)0,− 2
3
, R10(6,1)−1,− 2

3
,

R11(3,1)1, 23 , R12(3,1)0, 23 ,

R13(3,1)−1, 23
, R14(1,1)0,2,

R15(1,1)−1,2

210H T1(8,3)0,0, T2(3,3)0, 43 , (1,1)0,0, (1,1)0

T3(3,3)0,− 4
3
, T4(1,3)0,0, (1,1)0,0

T5(8,1)1,0, T6(8,1)0,0,
T7(8,1)−1,0, T8(3,1)1, 43 ,

T9(3,1)0, 43 , T10(3,1)−1, 43
,

T11(3,1)1,− 4
3
, T12(3,1)0,− 4

3
,

T13(3,1)−1,− 4
3
, T14(1,1)1,0,
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T15(1,1)0,0, T16(1,1)−1,0,
T17(6,2) 1

2 ,
2
3
, T18(6,2)− 1

2 ,
2
3
,

T19(3,2) 1
2 ,−

2
3
, T20(3,2)− 1

2 ,−
2
3
,

T21(6,2) 1
2 ,−

2
3
, T22(6,2)− 1

2 ,−
2
3
,

T23(3,2) 1
2 ,

2
3
, T24(3,2)− 1

2 ,
2
3
,

T25(1,2) 1
2 ,−2, T26(1,2)− 1

2 ,−2,

T27(1,2) 1
2 ,2

, T28(1,2)− 1
2 ,2

,

T29(3,2) 1
2 ,−

2
3
, T30(3,2)− 1

2 ,−
2
3
,

T31(3,2) 1
2 ,

2
3
, T32(3,2)− 1

2 ,
2
3
,

T33(8,1)0,0, T34(3,1)0, 43 ,

T35(3,1)0,− 4
3
, T36(1,1)0,0

45 (3,2) 1
2 ,−

2
3
, (3,2)− 1

2 ,−
2
3
, (8,1)0,0, (8,1)0,

(3,2) 1
2 ,

2
3
, (3,2)− 1

2 ,
2
3
, (1,3)0,0, (1,3)0,

(3,1)0, 43 , (3,1)0,− 4
3
, (1,1)0,0 (1,1)0

(1,1)1,0, (1,1)0,0,
(1,1)−1,0

Table 4.2: The fields at different scales when having G3211 as the intermediate symmetry
between SO(10) and GSM.

One interesting property of this model that can be seen, which is important for
the later numerical analysis, is that the possible sizes of the threshold effects at
MGUT far outweigh those at MI, when the different ηi are in the same range. This
follows from that the gauge group G3211 is very similar to the SM gauge group GSM,
in the sense that only an extra Abelian factor U(1) separates them. Therefore,
the only G3211 fields that need to be placed at MI in order to reproduce the SM
correctly after symmetry breaking are SM representations with an extra Abelian
charge, which do not break into extra representations with masses around MI. The
effect of this can be seen when using Eq. (2.97) to compute the expressions for the
threshold corrections. At MI, we just get

λ32113C = 3 ,

λ32112L = 2 + ηφ ,

λ32111Y =
3

5
ηφ .

(4.10)
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At MGUT, we instead find that

λ103C = 5 + ηS1 + ηS2 + 2ηS4 + 2ηS5 + 2ηS6 + 2ηS7 + 6ηS8 + ηS9 + ηS10

+ 12ηR1 + 12ηR2 + 2ηR4 + 2ηR5 + 2ηR6 + 2ηR7

+ 5ηR8 + 5ηR9 + 5ηR10 + ηR11 + ηR12 + ηR13

+ 18ηT1 + 3ηT2 + 3ηT3 + 6ηT5 + 6ηT6 + 6ηT7 + ηT8 + ηT9 + ηT10

+ ηT11
+ ηT12

+ ηT13
+ 10ηT17

+ 10ηT18
+ 2ηT19

+ 2ηT20
+ 10ηT21

+ 10ηT22

+ 2ηT23
+ 2ηT24

+ 2ηT29
+ 2ηT30

+ 2ηT31
+ 2ηT32

+ 6ηT33
+ ηT34

+ ηT35
,

λ102L = 6 + ηS3 + 3ηS4 + 3ηS5 + 3ηS6 + 3ηS7 + 4ηS11

+ 8ηR1 + 8ηR2 + ηR3 + 3ηR4 + 3ηR5 + 3ηR6 + 3ηR7

+ 32ηT1 + 12ηT2 + 12ηT3 + 4ηT4 + 6ηT17 + 6ηT18 + 3ηT19 + 3ηT20

+ 6ηT21 + 6ηT22 + 3ηT23 + 3ηT24 + ηT25 + ηT26 + ηT27 + ηT28

+ 3ηT29 + 3ηT30 + 3ηT31 + 3ηT32 ,

λ101R = 8 + ηS3
+ 3ηS4

+ 3ηS5
+ 3ηS6

+ 3ηS7
+ 2ηS12

+ 2ηS14

+ 8ηR1
+ 8ηR2

+ ηR3
+ 3ηR4

+ 3ηR5
+ 3ηR6

+ 3ηR7

+ 12ηR8
+ 12ηR10

+ 6ηR11
+ 6ηR13

+ 2ηR15

+ 16ηT6
+ 16ηT7

+ 6ηT8
+ 6ηT10

+ 6ηT11
+ 6ηT13

+ 2ηT14
+ 2ηT16

+ 6ηT17
+ 6ηT18

+ 3ηT19
+ 3ηT20

+ 6ηT21
+ 6ηT22

+ 3ηT23
+ 3ηT24

+ ηT25
+ ηT26

+ ηT27
+ ηT28

+ 3ηT29
+ 3ηT30

+ 3ηT31
+ 3ηT32

,

λ101B−L = 8 + ηS1
+ ηS2

+ 2ηS4
+ 2ηS5

+ 2ηS6
+ 2ηS7

+ 4ηS9
+ 4ηS10

+ 8ηR4
+ 8ηR5

+ 8ηR6
+ 8ηR7

+ 2ηR8
+ 2ηR9

+ 2ηR10
+ ηR11

+ ηR12
+ ηR13

+ 8ηR14
+ 8ηR15

+ 12ηT2
+ 12ηT3

+ 4ηT8
+ 4ηT9

+ 4ηT10
+ 4ηT11

+ 4ηT12
+ 4ηT13

+ 4ηT17
+ 4ηT18

+ 2ηT19
+ 2ηT20

+ 4ηT21
+ 4ηT22

+ 2ηT23
+ 2ηT24

+ 6ηT25
+ 6ηT26

+ 6ηT27
+ 6ηT28

+ 2ηT29
+ 2ηT30

+ 2ηT31
+ 2ηT32

+ 4ηT34
+ 4ηT35

.
(4.11)

With these threshold effects, the matching conditions at MI, which give the initial
values for the G3211 couplings, become



α−1
1B−L (M1) = x

(
2
5x+ 3

5

)−1
(
α−1
1Y (MI) +

λ3211
1Y

12π

)
α−1
1R (MI) =

(
2
5x+ 3

5

)−1
(
α−1
1Y (MI) +

λ3211
1Y

12π

)
α−1
2L (MI) = α−1

2L (MI) +
λ3211
2L

12π

α−1
3C(MI) = α−1

3C(MI) +
λ3211
3C

12π

. (4.12)
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Similarly, by adding corrections, the matching conditions at MGUT become

α−1
10 (MGUT) = α−1

1B−L(MGUT) +
λ10
1B−L

12π

α−1
10 (MGUT) = α−1

1R(MGUT) +
λ10
1R

12π

α−1
10 (MGUT) = α−1

2L (MGUT) +
λ10
2L

12π

α−1
10 (MGUT) = α−1

3C(MGUT) +
λ10
3C

12π

, (4.13)

where the GUT coupling α−1
10 (MGUT) again can be eliminated, leaving us with the

three equations
α−1
1B−L(MGUT)− α−1

1R(MGUT) +
1

12π (λ
10
1B−L − λ101R) = 0

α−1
1R(MGUT)− α−1

2L (MGUT) +
1

12π (λ
10
1R − λ102L) = 0

α−1
2L (MGUT)− α−1

3C(MGUT) +
1

12π (λ
10
2L − λ103C) = 0

. (4.14)

As discussed in section 2.6, the threshold corrections take the same form when
also considering kinetic mixing in this model. The only thing that must be changed
is then the original matching conditions. Adding corrections to the matching con-
ditions at MI from Ch. 3, we get

α−1
1B−L (MI) = x

(
2
5x+ 3

5 −
√
6
5 y(x+

√
x)
)−1 (

α−1
1Y (MI) +

λ3211
1Y

12π

)
α−1
1R (MI) =

(
2
5x+ 3

5 −
√
6
5 y(x+

√
x)
)−1 (

α−1
1Y (MI) +

λ3211
1Y

12π

)
α̃−1 (MI) =

1
y2

(
2
5x+ 3

5 −
√
6
5 y(x+

√
x)
)−1 (

α−1
1Y (MI) +

λ3211
1Y

12π

)
α−1
2L (MI) = α−1

2L (MI) +
λ3211
2L

12π

α−1
3C(MI) = α−1

3C(MI) +
λ3211
3C

12π

. (4.15)

At MGUT we must only add the extra condition g̃(MGUT) = 0 to the ones in
Eq. (4.14), since the mixing effects are not seen there. This gives

α−1
1B−L(MGUT)− α−1

1R(MGUT) +
1

12π (λ
10
1B−L − λ101R) = 0

α−1
1R(MGUT)− α−1

2L (MGUT) +
1

12π (λ
10
1R − λ102L) = 0

α−1
2L (MGUT)− α−1

3C(MGUT) +
1

12π (λ
10
2L − λ103C) = 0

g̃(MGUT) = 0

, (4.16)

as the system of equations to be solved.





Chapter 5

Numerical methods and
results

Apart from the one-loop cases without kinetic mixing, the renormalization group
equations are not analytically solvable, due to the intricate way they are coupled
with each other. Therefore, numerical solvers are a must when analyzing the run-
ning in these models. Some examples of this have already been seen in the previous
sections, where the two-loop running of coupling constants was plotted. However,
the numerical calculations will become a bit more involved here. All of the code
used for the following numerical analysis is written in Python 3.7.1. Some of the
results are made by running the scripts locally, while some of the more compu-
tationally heavy ones are made using the Beskow supercomputing system. It is
a high-performance computing (HPC) cluster, where 48 different cores were used
simultaneously.

This chapter will be dedicated to describing the numerical methods used to
analyze the effects of threshold corrections in the two models discussed in previous
chapters, as well as illustrating the results. Because of the different features of the
two models explained in Ch. 3, the numerical approach will differ a bit between
the two models. First, the model with G51 as an intermediate symmetry will be
treated, followed by the model with G3211 as the intermediate symmetry. As part
of the later model, kinetic mixing effects will also be included.

5.1 Numerical analysis of model 1
First of all, we will examine the effects of threshold corrections in the model based
on G51. Because of the slight decoupling of the system explained earlier, in the
sense that MI can be determined independently, it is quite easy to analyze how the
intermediate scale shifts as a result of the corrections. Figure 5.1a shows how MI

can be pushed to lower scales, by adding fields with masses near that scale. It can

53



54 Chapter 5. Numerical methods and results

of course also be pushed to higher scales, by threshold corrections with the opposite
sign, but that is of no help when trying to achieve unification. In the plot, it is
shown how low MI can be moved, by adding threshold corrections corresponding
to ηi ∈ [−1, 1], ηi ∈ [−2, 2], and ηi ∈ [−3, 3]. As we noted in Ch. 3, the problem
that prevents unification is that the intermediate scale is too high. This leads to
α−1
1Y < α−1

2L = α−1
3C at the point of symmetry breaking, which in turn results in the

G51 couplings immediately starting to move further apart. However, if the threshold
corrections are large enough, it is possible to push MI below the scale where the
SM couplings cross.
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λ 51
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Figure 5.1: The plots illustrate how the two scales can be manipulated semi-
independently in this model. In both plots, the different regions separated by vertical
lines show which values are reachable with ηi in different intervals. (a) How the interme-
diate scale MI changes depending on the difference λ51

2L−λ51
3C between threshold corrections

around that scale. (b) How the unification scale MGUT changes depending on the differ-
ence λ10

1X −λ10
5 between threshold corrections around that scale, given the minimum value

of MI from the left plot.

One-loop Two-loop
MI [GeV] 7.43× 1013 2.52× 1013

Table 5.1: The lowest possible values of the intermediate scale MI where G51 is broken
to GSM, with ηi ∈ [−3, 3].

As an example, we can see what happens if we pick the lowest possible MI that
can be achieved with ηi ∈ [−3, 3], for both the one- and two-loop cases. These
values are shown in table 5.1. Since we then get MI below 1014 GeV, it is possible
to achieve unification, even without adding corrections at MGUT. However, that
would result in the unification scale being quite low, ending up just next to the
intermediate scale. We can also add threshold corrections at MGUT as well, in an
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attempt to push the unification scale to larger scales. Since Eq. (4.6) only depends
on the difference λ105 − λ101X , it is easy to perform a similar analysis as for the
intermediate scale. In figure 5.1b it is shown how the unification scale varies, given
the choice of the lowest possible intermediate scales. Again, the different regions
show which scales that can be achieved by having ηi in the different intervals. The
maximum values of MGUT that can be achieved, also with ηi ∈ [−3, 3], are shown
in table 5.2. Figure 5.2 finally shows the running of the couplings, with these values
of the two scales.

One-loop Two-loop
MGUT [GeV] 2.60× 1015 4.03× 1015

Table 5.2: The largest possible values of the unification scale MGUT where SO(10) is
broken to G51, with ηi ∈ [−3, 3], and values of MI given in table 5.1.

104 107 1010 1013 1016 1019

µ [GeV]

10

20

30

40

50

60

α
−

1
i

(µ
)

α−1
1Y

α−1
2L

α−1
3C

α−1
1X

α−1
5 α−1

10

Figure 5.2: An example of unification, allowed by threshold corrections, in the model
with G51 as the intermediate symmetry. The running of the coupling constants in GSM,
G51, and SO(10) are shown to one-loop order (dashed) and two-loop order (solid). Here,
the threshold corrections are chosen in order to minimize MI and maximize MGUT, with
ηi ∈ [−3, 3]. These two scales are shown as vertical lines.

From this analysis, we can draw the conclusion that quite few combinations
of different ηi actually give physically meaningful solutions to this problem. It
is actually not the case that the system is not solvable otherwise; the analytical
one-loop expressions in Eqs. (4.8) and (4.9) for MI and MGUT are valid for any
threshold corrections, and from numerical error analysis, the two-loop system does
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not seem to be unsolvable. What instead happens is that for most choices of
threshold corrections, we get solutions in the region where MI > MGUT, which are
not particularly interesting, since that region is unphysical.

We can also perform a random sampling of the parameters ηi, in order to analyze
the behavior of the model. Figure 5.3 shows how the two scales vary, when the
parameters are sampled in different intervals. This sampling is performed on the
Beskow system, with 2×109 samplings for the one-loop system and 2×106 samplings
for the two-loop system. The solid, dashed, and dotted lines correspond to the
one-loop solutions when sampling for ηi ∈ [−3, 3], ηi ∈ [−4, 4], and ηi ∈ [−5, 5],
respectively. Red regions are instead the two-loop solutions from sampling in the
same intervals.

1010 1012 1014 1016 1018

MI [GeV]

1010

1012

1014

1016

1018

M
G

U
T

[G
eV

]

Figure 5.3: The plot shows the values of the intermediate scale MI and the unification
scale MGUT, solved from the system of equations in Eq. (4.5), when the parameters ηi are
randomly sampled. The solid, dashed, and dotted lines show the one-loop results, while
the colored regions show the two-loop results. From smallest to largest, the regions in
each of the two cases are given by sampling in the regions ηi ∈ [−3, 3], ηi ∈ [−4, 4], and
ηi ∈ [−5, 5]. They grey shaded areas are those that are excluded by the proton decay
limit (which is almost horizontal), the unphysical limit where MI > MGUT, or both. The
black star (cross) shows the solution without having any threshold effects, to one-loop
(two-loop) order, while the blue star (cross) shows the values from tables 5.1 and 5.2.

The different regions are created using the ConvexHull method from the SciPy
package [65]. We see in the figure that, just as expected, most of the solutions are
excluded since they are under the line MI = MGUT. Many values are also ruled
out by the horizontal grey region, which is determined by the proton decay limit.
The black cross and star correspond to the two solutions that we get without any
threshold corrections, and as we noted earlier, they are in the excluded region.
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The blue cross and star instead correspond to the solutions that were found when
minimizing MI and maximizing MGUT, for ηi ∈ [−3, 3], respectively. Those points,
on the other hand, are just on the limit to the allowed region.

5.2 Numerical analysis of model 2
Unfortunately, the system of equations giving the scales for the second model does
not behave as nicely as the one for the model 1, where we could always solve for
the two scales, given certain threshold corrections. In the model based on G3211,
it seems that only very small regions in the parameter space result in a solvable
system. This difference between the two models can be seen intuitively from the
earlier plots of the couplings, and is the result of having to unify four different
couplings at once, instead of just two.

This is where it becomes important that the threshold corrections at MI are
negligible in this model, due to almost all fields having masses around MGUT. If
we for a moment treat them as negligible, we then see that the system instead can
be solved backwards. What this means is that MI, MGUT, and x are treated as
input parameters, while the system is solved for the three differences λ101B−L−λ101R,
λ101R−λ102L, and λ102L−λ103C. This can always be done, since if the scales are chosen, the
differences between the couplings at MGUT can be found. However, this approach
then presents us with yet another problem—finding the combination of different
ηi which produces these threshold effects. There is obviously an infinite number
(or none) of such combinations, since they are solutions to the linear system of
equations 

λ101B−L − λ101R =
∑

i aiηi

λ101R − λ102L =
∑

i biηi

λ102L − λ103C =
∑

i ciηi

, (5.1)

where the coefficients ai, bi, and ci are given in Eq. (4.11). Also, for simplicity, we
have chosen to label ηi with i = 1, . . . , 65. In this system there are 65 unknown
variables, and only three equations. One particular solution is of interest, which is
the one that minimizes the Euclidean norm of the vector

η =
[
η1 . . . η65

]T
, (5.2)

which contains all of the different ηi at MGUT. This solution is interesting since
having lower values of these parameters makes the model more viable. If we create
the 3× 65 matrix

A =

a1 . . . a65b1 . . . b65
c1 . . . c65

 , (5.3)
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and the vector

y =
[
λ101B−L − λ101R λ101R − λ102L λ102L − λ103C

]T
, (5.4)

the system can be written as
Aη = y . (5.5)

The solution with the smallest norm can then be found as the least-squares solution

η =
(
ATA

)−1
ATy , (5.6)

as long as the matrix inverse (ATA)−1 exists. If it does not, a singular value
decomposition can be used instead. Either way, both of these cases are included
in the lstsq solver in the NumPy package [66]. The maximum value ηmax in this
vector of ηi, i.e. ηmax = max1≤i≤65(ηi), can then be used as a measure of what is
needed to give the required threshold corrections.
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Figure 5.4: An example of unification, allowed by threshold corrections, in the model
with G3211 as the intermediate symmetry. The running of the coupling constants in GSM,
G3211, and SO(10) are shown to one-loop order (dashed) and two-loop order (solid). Here,
the scales are chosen as MI = 1010 GeV and MGUT = 1016 GeV, and are shown as vertical
lines. The threshold corrections are then found following the described procedure. Mini-
mization with respect to x is done, giving ηmax = 4.28 for x = 1.15 in the one-loop case,
and ηmax = 4.26 for x = 1.14 in the two-loop case.

As a final step, the dependence on the parameter x can then be removed, by
minimizing ηmax with respect to x for each combination of MI and MGUT. This
parameter has no particular physical importance, as it is just something that was
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inserted in order to invert the system. Such a minimization then just ensures that
we have the solution giving the lowest value of ηmax. The minimization is done using
the minimize function from the SciPy package, using a Nelder–Mead algorithm.
Figure 5.4 shows an example of the running in the model, when it is solved in this
way. The scales are chosen as MI = 1010 GeV and MGUT = 1016 GeV, while x and
η are found from the solver.

Using this algorithm, we can also create a grid of different combinations of MI

and MGUT, to see how the required threshold corrections change. The resulting
values of ηmax, for different scales, are shown in figure 5.5. In both plots, the color
scale shows how the value of this largest ηi changes over the grid. There are also
contour lines showing some different values of ηmax, as well as the limit given by
the proton lifetime. Here, the region MI > MGUT is not plotted at all, since it now
is possible to completely choose the scales.
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(a) One-loop order
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Figure 5.5: The maximum value ηmax that is needed to achieve unification in the model
with G3211 (without kinetic mixing effects) as the intermediate symmetry, for different
combinations of MI and MGUT. Also, the value at each point in the grid is minimized
individually with respect to the parameter x. Some particular values of ηmax in the color
scale are shown by the yellow contour lines, and the red line is the limit required for
suppressing proton decay, excluding all points under it. Finally, the grey section is the
unphysical region where MI > MGUT.

We can in both of these plots note that there is very little dependence on
where the intermediate scale MI is placed, as compared to how much ηmax changes
when MGUT changes. This peculiarity is also a consequence of the fact that the
intermediate symmetry is so similar to the SM, since it results in the β-function
coefficients for the two groups being almost the same. As we saw in the previous
plots, this results in the slopes for the coupling constants being almost the same
above and below MI. Therefore, changing MI barely has an effect on where the
couplings end up at MGUT, or, more importantly, how much they are separated.
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On the other hand, changing MGUT has a large impact on the separation of the
couplings, and thus on the size of the threshold corrections that are needed.

5.2.1 Kinetic mixing
When adding the effects of kinetic mixing to the model, a similar numerical proce-
dure can be used to generate results. The only difference, apart from the changes
to β-functions and matching conditions, is that now there are two parameters of no
physical relevance, x and y. We can solve the system of equations for ηmax just as
explained in the last section, now giving MI, MGUT, x, and y as input. However, we
must also consider the condition g̃(MGUT) = 0, which makes some combinations of
the parameters x and y impossible for certain scales. We can then again minimize
ηmax for each combination of MI and MGUT, but now with respect to both x and
y. An example of such a solution is plotted in figure 5.6, similarly to the one in
figure 5.4.
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Figure 5.6: An example of unification, allowed by threshold corrections, in the model
with G3211 as the intermediate symmetry, including the effects of kinetic mixing. The
running of the coupling constants in GSM, G3211, and SO(10) are shown to one-loop order
(dashed) and two-loop order (solid). Here, the scales are chosen as MI = 1010 GeV and
MGUT = 1016 GeV, and are shown as vertical lines. The threshold corrections are then
found following the described procedure. Minimization with respect to x and y is done,
giving ηmax = 3.81 for x = 1.13 and y = 0.02 in the one-loop case, and ηmax = 3.91 for
x = 1.11 and y = 0.02 in the two-loop case.

Apart from the optimal value of x changing slightly, we can also note the qual-
itative difference that the slopes of the two-loop couplings now change noticeably.
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We can again create a grid of scales MI and MGUT, and solve for ηmax for each
point, minimized with respect to x and y. The resulting values are shown in figure
5.7. Qualitatively, we see there that the situation was improved by the addition
of kinetic mixing, as expected by the earlier plot. Improved means that we re-
quire smaller values of ηmax to reach the same scales, compared to the case without
mixing effects. The most striking differences seem to be at combinations where
the value of MI is low and the value of MGUT is high. This may be due to the
difference in slopes at two-loop order noted earlier, as it then gets enough space
between the two scales to make a significant impact on where the couplings are at
the unification scale MGUT.

The difference coming from kinetic mixing effects can also be quantified. If
we by η0max denote the values without kinetic mixing, we can define the relative
difference

∆η ≡ η0max − ηmax

η0max

. (5.7)

By combining the values seen in figures 5.5 and 5.7, we can then plot how this
difference changes depending on the scales MI and MGUT. This is showed in figure
5.8. It can be seen that the addition of kinetic mixing effects can decrease the
required maximum value of ηi by around 20 percent in some places. The difference
is also sometimes negative, but mostly in regions that are unphysical anyway.
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Figure 5.7: The color scale shows the maximum value ηmax that is needed to achieve
unification in the model with G3211 (including kinetic mixing effects) as the intermediate
symmetry, for different combinations of MI and MGUT. Also, the value at each point in
the grid is minimized individually with respect to the parameters x and y. Some particular
values of ηmax are shown by the yellow contour lines, and the red line is the limit required
for suppressing proton decay, excluding all points under it. Finally, the grey section is the
unphysical region where MI > MGUT.
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Figure 5.8: The relative difference ∆η between values of ηmax computed in models with
G3211 as the intermediate symmetry, with and without kinetic mixing. The individual
values for both models are shown in figures 5.5 and 5.7, and the resulting differences are
shown here.



Chapter 6

Summary and conclusions

First, in Ch. 2, we discussed the relevant background theory for this thesis. We
started with the gauge symmetries of QFTs, which is the very foundation of the
models that are analyzed here. After that, the SM was introduced, which is the
currently used theory of particle physics that models must agree with at lower
energies. This was followed by a discussion on renormalization group running and
GUTs, where specifically SO(10) was mentioned as a promising candidate for a GUT
gauge group. Also, the effects of kinetic mixing were mentioned, threshold effects
were introduced, and finally, the possible decays of protons in theories beyond the
SM were discussed.

In Ch. 3, the two different models analyzed in this thesis were discussed. The
first one, model 1, has G51 as an intermediate symmetry between SO(10) and the
SM, while the second one, model 2, has G3211 as the intermediate symmetry. The
particle content and charge normalization in the models were also discussed, and
it was explained why it is not possible to achieve unification at tree-level matching
in either of the two models. This explanation differs a bit between the two models,
so their individual characteristics were also brought up.

Then, in Ch. 4, threshold effects were computed for the two models, which result
in corrections that affect the matching conditions where the symmetry breaking
occurs. These corrections can then allow us to achieve unification in our two models.
It was examined how different fields can be placed at different scales in the two
models, and how these fields affect the expressions for the corrections. It was then
shown how these corrections alter the equations from the previous chapter.

Finally, in Ch. 5, the numerical procedure was explained, and the corresponding
results were shown. The equations from the previous chapters, including threshold
corrections, were then solved numerically, in order to find the scales for unification.
As the two models have different characteristics, the approach for this numerical
analysis was different for each model, as explained in detail.

The main purpose of this thesis has been to examine the viability of two dif-
ferent models based on SO(10) as a GUT gauge group, with different intermediate
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symmetries. It was shown that unification indeed is possible in both models, with
sufficiently large threshold corrections. The follow-up question is then whether or
not these corrections are small enough for the models to be considered viable. We
could impose a limit for acceptable solutions, when fields contributing to threshold
effects have masses one order of magnitude from the symmetry breaking scale. The
models can then be considered viable, although close to the limit. As part of this
thesis, it was also examined how much of a difference it makes to add the effects
of kinetic mixing in model 2, as compared to when they are neglected. It could be
noted that kinetic mixing effects made a small but notable impact on how easy it
was to achieve unification in that model.

GUTs are a fascinating way of extending theories of particle physics beyond the
SM, and SO(10) in particular is a fitting candidate for the corresponding gauge
group. The results seen here might be important lessons to keep in mind when
building GUT models in general, where similar issues can arise. Models are not
necessarily rendered useless just based on that unification is not possible at tree-
level matching, and taking into account kinetic mixing effects can be helpful in
achieving unification.
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