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Chapter 1

The Standard Model

After three decades of great cumulative theoretical and experimental effort,
today we seem to possess the theory of both strong and electroweak interac-
tions. This is the so-called Standard Model, based on the invariance under
the symmetry group

Gst = SU(2)L × U(1)Y × SU(3)C (1.1)

More correctly phrased, it is based on the partial spontaneous symmetry
breaking of Gst.

The basic constituents of matter, the elementary fermions, i.e. the quarks
and leptons, have the following transformation properties under Gst (where
for the time being we concentrate only in the first generation of fermions)

Quarks :
(

u
d

)i

L

ui
R di

R

SU(3)C 3C 3C 3C

SU(2)L 2L 1̄L 1L

U(1)Y 1/3 4/3 −2/3

(where i = 1, 2, 3 ≡ Nc)
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Leptons :
(

ν
e

)

L

eR ̸ νR (no νR)

SU(3)C 1C 1C

SU(2)L 2L 1L

U(1)Y −1 −2
In the above we have used the formula for the electromagnetic charge

Qem = T3L +
Y

2
( photon = color blind ) (1.2)

with Qem

u : 2/3 e : −1
d : −1/3 ν : 0

An often used notation is also
(

u
d

)i

L

: (3C , 2L, 1/3)

uR : (3C , 1L, 4/3)

dR : (3C , 1L, −2/3)

−−−−−− −−−−−−−−−−−−−
(

ν
e

)

L

: (1C , 2L, −1)

eR : (1C , 1L, −2)

The Lagrangian for the above theory (ignore SU(3)C for the time being),
more precisely for the SU(2)× U(1) electroweak model, can be written as:

L = Lg.bosons + Lfermions (1.3)

where

Lg.bosons = −
1

4
F⃗µν · F⃗ µν −

1

4
Bµν · Bµν (1.4)

with

F⃗µν = ∂µA⃗ν − ∂nuA⃗µ + gA⃗µ × A⃗ν (1.5)
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or
F i

µν = ∂µAi
ν − ∂νAi

µ + gϵijkA
j
µAk

ν (1.6)

being the SU(2)L field strength, and

Bµν = ∂µBν − ∂ − νBµ (1.7)

the corresponding field strength for the U(1)Y gauge boson.
The symmetry invariance holds under the following transformations

τ⃗ · A⃗µ

2
−→ U(θ)

τ⃗ · A⃗µ

2
U(θ)−1 −

i

g
[∂µU(θ)] U(θ)−1 (1.8)

where

U(θ) = e−i τ⃗
2
·θ⃗(x) SU(2) (1.9)

which for small θ becomes

Ai′

µ = Ai
µ −

1

g
∂µθ

i + ϵijkθ
jAk

µ (1.10)

↑ ↑
a “gauge” transformation an SU(2) global rotation

=⇒ Thus a vector A⃗µ of “photons” (gauge bosons).
Under the same transformations F⃗µν is a vector

τ⃗

2
· F⃗ ′

µν = U(θ)
τ⃗

2
· F⃗µνU(θ)−1 (1.11)

or for small θ

F i
µν

′
= F i

µν + gϵijkθ
jF k

µν (1.12)

and so F⃗ 2
µν is a group invariant.

Similarly,

B′
µ = Bµ −

1

g′∂µθ (1.13)

B′
µν = Bµν (1.14)

the usual U(1) “photon”.
Next, the fermionic Lagrangian has the usual covariant Dirac form

Lf =
∑

f

if̄γµD
µf (1.15)
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with

Dµ = ∂µ − ig
τ⃗

2
· A⃗µ − ig′Y

2
Bµ (1.16)

↑ ↑
SU(2) gen. U(1) gen.

to be read as:

Dµ

(

u
d

)

L

= ∂µ

(

u
d

)

L

−
(

ig
τ⃗

2
· A⃗µ + ig′1

6
Bµ

)(

u
d

)

L

(1.17)

DµuR = ∂µuR − ig′2

3
BµuR (1.18)

etc.
Invariant under

U(1)Y

f −→ e−iθY/2f

SU(2)L
(

u
d

)

L

−→ e−i τ⃗
2
·θ⃗

(

u
d

)

L
uR −→ uR

dR −→ dR

etc.

As it is:
4 massless gauge fields
all fermions massless

}

⇐ symmetry.

Thus we must break the symmetry and must break it spontaneously to
ensure renormalizability.

As you know by now, this is achieved through the doublet of Higgs scalars

Φ =

(

φ+

φ0

)

(1.19)

with Y = 1 or Φ = (1C , 2L, 1).
Once again, by fixing the quantum numbers of Φ its interactions are

determined

LΦ =
1

2
(DµΦ)†(DµΦ)− V (Φ) + LY (1.20)

where the potential has the well-known form

V (Φ) = −
µ2

2
Φ†Φ +

λ

4
(Φ†Φ)2 (1.21)
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and LY are the Yukawa couplings of the Higgs doublet to the fermions.

LY = hd(ū d̄)LΦdR + hU(ū d̄)Liτ2Φ
∗uR + hν(ν̄ ē)LΦeR + h.c. (1.22)

Also, the covariant derivative has the form

DµΦ = ∂µΦ− ig
τ⃗

2
· A⃗µΦ− i

g′

2
BµΦ (1.23)

Before one can study the physics of the theory, one must find the vacuum,
i.e. determine the lowest energy state. This will follow from V (Φ), since as
you notice we have a freedom in the sign of the µ2 term (recall that λ > 0 in
order to

ensure that there is a minimum of energy, i.e. that the potential is
bounded from below). An innocently looking choice µ2 > 0 provides all
the difference, the potential takes the form

Obviously, at the minimum

< Φ†Φ >= v2 ≡
µ2

λ
(1.24)

which by an SU(2) transformation (show it) can be cast in the form

< Φ†Φ >=

(

0
v

)

(1.25)

with

Ti < Φ > =
τi
2
̸= 0

Y < Φ > = 0 (1.26)

but
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Qem < Φ >≡ (T3 +
Y

2
) < Φ >= 0 (1.27)

Thus, the symmetry is broken, schematically

SU(2)L × U(1)Y

< Φ > ̸= 0
−→ U(1)em

The consequences are dramatic:

1.0.1 a. Particle spectrum

From 1
2(DµΦ)†(DµΦ), one finds in the vacuum < Φ >=

(

0
v

)

1

2
< (DµΦ)†(DµΦ) >=

1

2

g2v2

4

[

(A2
1 + A2

2) +
1

cos2 θW
(cos θW A3 − sin θW B)2

]

(1.28)
where tan θW ≡ g′/g.
This, in the language of eigenstates of definite charge

W± ≡
1√
2
(A1 ∓A2)

Z ≡ cos θW A3 − sin θW B

A ≡ sin θW A3 + cos θW B (1.29)

(1.30)

One concludes

MW =
g

2
v ; MZ =

MW

cos θW
; MA = 0 (1.31)

Similarly, from the Yukawa interactions (1.22), in the vacuum the fermions
become massive

md = hdv ; mu = huv ; me = hev (1.32)

except for the neutrino which in the absence of the νR field remain mass-
less. However, the masses are completely arbitrary, due to the arbitrariness
of the couplings hi.

As you know, by a local SU(2)L group transformation we can always
bring the Higgs doublet to the form (show it)
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Φ =

(

0
v + η

)

(1.33)

implying only one physical Higgs scalar η, the real and neutral spin-0
particle. From (1.21) its mass is

m2
η = 2λv2 (1.34)

All we know about λ is unfortunately only its sign, this leaves mη unde-
termined.

Of course, you know that we did not lose the other 3 members of Φ; they
just got traded for the extra 3 longitudinal degrees of freedom of the massive
W+, W− and Z.

1.0.2 b. Interactions

b.1 Gauge Currents
From

∑

f if̄γµDµf it is easy to derive the charged and neutral weak and
electromagnetic interactions

LW =
g√
2
ūLγ

µdLW+
µ + h.c.

LA = e
∑

f

f̄γµQemfAµ

LZ =
g

cos θW

∑

f

f̄
(

T3L−Q sin2 θW

)

γµfZµ (1.35)

where
e ≡ g sin θW (1.36)

L ≡
1 + γ5

2
(1.37)

The fact that MA = 0 and the form of LA allow us to identify Aµ

as a photon, whereas W±
µ and Zµ mediate the weak interaction. Since

MZ cos θW = MW , the theory is completely characterized by only two pa-
rameters: MW and (say) sin2 θW . The great success of the standard model
lies in the fact that all the charged and neutral current data and the mea-
surements of MW and MZ agree spectacularly with the theory for

MW ≃ 80GeV ; sin2 θW ≃ 0.23 (1.38)

Notice that the prediction MZ = MW / cos θW = 90GeV follows from the
spontaneous symmetry breaking. Had you given the mass to W and Z by
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hand, not only the theory would not be renormalizable, but the masses would
have been uncorrelated.

1.0.3 b.2 Yukawa Couplings

Besides coupling to W±
µ and Zµ, the Higgs also has interactions with the

fermions. It is easy to show from(1.22) and (1.31) that

LY =
g

2MW
η
∑

f

mf f̄ f (1.39)

You can see why it was and still is hard to find the Higgs. Not only that
its mass is arbitrary, but also the couplings to the fermions are suppressed
by mf/MW . For example, for f = e, the electron, this suppression is about
10−5 ! Similarly, for down and up quarks, with md ≃ mu ≃ 10MeV , we do
not do much better.

May you keep in mind that the experiment only provides a lower bound:

(mη)exp ≥ 60GeV (1.40)

And the search for the Higgs scalar must be considered the most central
task of weak interaction physics.
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The SU(2)L × U(1) Electro-Weak Theory

Summary of Main formulas

Fermions

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{

u
d

)i

L

ui
R di

R

(

ν
e

)

L

eR

Higgs Φ =

(

φ+

φ0

)

Charge Qem = T3 + Y
2

Lagrangian

L = Lgb + Lf + LΦ + LY (1.41)

Lgb = −
1

4
F⃗µν · F⃗ µν −

1

4
Bµν · Bµν

Lf =
∑

f

if̄γµD
µf

LΦ =
1

2
(DµΦ)†(DµΦ)− V (Φ) + LY

LY = hd(ū d̄)LΦdR + hU(ū d̄)Liτ2Φ
∗uR + hν(ν̄ ē)LΦeR + h.c.

with V (Φ) = −µ2

2 Φ†Φ + λ
4 (Φ†Φ)2

From V (Φ) ⇒ < Φ >=

(

0
v

)
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Physical Gauge Fields

W µ± ≡ 1√
2
(Aµ

1 ∓Aµ
2 ) M2

W = g2

4 v2

Zµ ≡ cos θW Aµ
3 − sin θW Bµ MZ = MW

cos θW
; tan θW ≡ g′/g

Aµ ≡ sin θW Aµ
3 + cos θW Bµ MA = 0

Currents

Jµ
W =

g√
2
ūL γ

µ dL

Jµ
A ≡ Jem = e

∑

f

f̄ γµ Qem f

Jµ
W =

g

cos θW
(J3 L− sin2 θW Jem)

Physical Higgs

Φ =

(

0
v + η

)

; m2
η = 2λv2 (1.42)

Ly =
g

2MW
η
∑

f

mf f̄ f (1.43)
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On the positive notice:

• the standard model is a remarkably successful phenomenological theory,
since with only two independent parameters MW and sin θW it correctly
describes all the electroweak processes.

• it has an extremely economical Higgs sector which can account for all
the particle masses.

• It is easy to see that both baryon and lepton number are automatically
conserved (at least in perturbation theory).

Questions one may pose

• where is the Higgs ?

• could we unify the different gauge couplings gs, g and g′ ? Can we
predict sin2 θw ?

• can we relate the quark and lepton charges ?

• could we explain the origin of parity and time reversal breaking ? Why
are there broken only by the weak interaction ?

• could we predict the quark mass spectrum ? Also the mixing angles in
the case of more generations.

As far as the first question is concerned, have patience. In what follows
we shall attempt to offer some possible answers to the others.
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Chapter 2

Unification: The Basic
Concepts

The energy dependence of the U(1)em and SU(3)c coupling constants dis-
cussed in Lecture 2 can be generalized to any group G. The result, which we
only quote here, is

1

αg(E2)
=

1

αg(E1)
−

1

2π
bG ln

E2

E1
(2.1)

where E is to be interpreted as
√

(− q2) (for −q2 ≫ m2, where m is the
mass of the contributing particle) and

bG ≡
11

3
TGB(R)−

4

3
TF (R)−

1

3
TH(R) (2.2)

with

T (R)δij = Tr (TiTj) (2.3)

for the representation R; and GB, F anf H refer to the gauge boson,
fermionic and Higgs scalar contributions, respectively. Keep in mind please
that only the particles with a mass smaller or equal to E1 will contribute
(the particles with M ≥ E2 decouple as a result of the renormalizability of
the theory). Thus if there are particles with E1 ≤ m ≤ E2, one should break
the above formula in the regions E ≤ m and E ≥ m separately, and M will
contribute only in the latter region.

Normally gauge bosons are in the adjoint representation of the group G,
in which case we denote TGB(adjoint) = C2(G). For the SU(N) groups
which are our primary interest (at least for the time being), we choose for
the fundamental representation
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T (vector) = T (N) =
1

2
(2.4)

You can then show that for the adjoint representation

T (adjoint) = T (N2 − 1) = C2 (SU(N)) = N (2.5)

(we will come back to this).
Let us see now what it implies for the standard model group Gst =

SU(3)× SU(2)× U(1)Y .

Strong Interactions: SU(3)c

• GB: The gluons belong to the adjoint representation, the octet of
SU(3). Now, T (8) = C2 (SU(3)) = 3, which you can easily calculate
by decomposing the adjoint representation of SU(3) under SU(2) ⊂
SU(3), as 8 = 3 + 2 + 2 + 1.

• F : For one generation of fermions, only uα and dα contribute. Then

TF (1 gen) = TF (3) + TF (3) =
1

2
+

1

2
= 1 (2.6)

A noteworthy remark: if you work with Weyl fermions uL, uR, dL and
dR you must include the factor of 1

2 for each helicity state, which follows
from TrL(R) = 1

2 , where L(R) = (1 ± γ5)/2. Then again

TF (1 gen) = 4 ·
1

2
·
1

2
= 1 (2.7)

• H: There are no colored scalars in Gst; therefore TH = 0

We have finally

b3 =
33

3
−

4

3
ng (2.8)

which is in full agreement with (63) (ng is the number of generations).
Of course, formula (2.8) is valid above the scale of the heaviest fermion; i.e.
only for E > mt, mt being the mas of the top quark, mt ≃ 180GeV .

Weak interactions: SU(2)L
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• GB: Now, T (3) = C2 (SU(3)) = 2

• F : The fermions contributing are only the four left-handed doublets
(keep in mind that quarks come in colors!), and thus

TF (1 gen) = 4
1

2

1

2
= 1 (2.9)

where the last factor of 1
2 is just due to helicity.

• H: We have the standard Higgs doublet, thus TH = 1
2 .

Then

b2 =
22

3
−

4

3
ng −

1

6
(2.10)

Electromagnetic interactions: U(1)em

• GB: We have now C2 (U(1)) = 0, but the W± bosons carry charge,
thus

TGB =
11

3
(Q2

W+ + Q2
W−) =

22

3
(2.11)

• F : For one generation of fermions

TF (1 gen) =
∑

Q2
em = (Q2

u + Q2
d)3 + Q2

e =
5

3
+ 1 =

8

3
(2.12)

• H: We have a charged Higgs φ+ in the doublet Φ, and so

TH = Q2
φ+ = 1 (2.13)

Thus

bem =
22

3
−

8

3

4

3
ng −

1

3
(2.14)

Notice the factor 8
3 discrepancy in the fermionic contribution compared

to SU(2)L and SU(3)c. Why is it there ?
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2.1 a. Unification: running of couplings

Imagine that above some energy MX , you succeed to unify strong and electro-
weak interactions, i.e. assume b2(E > Mx) = b3(E > Mx). Obviously, no
new fermions are needed to achieve that, since b2(F ) = b3(F ) already, but
the same is not true of the gauge boson and Higgs contributions.

• GB: Imagine a set of new gauge bosons, denoted by X. Obviously,
b2 = b3 implies from ∆b2 = 11

3 T2(X) and ∆b3 = 11
3 T3(X)

T2(X) = T3(X) + 1 (2.15)

1) One possible (the simplest) solution is

T3(X) = 0 ; T2(X) = 1 (2.16)

implying additional two SU(2) doublets of gauge bosons (1 = 1/2 +
1/2). This would correspond to an octet of gauge bosons (if we also
add a singlet), or the group SU(3)L. We shall see below that it is
impossible to construct a theory with the usual fermions based on
SU(3)L × SU(3)c.

2) Try then T3(X) = 1
2 ( a color triplet )

But then T2 = 0, and so (2.15) does not work. Thus we need at least
T3(X) = 1 or two color triplets Xα and Y α, but now T2(X) = 3/2, and
if we also include the antiparticles X̄α and Ȳ α we get

T3(X, Y + Ȳ , X̄) = 2 T2(X, Y + Ȳ , X̄) = 3 (2.17)

which is OK. Notice that we predict 12 new gauge bosons

(

X
Y

)

α

,
(

Ȳ
X̄

)α

, where α = red, green, blue, which with the “old ones”: 8

gluons and 4 electro-weak bosons, gives altogether 24. Notice also that
the group SU(5) has 24 generators, or 24 gauge bosons.

• H: since T2(Φ) = 1/2, T3(Φ) = 0, we need a new triplet of scalars hα
with T3(h) = 1/2, T2(h) = 0.

In short, we have now (at least) 5 scalar fields. Notice that the funda-
mental representation of SU(5) is 5-dimensional.
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Keep in mind that we expect the new particles to have the mass of order
MX .

In summary, we have for E > MX

b2 = b3 =
55

3
−

4

3
ng −

1

6
(2.18)

Notice in addition that C2 (SU(5)) = 5, and 55 = 5 · 11. Everything we
have computed so far points in the direction of the unifying group SU(5).

2.2 b. Unification: physics

Before moving to SU(5), let us see if the smaller group SU(3)L × SU(3)c

could work. It does not take long to see that SU(3)L requires new fermions,
since the charge operator Qem must now be in SU(3)L, or TrQem = 0. In
order to be as conservative as possible and for the sake of simplicity, we
shall try (at least for the time being) to look for theories with only the usual
content of fermions; i.e. with three (or more) generations of fermions.

Furthermore we need the fermions of a given representation to have the
same helicity, which forces us to work with the fields

(

ν
e

)

L

,

(

u
d

)

L

(2.19)

(ec)L , (uc)L , (dc)L (2.20)

where
(ψc)L ≡ C(ψ̄)T

R (2.21)

The quantum numbers of the antiparticles are

SU(3)c SU(2)L Y/2

(eC)L 1c 1L 1

(uC)L 3∗c 1L −2
3

(dC)L 3∗c 1L +1
3

Try to put the quarks in a 3-dimensional representation of SU(3)L. Ob-
viously it would have the form

18



3L =

⎛

⎝

u
d
D

⎞

⎠

L

(2.22)

where from TrQem = 0 we get QD = −1/3 and thus D ̸= dc; hence we
have introduced a new quark D against our rules.

On top of that, in order to have different quark and lepton charges we
would need a large representation for leptons or many new fields.
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Chapter 3

SU(5): A Prototype GUT

Let us summarize the results of Lecture 3. In order to have a unified theory
above some energy scale MX , with ng generations of fermions (and no new
fermions), we need at least:

• 12 new gauge bosons: an SU(2)L doublet, color triplet

(

X
Y

)

α

and

their antiparticles;

• a color triplet; SU(2)L singlet of Higgs scalars hα.

Thus we seem to need at least an SU(5) symmetry. In what follows we shall
pursue seriously the idea of SU(5) unification. We shall construct a realistic
grand unified theory (GUT) of both strong and electro-weak interactions,
and we shall confront it with experiment. We will also show (later) that it
is the minimal such theory.

Our task at this point, if not simple, is at least straightforward. We need

1. to put the fermions in the irreducible representation(s) of SU(5) (we
will do it generation by generation as in the standard model);

2. to show that the extra 12 gauge bosons have the quantum numbers of
X and Y bosons (and their antiparticles)

3. and finally, to show that the SU(5) symmetry can be broken sponta-
neously down to Gst and furthermore down SU(3)c × U(1)em.

Before the systematic treatment of SU(5), let us attempt to extract as
much information as possible from general considerations. Recall only that
SU(5) is a group of rank four; it can be generated by 24 (see below) traceless
5 × 5, matrices which is a reflection of the fact that the SU(5) is a unitary
transformation UU † = 1 with detU = 1.

20



It is obvious that we should try to put the electro-weak doublet Φ and
the new color triplet hα in the 5-dimensional fundamental representation

5H = Φ =

⎛

⎜

⎜

⎜

⎜

⎝

hr

hg

hb

φ+

φ0

⎞

⎟

⎟

⎟

⎟

⎠

⎫

⎬

⎭

SU(3)c

}

SU(2)L

(3.1)

where in the obvious notation the SU(3)c symmetry is acting on the first
3 components and the SU(2)L on the last two.

Now, the electromagnetic charge Qem = T3W +Y/2 (we call T3W the weak
isospin) must be a part of SU(5) and so TrQem = 0. Taking into account
that color commutes with U(1)em, we predict Qh = −1/3, or in other words

Qem(5) =

⎛

⎜

⎜

⎜

⎜

⎝

−1
3
−1

3
−1

3
1

0

⎞

⎟

⎟

⎟

⎟

⎠

(3.2)

for any 5-dimensional representation. From (3.1) we can determine T3W

T3W (5) =

⎛

⎜

⎜

⎜

⎜

⎝

0
0

0
+1

2
−1

2

⎞

⎟

⎟

⎟

⎟

⎠

≡
λ11

2
(3.3)

where λ11 is one of the 24 matrices λa generating SU(5) transformations,
and so

Y

2
(5) =

⎛

⎜

⎜

⎜

⎜

⎝

−1
3
−1

3
−1

3
+1

2
−1

2

⎞

⎟

⎟

⎟

⎟

⎠

≡
√

5

3

λ12

2
(3.4)

Here the factor
√

5
3 is needed to ensure that the generator λ12/2 is nor-

malized as λ11/2, and for that matter, any of the SU(5) generators

Tr
λa

2

λb

2
=

1

2
δab (3.5)

a, b = 1...24.
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But since in SU(5) we have only one coupling constant g (gc = gW = g),
we get from

g′Y

2
= g

λ12

2
(3.6)

an important prediction for the weak mixing angle

tan θW ≡ g′/g =

√

3

5
or

sin2 θW =
3

8
(3.7)

Of course (3.7) is valid at MX , and thus we shall need to run it down to
MW to see if it agrees with experiment.

3.1 Fermions

We have 15 Weyl fields in each generation as shown in (2.19,2.20). It is then
only natural to try to put them in a 15-dimensional representation of SU(5).
As you know by symmetrizing and antisymmetrizing

5⊗ 5 = 15s + 10as (3.8)

Since 5 = (3c , 1L)+(1c , 2L) (in an obvious notation), since (3c⊗3c)s = 6c,
and since quarks come only in color triplets, we must abandon the idea of
15S. What about 5 and 10as ?

We know the quantum numbers of 5 from (3.1) and (3.2), implying
uniquely

5F ≡ ψ =

⎛

⎜

⎜

⎜

⎜

⎝

dr

dg

db

e+

−νC

⎞

⎟

⎟

⎟

⎟

⎠

R

(3.9)

(recall that (fC)R ≡ Cf̄L).
Now, from ψ −→ Uψ under SU(5), the 10-dimensional representation χ

must transform as

χ −→ U χ U † (3.10)

This is enough to give the quantum numbers of the particles in 10
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χ =
1√
2

⎡

⎢

⎢

⎢

⎢

⎣

0 uC
b −uC

g −ur −dr

−uC
b 0 uC

r −ug −dg

uC
g −uC

r 0 −ub −db

ur ug ub 0 e+

dr dg db −e+ 0

⎤

⎥

⎥

⎥

⎥

⎦

L

(3.11)

The factor 1/
√

2 will be clear later. Notice that in (3.9), a minus sign

convention fo the νC field is to ensure that

(

e+

−νC

)

R

and

(

e
ν

)

L

transform

identically, and in (3.11) the signs are the property of χ being antisymmetric.
To reproduce (3.11) you may notice that from (3.10), a typical generator of
SU(5) will act on Ξ as

Taχ =
λa

2
χ + χ

λT
a

2
(3.12)

which for a diagonal matrix such as Qem would imply

(Qemχ)ij = (Qi + Qj)χij (3.13)

where Qi are the elements of Qem for the 5-representation, formula (3.2).
We will often in the future work with χ and 5̄F

ψC =

⎛

⎜

⎜

⎜

⎜

⎝

dC
r

dC
g

dC
b

e
−ν

⎞

⎟

⎟

⎟

⎟

⎠

L

(3.14)

In any case, it is clear that the fermions of each generation fit correctly
into 5̄+10. Most importantly, a unified theory such as SU(5) explains charge
quantization, i.e. it relates the quark and lepton charges. From (3.14)

Q(dC) = −
1

3
Q(e) =

1

3
(3.15)

and then from (3.11) we see that Q(u) = Q(d) + 1 = 2/3.
Furthermore, from (3.14) we see that (dC)L ≡ Cd̄T

R must be a singlet
under SU(2)L. In other words the group theoretic structure implies the V-A
structure of the weak currents, i.e. the fact that the right-handed fermions
are SU(2)L singlets. These are two important successes of our desire to unify
SU(3)c and SU(2)L; before, these facts were put in by hand.
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3.2 Gauge Bosons

In order to proceed with the systematic study of the structure and interac-
tions in SU(5) we need to find the physical gauge bosons. For this we need
the form of the generators of SU(5) for the 5-dimensional representation; i.e.
the 24 matrices λa. It is easy to write down the 12 of these that correspond
to rotations in the SU(3)c and SU(2)L × U(1) space.

SU(3)c

λ1...8 =

⎛

⎜

⎜

⎜

⎜

⎝

λc
1...8

0 0
0 0
0 0

0 0 0
0 0 0

O

⎞

⎟

⎟

⎟

⎟

⎠

(3.16)

where λc
1...8 are the matrices which generate the SU(3)c transformations,

given in Lecture 2. As an illustration,

λ3 =

⎛

⎜

⎜

⎜

⎜

⎝

1
−1

0
0

0

⎞

⎟

⎟

⎟

⎟

⎠

(3.17)

SU(2)L ×U(1)

Similarly, λ9...11 generate SU(2)L rotations, i.e

λ9...11 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0

0

( τi )

⎞

⎟

⎟

⎟

⎟

⎠

(3.18)

Again, as an example,

λ10 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0

0
0 −i
i 0

⎞

⎟

⎟

⎟

⎟

⎠

(3.19)

and λ11 was given before, see eq. (3.3).
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The hypercharge generator is Y/2 =
√

5
3λ11/2 and

λ12 =

√

3

5

⎛

⎜

⎜

⎜

⎜

⎝

−2
3
−2

3
−2

3
1

1

⎞

⎟

⎟

⎟

⎟

⎠

(3.20)

( X, Y ) generators

Finally, the rest of the 24 matrices λ13...24 act in the off-diagonal (3,2)
space (and will be shown to correspond to the X and Y gauge bosons); and
are obtained by inserting the Pauli matrices appropriately; e.g.

λ13 =

⎛

⎜

⎜

⎜

⎜

⎝

O
1 0
0 0
0 0

1 0 0
0 0 0

O

⎞

⎟

⎟

⎟

⎟

⎠

, λ14 =

⎛

⎜

⎜

⎜

⎜

⎝

O
−i 0
0 0
0 0

i 0 0
0 0 0

O

⎞

⎟

⎟

⎟

⎟

⎠

. .

. .

. .

λ23 =

⎛

⎜

⎜

⎜

⎜

⎝

O
0 0
0 0
0 1

0 0 0
0 0 1

O

⎞

⎟

⎟

⎟

⎟

⎠

, λ24 =

⎛

⎜

⎜

⎜

⎜

⎝

O
0 0
0 0
0 −i

0 0 0
0 0 i

O

⎞

⎟

⎟

⎟

⎟

⎠

(3.21)

You can see that we have four diagonal λ matrices: λ3, λ8, λ11 and λ12,
which is a reflection of the fact that the rank of SU(5) is 4. This is yet
another way of seeing that SU(5) is big enough to unify the rank four group
Gst.

Now, from the form of a covariant derivative for a fundamental represen-
tation

Dµ = ∂µ − ig
24
∑

a=1

λa

2
Aa

µ ≡ ∂µ − igAµ (3.22)

the matrix of the gauge bosons becomes
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Aµ ≡
λa

2
Aa

µ = 1√
2

⎛

⎜

⎜

⎜

⎜

⎝

X̄r Ȳr

gluons X̄g Ȳg

X̄b Ȳb

Xr Xg Xb 1√
2
W3 W+

Y r Y g Y b W− − 1√
2
W3

⎞

⎟

⎟

⎟

⎟

⎠

+
√

3
5

⎛

⎜

⎜

⎜

⎜

⎝

−1
3
−1

3
−1

3
1
2

1
2

⎞

⎟

⎟

⎟

⎟

⎠

Bµ (3.23)

where the X and Y bosons clearly carry color. From the transformation
properties

A −→ U A U † (3.24)

under global SU(5) rotations, which is equivalent to the fact that
1 + 24 = 5 ⊗ 5̄, one can deduce that the charges of X and Y are 4/3 and
1/3, respectively (X̄ and Ȳ are their antiparticles). You will find it useful to
notice that

(QemA)ij = (Qi −Qj)Aij (3.25)

in reproducing correctly the charges of the gauge bosons. Finally, it is
noteworthy that the X(X̄) and Y (Ȳ ) states correspond to λ13 ± iλ14, ...,
λ23 ± iλ24.

SU(5): Interactions

We are now fully armed to compute the interactions of fermions with gauge
bosons. As we know, the Lagrangian of any gauge theory can be written as

L = Lgb + Lf + LΦ + LY (3.26)

where

Lgb = −
1

4
F a

µν · F µν,a (3.27)

where
F a

µν = ∂µAa
ν − ∂νAa

µ + gfabcAb
µAC

ν (3.28)
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where fabc are the structure constants

fabc =
1

4i
T r {λa, [λb,λc]} (3.29)

The Higgs and the Yukawa parts of the Lagrangian, LΦ and LY will be
presented later. Now,

Lf = iψ̄γµDµψ − itrχ̄γµDµχ (3.30)

where from (3.10) and (3.22)

Dµχ = ∂µχ− ig(Aµχ+ χAT
µ ) (3.31)

It is easy to see now why we needed a factor of 1/
√

2 in the definition of
χ, for it renders a correct normalization of the physical fields in χ.

From (3.30), (3.22) and (3.31), after some straightforward computational
tedium one can derive all the gauge boson-fermion interactions.

There are of course the old QCD and SU(2)L × U(1) interactions with
gs = gW = g, and sin2θW = 3/8; these are the parameters of the (large)
energy scale MX where all the interactions are unified. Next, we have the X
and Y boson interactions which we can readily write down

L(X, Y ) =
g√
2
X̄α

µ

[

d̄αRγ
µe+

R + d̄αLγ
µe+

L + ϵαβγ ū
cγ
L γµuβL

]

+
g√
2
Ȳ α

µ

[

−d̄αRγ
µνC

R + ūαLγ
µe+

L + ϵαβγ ū
cγ
L γµdβL

]

+ h.c.(3.32)

The above interactions are simply the SU(3)c × SU(2)L × U(1) gauge
invariant terms of the gauge bosons X and Y with charges +4/3 and 1/3
respectively.

As expected, due to the nontrivial color and flavor characteristics of the
quarks, the X and Y couple to the quark-quark and quark-lepton states. Let
us write down the baryon and lepton numbers associated with the vertices
in (3.32)

B : 2/3 −1/3 2/3
L : 0 −1 0
B − L : 2/3 2/3 2/3
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B : −1/3 −1/3
L : −1 −1
B − L : 2/3 2/3

where we used Bq = −Bq̄ = 1/3, Be = 0;Lq = 0, Le = −LeC = 1. It is
clear that B and L are violated, although for some magic reason B − L is
conserved (more about it later).

The outcome of ∆B = ∆L ̸= 0 is dramatic for it is easily seen to lead to
the decay of the proton. From (3.32) we get
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By analogy with the usual weak decay n→ p+ e + ν̄, µ→ e + ν̄e + νµ we
know that the decay rate of the proton can be estimated as

Γp ≃
g4

M4
X

m5
p (3.33)

From (τp)exp > 1032yr we get MX > 1015GeV ; later we will show that we
can actually compute MX . In any case, the SU(5) grand unification requires
the existence of a new scale of physics associated with the mass of X and Y
bosons some fifteen orders of magnitude bigger than the electro-weak scale.
Furthermore, it predicts a “desert”, i.e. no new physics whatsoever between
MW and MX .
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Before we turn to the detailed discussion of the predictions of MX and
sin2θW , let us first make sure that we can actually construct a realistic SU(5)
theory. Namely, we must break the symmetry spontaneously in order to
ensure renormalizability and we must achieve it at the scale MX > 1015MW .
Can we do it at all, and if yes could we do it naturally?

30



Chapter 4

Symmetry Breaking of SU(5)

We have seen that the SU(2)L×U(1) Higgs doublet φ has a natural embed-
ding in a φ ≡ 5H of SU(5). Thus a nonvanishing vev

< Φ > =

(

0
< φ >

)

̸= 0 will lead to the breaking of SU(2)L × U(1), but

the question is: how to break SU(5) down to Gst = SU(3)c×SU(2)L×U(1)?
Let us analize the possible Higgs representations by the degree of mini-

mality, i.e. we are looking for the smallest representation Σ such that

G = SU(5) −→ Gst

< Σ >

a) Σ = 5H

In this case < Σ > ̸= 0 breaks either SU(3)c or SU(2)L, an unacceptable
feature

b)Σ = 10H

Then the charge assignment in Σ is the same as of χ; thus there is no
Higgs scalar which is both neutral and invariant under SU(3)c×SU(2)L (the
analog of e+

L is an SU(2)L singlet, but it carries charge).

c)Σ = 15H

Again, a simple analysis of the quantum numbers shows that it cannot
work, much as in case b).

d)Σ = 24H : the case of an adjoint Higgs.
Now, Σ can be written as Σ24 = (λa/2)Σa, and obviously the direction

< Σ24 >=
λ12

2
Σ12 ∝ Y (4.1)

31



commutes with SU(3)c × SU(2)L × U(1), i.e. (4.1) leaves Gst unbroken.
Can it be achieved ?

Recalling the transformation property of Σ24 under SU(5),

Σ −→ U Σ U † , where U = e−iλa/2 θa (4.2)

we can write down the most general renormalizable potential for Σ. As-
sume, only for the sake of simplicity, the discrete symmetry Σ → −Σ (we
skip the index 24 from now onwards). Then we write,

V (Σ) = −
µ2

2
TrΣ2 +

1

4
a (TrΣ2)2 +

1

2
b TrΣ4 (4.3)

Now, since Σ is a Hermitean matrix it can be diagonalized by an SU(5)
rotation, thus we can always choose, without any loose of generality: < Σ >=
diagonal.

Assume now that it is in the same direction as the hypercharge: Σ ∝ Y
or

< Σ >= vX

⎛

⎜

⎜

⎜

⎜

⎝

1
1

1
−3

2
−3

2

⎞

⎟

⎟

⎟

⎟

⎠

(4.4)

From (4.3) you get then

µ2 =
1

2
(15a + 7b) v2

X (4.5)

which, for µ2 > 0, implies

(15a + 7b) > 0 (4.6)

In order to check that (4.6) is a local minimum, we must show that all
the second derivatives are positive. Since Σ has exactly the same form as the
gauge boson matrix in (3.23), we can write

Σ =< Σ > +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Σ8 +
√

3
5

(

−2
3

)

1cΣ0 Σ̄X Σ̄Y

ΣX

√

1
2Σ3 +

√

3
5Σ0 Σ+

ΣY Σ− −
√

1
2Σ3 +

√

3
5Σ0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.7)
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where Σ8 are the analogs of gluons, ΣX and ΣY the analogs of X and Y ,
Σ3, Σ+, Σ− and Σ0 the analogs of W 3, W+, W− and B, respectively. Now,
computing second derivatives is equivalent to computing the effective mass
terms for the Σ fields.

For example, let us compute the mass of the Σ3 field. We know that
SU(2)L is unbroken and thus Σ3 cannot mix with any other field. In this
case we can keep only

Σ(the Σ3 part) =

⎛

⎜

⎜

⎜

⎜

⎝

vX

vX

vX

O

O
1
2Σ3 − 3

2vX

−1
2Σ3 − 3

2vX

⎞

⎟

⎟

⎟

⎟

⎠

(4.8)

and then

Tr Σ2 −→
1

2
Σ2

3 +
15

2
v2

X

(

Tr Σ2
)2 −→

15

2
v2

XΣ2
3

Tr Σ4 −→ 2 · 6 ·
1

4
·
9

4
v2

XΣ2
3 (4.9)

where we keep only terms quadratic in the field. From (4.3) we get

V (Σ) −→ Σ2
3

(

−1
4µ

2 + 15
8 a v2

X + 27
8 b v2

X

)

= 5
2b v2

X (4.10)

where we have used eq. (4.5).
Similarly, one can derive all the other particle masses in Σ and the result

is

m2(Σ8) =
5

4
b v2

X

m2(Σ3) = m2(Σ±) = 5b v2
X

m2(Σ0) =
15a + 7b

2
v2

X

m2(ΣX) = m2(ΣY ) = 0 (4.11)

Thus for
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15a + 7b > 0 , b > 0 (4.12)

the extremum (4.4) is a local minimum of the theory. Notice that ΣX

and ΣY are would-be Goldstone bosons of the theory; they get “eaten” by
the X and Y gauge fields, i.e. they become their longitudinal components.

Finally, one can show that for (4.12), the vev (4.4) of Σ is actually a
global minimum. In fact, other extrema can be shown to be at best saddle
points (prove it).

Thus SU(5) can be successfully broken down to the Gst group of the
standard model, since as we said Y commutes with both the SU(3)c and
SU(2)L × U(1)Y generators. This will be even more evident from the study
of the gauge bosons mass matrix. Since Σ is in the adjoint representation

DµΣ = ∂µΣ− ig[Aµ, Σ] (4.13)

and from 1
2(DµΣ)†(DµΣ) one obtains

1

2
(Dµ < Σ >)†(Dµ < Σ >) =

25

8
g2v2

X

[

X̄a
µXµ

a + Ȳ a
µ Y µ

a

]

(4.14)

where a as usual is the color index, a = r, g, b. As expected, the gluons
and the electro-weak gauge bosons remain massless, but X and Y get equal
masses

m2
X = m2

Y ≡M2
X =

25

8
g2v2

X (4.15)

as a consequence of both SU(3)c and SU(2)L remaining unbroken, X and
Y must have the same masses, and equal for different colors. The original
SU(5) symmetry is broken down to

SU(5) −→ SU(3)c × SU(2)L × U(1)Y

< Σ >∝ Y

The rest of the breaking will be completed by a 5-dimensional Higgs
multiplet Φ5 which contains the Standard Model doublet. Let us study this
in some detail including the full SU(5) invariant potential.

We can write

V (Σ, Φ) = −
µ2

Σ

2
TrΣ2 +

1

4
a( TrΣ2)2 +

1

2
b TrΣ4

−
µ2

Φ

2
Φ†Φ +

λ

4
(Φ†Φ)2

+ αΦ†Φ TrΣ2 − βΦ†Σ2Φ (4.16)

34



with a > 0, λ > 0, 15a + 7b > 0 and β > 0 (see below). Thus < Σ > is
in the direction given by (4.4). Since both SU(3)c and SU(2)L are unbroken
at this point, we can always rotate < Φ > into the form

< Φ >=

⎛

⎜

⎜

⎜

⎜

⎝

vc

0
0
0

vW

⎞

⎟

⎟

⎟

⎟

⎠

(4.17)

it is only the β term that is sensitive to the direction of < Φ > and it
gives −βv2

X(v2
c + 9/4v2

W ), which for β > 0 forms the solution vW ̸= 0, vc = 0
(in order to minimize the energy). Thus

SU(3)c × SU(2)L × U(1)Y −→ SU(3)c × U(1)em

< Φ >=

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0
0

vW

⎞

⎟

⎟

⎟

⎟

⎠

It is an easy exercise to compute the mass of the colored triplet scalar ha

in < Φ >

m2
h =

5

2
βv2

X (4.18)

which again justifies the choice β > 0. Furthermore, you can show that
φ± and Imφ0 are eaten by W± and Z respectively, and η = Reφ0 is the
physical Higgs with m2

η = 2λv2
W .

At this point we could almost feel euphoric. We have managed to con-
struct what appears to be a fully realistic SU(5) theory which furthermore
is broken down in stages to SU(3)c × U(1)em. However, not all is perfect. If
you look at the value for vW from (4.16)

λv2
W = µ2

Φ + (
9

2
β − 15α)v2

X (4.19)

and recall that M2
W = (g2/4)v2

W , M2
X = (25g2/8)v2

X , you get

M2
W =

g2

4λ

[

µ2
Φ +

8M2
X

25g2
(−15α +

9

2
β)

]

(4.20)

But MX > 1015GeV , which implies an extraordinary fine-tuning in the
above equation of at least 26 orders of magnitude. The number on the right
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hand side of (4.20) is naturally of order M2
X > 1030GeV 2; instead it ends up

being ≃ (100GeV )2. This is known as the hierarchy problem.
In the next lecture we will see that the colored triplet ha mediates proton

decay and thus it must be very heavy: mh > 1011GeV , implying that β
cannot be taken arbitrarily small. On the other hand, it’s partner η weighs
< 1TeV , and this aspect of the hierarchy problem is known as the doublet-
triplet splitting problem.

Before we close this section, let us say a few words more on the hierarchy
problem. The problem is that the mass term for the Higgs scalars cannot be
made small (or zero) by any symmetry, unlike the case of fermions. There
the limit mf = 0 corresponds to the chiral symmetry f → γ5f , and thus the
higher order corrections must also vanish if mf = 0 at the tree level. In other
words, the higher order corrections are necessarily proportional to mf(tree),
and so only logarithmically divergent. In the case of scalars the divergence
is quadratic and thus in the context of grand unified theories (GUTs) such
as SU(5) the natural value for MW is of order MX .

Imagine then that you live in a world where there is a symmetry between
each boson and every fermion. (this symmetry is called Supersymmetry).
Then by definition the masses of scalars would be protected from the large
scale MX , just as the fermionic ones are.

Could our world be supersymmetric? The answer is no, since according
to such theories there must be a charged scalar, called selectron, whose mass
is mẽ = me = 0.5MeV . Such a particle does not exist.

Can you think of a way out of this impasse, which could save the idea of
supersymmetry ?
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More on the Hierarchy Problem

Let us try to pay some more attention to this notorious issue in GUTs.
We have seen that in eq. (4.20) we must fine-tune the parameters of the
right-hand side to 26 decimal places: either µ2

φ ∼ v2
X and then they must

pretty much cancel, or µ2
φ ∼ v2

W and then −5α + 9/2β must be of order
10−26. In any case, it is a disgusting feature of the theory.

Well, you may say, let us do it anyway, since we are already used to the
fact that the electron mass me = .5MeV in the standard model is fine-tuned
to about 5 decimal places compared to MW . The point, of course, is the
profound difference between the fermion and scalar masses: setting mf = 0
increases the symmetry of the theory, whereas there is no symmetry which
can forbid the mass term for the scalars.

Now, the great virtue of gauge theories is that spontaneous symmetry
breaking does not induce any new divergences, in other words we need only
include symmetric counterterms. Thus if you set mf = 0 which amounts to
the symmetry f → γ5 f , it cannot be infinitely renormalized. Let us illustrate
this on a simple Lagrangian

L = Lφ + Lψ + LY (4.21)

where

Lφ =
1

2
∂µφ∂

µφ+
m2

s

2
φ2 +

λ

4
φ2 +

M

3
φ3

Lψ = ψ̄γµ∂
µψ + mψψ̄ψ

LY = hψ̄ψ φ (4.22)

and φ is the real scalar field.
Imagine now that you set ms = 0. Of course, you get no symmetry

increase ( φ → iφ is not allowed, since φ is real), but still let us take it.
You will find immediately a quadratic divergent contribution to φ2 from a
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diagram

For a zero external momentum, we can estimate the above diagram as

∝ φ2λ

∫

d4k
1

k2
∝ φ2λ

∫ Λ2

k2 dk2

k2

∝ φ2λΛ2 (4.23)

which for λ → ∞ diverges quadratically as we said. Thus, it makes no
sense to say that ms = 0 for we need a counterterm to the above λ2 term.

Let us now look at the same question for the fermion mass. At the one-
loop level we have a diagram

whose divergence is easily seen to vanish

ψ̄ψ h2

∫

d4k
̸ k
k2

1

k2
= 0 (4.24)

since
∫

f(k2) ̸ kdk2 = 0 in the symmetric integration. In the above we
have set mψ = ms = 0.
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However, there is a divergent two-loop diagram

which can be estimated as

ψ̄ψ h3 M

∫

d8k
̸ k ̸ k
(k2)2

1

(k2)3
∝ ψ̄ψ h3 M

∫ Λ2

dk2

= ψ̄ψ h3 M lnΛ2 (4.25)

The divergence is softer than in the scalar case being only logarithmic,
but anyway there is no sense in setting mψ = 0 since we get an infinite
correction. As before, the reason is the lack of a protective symmetry which
could keep mψ = 0 in perturbation theory.

It is easy to find such a protective symmetry. Set both mψ = 0 and
M = 0 and we get an extra symmetry D:

D : ψ → γ5ψ (ψ̄ψ → −ψ̄ψ)

φ→ −φ

Now, obviously (4.25) vanishes and thus mψ = 0 is left intact.
The message we are trying to bring across here is that in order to keep

some quantity small in perturbation theory, a protective symmetry is re-
quired. This is the source of the hierarchy problem: by what symmetry can
we keep a mass of φ (or vW ) small in perturbation theory ? How to prevent
it from diverging quadratically ?

In order to appreciate the point of the trouble that the quadratic diver-
gences carry, let us take a simple example of two scalar fields, one light (φL)
and one heavy (φH). Thus the Lagrangian would have the form

L(φL,φH) =
1

2
(∂µφL)2 +

1

2
(∂µφH)2 − V (φL,φL)
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V (φL,φH) =
1

2
m2

Lφ
2
L +

1

2
m2

Lφ
2
H +

1

4
λLφ

4
L +

1

4
λHφ

4
H +

1

2
λφ2

Lφ
2
H(4.26)

where we have assumed discrete symmetries φL → −φL, φH → −φH

(separately) for simplicity and mH ≫ mL. Then, among others, we will find
the following diagram for the mass of φL at the one-loop level

whose quadratic divergence will be given by

∝ φ2
Lλ

∫

d4k
1

k2 −m2
H

∝ φ2
Lλ

∫ Λ2

k2 dk2

k2 −m2
H

= φ2
Lλ

∫ Λ2

m2
H

(k2 + m2
H)

dk2

k2
∝ φ2

Lλ(Λ2 −m2
H) (4.27)

You see that the quadratic divergence brings along a sensitivity to a large
scale mH . In other words, the mass for the φL is naturally of order mH and in
order to keep it small, ∼ mL, we must fine-tune the parameters: λm2

H ≃ m2
L.

Of course, the same would be true for any heavy particle in the loop,
independently of whether it is a boson or a fermion. If mH = MX , mL = MW ,
we have the infamous hierarchy problem of GUTs.

Now, imagine the existence of a fermion ψ coupled to φL as in (4.22). We
then have an additional quadratically divergent contribution to m2

L for the
following diagram
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which can be estimated as (the “-” sign is the consequence of Fermi
statistics)

− φ2
L h2

∫

d4k
( ̸ k + mf )( ̸ k + mf)

(k2 −m2
f )

2

∝ −φ2
L h2

∫ Λ2

0

dk2 k4

(k2 −m2
f )

2
= −φ2

L h2

∫ Λ2

m2
f

dk2
(k2 −m2

f)
2

k4

= −φ2
L h2(Λ2 −m2

f) (4.28)

Notice that for h2 = λ we have a cancellation of a quadratic divergence
for the bosonic contribution of φH in (4.27).

What we obtain then is

φ2
L h2(m2

f −m2
H) (4.29)

which would vanish for mf = mH . This limit of bosonic and fermionic
masses and couplings equal is the manifestation of supersymmetry, the sym-
metry between bosons and fermions. As we said this symmetry must be
broken, for the mass of the selectron ẽ, the supersymmetric partner of the
electron, is different from the electron mass: mẽ ≫ me (or better to say: we
are yet to discover the selectron).

The question si at which scale is this symmetry broken, i.e. how large is
the mass difference between mf and mH ?

Well, let φL = η, the Higgs field of the standard model. But then m(φL) ≃
MW , and thus in order to keep this scale naturally small compared to MX =
mH , we must demand

m2
f −m2

H ≃M2
W (4.30)

or

ΛSS ≃MW (4.31)

where ΛSS is the scale of breaking of supersymmetry.
This is a remarkable result for it would imply a whole new world of the

supersymmetric partners of the known particles e, ν, u, d, W , etc. to be
found in the near future. An optimist like Glashow would say that we have
already discovered a half of the predicted particles !
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Chapter 5

Yukawa Couplings and Fermion
masses in SU(5)

In order for SU(5) to be a realistic theory, it must allow for the fermionic
masses, mixing angles and phases. Since the fermions are in the 5 and 10
-dimensional representations ψ and χ, obviously no direct mass term can be
gauge invariant, just like in the standard model. This is an important feature
for otherwise there would be no explanation of why the fermions do not pick
up a large mass of order MX . This is to say that the fermions are chiral, i.e.
the left and right fermions belong to different representations of the gauge
group.

In the Standard Model the left-handed fermions are doublets and the
right-handed fermions are singlets, and so their chiral property is more than
manifest. In SU(5) again, since the V-A structure of a family of fermions is
left-intact, the same must obviously be true.

Using the decomposition properties (please check it)

5̄⊗ 10 = 5⊕ 4̄5

10⊗ 10 = 5̄⊕ 45⊕ 50

5̄⊗ 5̄ = 1̄0⊕ 1̄5 (5.1)

the above statements are easily confirmed. In the minimal SU(5) the-
ory the fermion masses may originate only through the coupling to the 5-
dimensional Higgs representation Φ5 (since we assume no 10, 45 or 50 of
Higgs). Obviously Σ24 decouples from the fermions as it should, for it would
give them masses of order MX .

From (5.1) we can then write the Yukawa couplings of fermions with the
light Higgs Φ:
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LY = fd ψ̄R χΦ† + fu
1

2
χT C χΦ + h.c. (5.2)

where C is the Dirac conjugation matrix needed for the sake of Lorentz
invariance. The symbolic notation of (5.2) should read in the SU(5) notation
as

ψ̄R χΦ† = ψ̄R i χ
ij Φ†

j

χT C χΦ = ϵijklm (χT )ij C χkl Φm (5.3)

When Φ gets its vacuum expectation value < Φ >T = ( 0 0 0 0 vW ), we
get from (5.2) and (5.3) for the fermionic masses

Lm = fdvW (d̄RdL + ē+
Re+

L)− fuvW (uc)T
L C uL + h.c.

= −[fdvW (d̄d + ēe)− fuvW ūu] (5.4)

In other words we get just as in the Standard Model mf = hfvW , except
that we predict the electron and down quark masses being equal. Can you
explain why this happens ? This prediction appears very bad (we know that
md ≃ 10MeV , me ≃ 0.5MeV ), but we must recall that it is valid only at the
large scale MX where the whole SU(5) symmetry becomes operative.

More precisely, one has to “run” down to low energies by including the
radiative corrections. Since the quarks have color their effective mass gets
increased and a precise calculation shows

(
md

me
)ren ≃ 3 (5.5)

Notice that this works very well for the third generation: mb ≃ 5GeV ,
mτ ≃ 1.8GeV ; not so well for the second one: ms ≃ 150MeV , mµ ≃
100MeV ; and badly for the lightest one. It is hard to decide whether this
prediction is a success or a failure of the SU(5) unification. Some people
argue that one should not worry about the lighter generations, since their
masses may be sensitive to small perturbations.

Alternatively, you can include other Higgs representations that can con-
tribute to the fermionic masses. For example, you can add 45H and then
argue that it’s effect is important for the lighter fermions only. Before dis-
cussing this in some detail, let us understand as to why we ended up with
a prediction md = me. Notice that dα and e make an SU(4) subgroup of
SU(5). This is often called the Pati-Salam SU(4)c symmetry, where the elec-
tron is just a fourth color (pink ?) of quarks. But then < Φ > ̸= 0 does not
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break this symmetry, for we chose only < φ0 > ̸= 0, which is outside SU(4)c;
thus the equality md = me. Now, since in SU(5), much as in the Standard
Model, there is no νR (or νc

L), no similar situation occurs for the ν−u system.
It is interesting to take this SU(4)c more seriously as Pati and Salam did,

for then you end up predicting the right-handed neutrino. But more about
it later.

Let us now present the Higgs scalar interactions with fermions. Only Φ
couples to fermions and in Φ only hα (α = r, g, b) and η ≡ Reφ0 are the
physical fields. It is easy to see that η is precisely the Standard Model Higgs
particles whose couplings are the usual ones. The situation with hα is rather
interesting, since it carries color and has fractional charge Qh = −1/3 (just
like the Y gauge boson). From (5.2) and (5.3) it is easy to compute it’s
couplings to fermions

Lh = fdψ̄R iχ
iαh+

α + fuϵijklα(χ
T )ijCχklhα (5.6)

which gives

Lh =
{

fd

(

ϵαβγ ūc
Lβ dγR + ūαL e+

R + d̄αL ν
c
R

)

+fu

(

ϵαβγ ūc
Rβ dγL + ūαR e+

L

)}

hα (5.7)

Notice that the structure of the above couplings (not the strength, though),
is dictated by the SU(3)C × SU(2)L × U(1)Y gauge invariance only. This
follows simply from the fact that (ψc)L ≡ Cψ̄T

R and (ψc)R ≡ Cψ̄T
L for any

fermion ψL and ψR. Thus for example we can write

ūc
L dR = uT

R C dR

ūc
R dL = uT

L C dL (5.8)

In the above notation (the color being suppressed for simplicity) it is easy
to see that they are SU(2)L singlets (T3W uR = T3W dR = 0, T3W uL = 1

2uL,
T3W dL = −1

2dL ) and they carry charge −1/3. It is also clear that they are
Lorentz invariant, since the asymmetric matrix CT = −C plays the same role
in the Lorentz group as iσ2 for SU(2). In SU(2), we can form an invariant
out of two spinors φ and χ as χT iσ2φ, since under SU(2):

χ −→ U χ ; φ −→ U φ ; U = e−i θα τα/2 (5.9)

Thus

χT iσ2φ −→ χT UT iσ2Uφ = χT iσ2U
†Uφ = χT iσ2φ (5.10)
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Similarly, for two Lorentz spinors ψ1 and ψ2 with

ψi −→ Lψi , where L = e−i (θij/2)σij , σij ≡
i

4
[γi, γj] (5.11)

You can show

ψT
1 C ψ2 −→ ψT

1 LT C Lψ2 = ψT
1 C L−1Lψ2 = ψT

1 C ψ2 (5.12)

(you should use the fact : CγT
µ CT = −γu, CT = −C).

It is clear that the interactions of H break B and L, just like those of X
and Y . Notice, though, that B−L is again conserved. In a complete analogy
with the situation encountered before for the X and Y bosons, we have the
possible exchanges of hα

which leads to the proton decay. Of course, the amplitude is proportional
to the small Yukawa coupling and the corresponding limit on mh is somewhat
less strict. From (τp)exp ≥ 1032 yr, one can obtain the following lower limit
on mh

mh ≥ 1012GeV (5.13)

This is the infamous doublet-triplet splitting phenomenon: mh ≫ mη.
Why ?

5.0.1 Generations and their mixings

We know that in the standard model the neutral current interactions are
flavor diagonal and that the charged current processes lead to flavor, or
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generation mixing and CP violation. How is this feature incorporated in the
SU(5) theory and what about new superweak interactions of the X and Y
bosons ? The analysis is straightforward and it proceeds along the same lines
as in the SU(2)L × U(1)Y theory.

If we assume NG generations (Ng ≥ 3), then the Yukawa couplings in (5.2)
and (5.4) become matrices in the generation space, just as in the Standard
Model. Thus we will have

(Md)
ab = (Me+)ab = (fd)

abvW

(Mu)
ab = (fu)

abvW (5.14)

where the notation d, e+, u denotes down quarks, positrons and up quarks
respectively. Using the fact that CT = −C, we get furthermore that the up
quark mass matrix is symmetric: MT

u = −Mu. We then diagonalize these
matrices by bi-unitary transformations just as in the Standard Model

U †
LfMfURf = Df (5.15)

where Df is diagonal, with its elements being real, positive numbers.
Furthermore, from the fact that Mu is symmetric you can show that

URu = U∗
LuK

∗ (5.16)

where

K =

⎛

⎜

⎜

⎝

eiφu

eiφe

eiφt

...

⎞

⎟

⎟

⎠

(5.17)
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is the matrix of phases needed to ensure that the elements of Du are real
and positive.

The above statements are equivalent to the redefinition of our original
fermionic fields in the Lagrangian

fa
L,R → (U †

L,R)abf b
L,R (5.18)

where we will have Ud
L,R = Ue+

L,R due to (5.14). Since on the other hand
the neutrinos are massless (no νR-just as in SU(2)L × U(1)), we can rotate
them any which way we wish and so we chose νc

R → Ud
Rν

c
R .

Thus we can write for the 5-dimensional representation

ψR → Ud
RψR (5.19)

which means that Ud
R disappears since the Lagrangian (3.30) cannot de-

pend on it. Suppressing the color index, we can write

χ =

⎡

⎣

uc
L −uL −dL

e+
L

⎤

⎦ (5.20)

so that under (5.18), using the fact that uc
L ≡ CūT

R = Cγ)u∗
R we get

χ →

⎡

⎣

ULuKuc −ULuu −ULdd

−ULde+

⎤

⎦

L

= ULd

⎡

⎣

UCKMKuc −UCKMu −d

−e+

⎤

⎦

L

(5.21)

where UCKM = U †
LdULu. Again ULd is just an overall phase and so it will

disappear from (3.30). We are left with the Cabibbo-Kobayashi-Maskawa
unitary matrix and the phase matrix K only. Thus the leptonic interactions
are flavor conserving just as in the Standard Model (since neutrinos are
massless), and the weak quark interactions involve UCKM only, again as in
SU(2)L × U(1). Finally and importantly, the X and Y boson interactions
involve no new flavor mixings besides UCKM , however there will be new
phases hidden in K. This means that the proton decay proceeds with full
strength, i.e you cannot “rotate it away” by invoking the second or third
generation in (3.32). More precisely the decay mode p → π0 + e+ is not
suppressed, while the energetically forbidden mode p→ π0 + τ+ (mτ > mp)
becomes suppressed by the small mixings. The phases in K play an important
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role in the physics of the early universe, but that is beyond the present scope
of our discussion.

Before closing this section, let us illustrate in some more detail the situa-
tion with proton decay. To see what happens precisely, we must rewrite the
X and Y boson interactions, formula (3.32) in the basis of physical fields,
i.e. the eigenstates of (5.19) and (5.21). Suppressing the color index, we get
readily

L(X, Y ) =
g√
2
X̄µ

[

d̄R γ
µ e+

R + d̄L γ
µ e+

L + ūc
L γ

µ K∗ uL

]

+
g√
2
Ȳµ

[

−d̄R γ
µ νc

R + ūL γ
µ U †

CKM e+
L + ūc

L γ
µ U †

CKM dL

]

+ h.c.(5.22)

Clearly, there are no mixing angles in the X interaction, only the phases
K∗ which play no role at this point. On the other hand, we see clearly the
CKM rotation, much as it appears in the ordinary interactions. This provides
us with a clear prediction for the relative branching ratios of the electron and
the muon final states. From U11 ∝ cos θc, U12 ∝ sin θc we expect

Γ(p→ π0µ+)

Γ(p→ π0e+)
∝ sin2 θc (5.23)

By observing the proton decay and measuring the different branching
ratios we could obviously put SU(5) to various tests. Of course, what remains
is to see if we can predict the actual strength of these processes, or in other
words the X and Y gauge boson masses.
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Chapter 6

Low energy predictions from
SU(5) (without and with
supersymmetry)

6.1 A. Minimal SU(5)

In section 3 we have given general equations for the running of the gauge
coupling constants, and then applied them specifically to the SU(3)c, SU(2)L

and U(1)em gauge couplings. In order to study the question of the unification
of these couplings, we choose to work with U(1)Y instead of U(1)em, since
we shall be interested in the regions of energies above MW , where the whole
SU(3)c × SU(2)L × U(1)Y symmetry becomes effectively operative.

Thus, we have

1

αG(MW )
=

1

αU
−

1

2π
bG ln

MX

MW
(6.1)

for the gauge group G; MX is the energy where we imagine the unification
to take place, and αU is the value of the unified coupling at MX . We have
for the SU(3)C from (2.8)

b3 =
33

3
−

4

3
ng (6.2)

where Ng is the number of generations; and for the SU(2)L we get

b2 =
22

3
−

4

3
ng −

1

6
nH (6.3)

where nH is the number of Higgs doublets (nH = 1 in the minimal stan-
dard model).
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Now, for U(1)Y we find easily that for one generation of fermions

TF (1 gen) = Tr

(

Y

2

)2

(1 gen.) =
5

3
(6.4)

To obtain (6.4), use simply

Y

2

(

u
d

)

L

=
1

6

(

u
d

)

L

Y

2

(

ν
e

)

L

= −
1

2

(

ν
e

)

L

(6.5)

Y

2
uR =

2

3
uR ;

Y

2
dR = −

1

3
dR ;

Y

2
eR = −eR (6.6)

Similarly, using Y
2 Φ = 1

2Φ for a Higgs doublet Φ, we can write down

bY = −
5

3
·
4

3
ng −

1

6
nH (6.7)

Now, notice the difference of 5/3 for the fermionic contributions of b3 and
b2 on one side, and LY on the other side. Since the fermions in one generation
belong to the full representations of SU(5) 5 and 10, their contributions to
bG must be equal for all the couplings equally normalized, i.e. for all the
couplings which have the value αU at MX . For us αU is the value of the
unified coupling of the SU(5) theory and thus we are told that the U(1)Y

coupling is not properly normalized.
We have seen this before, in eq. (3.7) which tells us that the U(1)Y

coupling g′ is given by

g′ = g1

√

3

5
(6.8)

where g1 is correctly normalized. To make it more manifest, let us take
the 5-dimensional fermionic representation as given in (3.9). You can easily
see that

Tr

(

Y

2

)2

(5F ) =

[

(

1

3

)2

· 3 +

(

1

2

)2

· 2

]

·
1

2
=

5

12
(6.9)

where the last factor 1
2 is due to Tr(1 + γ5)/2 = 1/2.

On the other hand, take say T3W which gives
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Tr(T3W )2(5F ) =

(

1

2

)2

· 2 ·
1

2
=

1

4
(6.10)

and you recover the same factor 5
3 as before.

Now, using (6.8) which says that 1/αY = (5/3)(1/α1) we get

b1 =
3

5
bY = −

4

3
ng −

1

10
nH (6.11)

Notice that there is no gauge boson contribution in bY and b1, since the
gluons and SU(2)L gauge bosons carry no hypercharge Y .

We are now fully armed to check the evolution of these couplings above
MW . We can adopt two different strategies:

1. assume that they unify at the scale MX and then derive the low energy
predictions and check them against experiment, or

2. just follow the couplings above MW and see if they meet at a single
point.

We shall do both. Let us start with (1) to see how grand unification leads
to low energy predictions.

(1) From (6.1), (6.2) and (6.3) you get

1

α2(MW )
−

1

α3(MW )
=

b3 − b2

2π
ln

MX

MW
(6.12)

and from (6.1), (6.3) and (6.11) we get

1

α1(MW )
−

1

α2(MW )
=

b2 − b1

2π
ln

MX

MW
(6.13)

In the above we have used α1(MX) = α2(MX) = α3(MX) = αU . From
αem = sin2 θWα2 = cos2 θWαY and αY = 3/5α1 we get

1

α1(MW )
−

1

α2(MW )
=

3

5

cos2 θW (MW )

αem(MW )
−

sin2 θW (MW )

αem(MW )
(6.14)

which combined with (6.13) gives in turn

sin2 θW (MW ) =
3

8
−

5

8
αem(MW )

b2 − b1

2π
ln

MX

MW
(6.15)
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Equations (6.12) and (6.15) form the basis for low energy predictions.
Substituting the values for bi we get

1

α2(MW )
−

1

α3(MW )
=

22 + nH

12π
ln

MX

MW

sin2 θW (MW ) =
3

8
−

110− nH

48π
αem(MW ) ln

MX

MW
(6.16)

Notice the prediction sin2 θW = 3
8 at MX which we discussed before. Now,

for nH = 1 we get the minimal theory and by taking as inputs

α3(MW ) ≃ .12

α2(MW ) ≃
1

30
(6.17)

we find

MX ≃ 1016GeV (6.18)

but
sin2 θW (MW ) ≃ 0.2 (6.19)

To see better the above result, take for simplicity nH = 0 (there is almost
no dependence on nH in the above equations) and by eliminating MX from
equation (6.16) we get

sin2 θW (MW ) =
1

6
−

5

9

αem(MW )

α3(MW )
(6.20)

and αem(MW ) ≃ 1/128. The measured value of

(sin2 θW (MW ))exp ≃ 0.23 (6.21)

contradicts the predictions (6.19) (or (6.20). Equivalently, you may use
(6.20) and take sin2 θW (MW ) ≃ 0.23, then you get α3(MW ) too small.

The minimal SU(5) theory thus fails to meet the experiment.

(2) It is probably more illustrative to just follow the couplings αi(E)
above MW and see if they unify at a single point. The graph below is the
result of a very careful such analysis and it shows manifestly that there can
be no unification of gauge couplings at a single point.
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This was the source of our failure above; simply speaking there is no
single meeting MX . The U(1) coupling α1 meets α2 too soon.

6.2 B. Supersymmetry

We have already argued that the minimal SU(5) may be a sick theory, since it
has no way of keeping the gauge hierarchy MW ≪ MX small in perturbation
theory. The solution seems to be supersymmetry, i.e. symmetry between
bosons and fermions which guarantees the cancellation of quadratic diver-
gences for the Higgs mass and thus can make MW insensitive to MX . That
is, we do not know why MW /MX is small, but it is not a problem, since it
will stay small in perturbation theory as long as the scale of supersymmetry
breaking is small ΛSS ≃MW .

This is an exciting possibility since it predicts a whole new world of
supersymmetric partners of ordinary particles to be discovered at the new
colliders. We cannot do justice here to this important topic, but we would
like to show how the existence of these superpartners renders the unification
in agreement with the experiment.

Imagine that for every particle of the standard model there is a supersym-
metric partner of the opposite statistics, that is imagine the supersymmetry
to imply

fermions ⇐⇒ sfermions

(quarks, leptons) (squarks, sleptons)
s = 1/2 s = 0

gauge bosons ⇐⇒ gauginos

(W±, Z, γ, gluons) (Wino, Zino, photino, gluinos)
s = 1 s = 1/2

Higgs scalar ⇐⇒ Higgsino

s = 0 s = 1/2

It is easy to see that the formulas of section 3 for the running of the gauge
couplings will be affected by the presence of the new particles. Write

bG =
11

3
TGB −

4

3
TF −

1

3
TH (6.22)

where we assume some chiral fermions in order to apply the supersym-
metric constraints. It is important to know that both gauginos and Higgsino
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are chiral fermions at fixed helicity, a fact we must take for granted here.
But then we will get

bSS
G =

(

11

3
−

2

3

)

TGB −
(

2

3
+

1

3

)

TF −
(

1

3
+

2

3

)

TH (6.23)

or

bG = 3TGB − TF − TH (6.24)

where the added contributions in (6.23) are due to the superpartners.
Thus gauginos add −2/3 , sfermions −1/3 and Higgsinos −2/3, using (6.22).

From (6.23) we get for the individual gauge couplings

bSS
3 = 9− 2ng

bSS
2 = 6− 2ng −

1

2
nH

bSS
1 = −2ng −

3

10
nH (6.25)

where nH is again the number of Higgs doublets.

(1) In exactly the same way as before, assuming the unification of
couplings at MX , we find

1

α2(MW )
−

1

α3(MW )
=

6 + nH

4π
ln

MX

MW

sin2 θW (MW ) =
3

8
−

30− nH

16π
αem(MW ) ln

MX

MW
(6.26)

In the minimal supersymmetric model it turns out that nH = 2, because
of the cancellation of anomalies (more about it later) and we find

MX ≃ 1016GeV (6.27)

and

sin2 θW (MW ) =
1

5
+

7

15

αem(MW )

α3(MW )
≃ 0.23 (6.28)

where the second equation follows from the elimination of MX in (6.26)
for nH = 2. We see that the supersymmetric theory agrees perfectly well
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with the experiment and with the above value for MX we predict the proton
lifetime

τp ≃ 1034−35yr (6.29)

which is somewhat above the experimental bound

(τp)exp ≃ 6 · 1033yr (6.30)

Now, if we are to take supersymmetry seriously, all the way up to the scale
MX , we expect of course new gauginos X̃, Ỹ , associated with the superheavy
bosons X and Y of SU(5); and also the heavy Higgsinos h̃α from 5 of SU(5).
Their exchange can in principle also lead to the proton decay, and the precise
analysis of τp in the supersymmetric SU(5) theory becomes much richer. This
is however beyond the scope of our course.

The search for supersymmetry has become one of the main efforts of
the physics community and it almost parallels the importance of finding the
Higgs boson. In a sense, the physics of the Higgs boson makes full sense in
the context of supersymmetry.

(2) As before, in the case of ordinary SU(5), we can just follow the
couplings αi(E) above MW , using their measured values at MW . The graph
below shows clearly how now we can speak of a single unification point MX .
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Chapter 7

Topological Defects: Domain
Walls

We have learned repeatedly that unifying known interactions, or better to
say the quarks and leptons in a compact group implies the quantization of

charge. By that we mean that the charges of quarks and leptons get related,
which in turn tells us that the charges in nature are integer products of some
basic charge. Recall that in the standard model we get

Qu = Qd + 1 (7.1)

Qν = Qe + 1 (7.2)

since the above particles make up SU(2)L doublets and we know that

Qem = T3 +
Y

2
(7.3)

so that ∆Qem = 2T3 = 1.
Unifying quarks and leptons in SU(5), and recalling that

ψ5 =

⎛

⎜

⎜

⎜

⎜

⎝

dr

dg

db

e+

−νc

⎞

⎟

⎟

⎟

⎟

⎠

R

(7.4)

we get

3Qd + Qe+ + Qe+ − 1 = 0 (7.5)

or
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3Qd − 2Qe − 1 = 0 (7.6)

which as we promised relates the quark and lepton charges. This is what
we call charge quantization.

On the other hand, it is well known that the existence of magnetic
monopoles also implies quantization, as we will show later. We will see that
these facts are intimately related to each other for we will show that unified
theories predict the existence of magnetic monopoles, which is a prerequisite
for the quantization of charge.

To see this, we wish to arm ourselves with some techniques of searching
for classical solutions by studying some simple systems. We start with the
domain walls.

7.1 A. Discrete symmetries and domain walls

Imagine a simple example of a single real scalar field φ with a discrete sym-
metry

D: φ −→ −φ
whose Lagrangian is then

L =
1

2
(∂µφ)(∂µφ)−

λ

4
(φ2 − v2)2 (7.7)

The potential is chosen with v2 > 0, λ > 0, which implies spontaneous
symmetry breaking of D, since the minimum of the potential is at

< φ >2= v2 or < φ >= ±v (7.8)

We have then the usual scenario in which we chose either of the vacua
< φ >= +v or < φ >= −v, and have our system live in one of them. This
implies the spontaneous breakdown of the discrete symmetry D. To see this,
choose < φ >= +v; then we can write

φ = v + η (7.9)

and

V (η) =
λ

4

[

(v + η)2 − v2
]2

=
λ

4

[

2vη + η2
]2

=
λ

4

[

η4 + 4v2η2 + 4vη3
]

(7.10)
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The presence of the term cubic in η clearly breaks the symmetry η → −η
. On the other hand, we could have chosen as well < φ >= −v, and we can
image another domain with that ground state. Since these ground states are
not connected by any continuos symmetry, it should cost us energy to go
from one to the other, or in other words, there should be a “wall” between
these two different domains.

Thus we believe that there must exist a classical (static) solution which
connects these two domains, i.e. the solution which interpolates between the
two vacua: < φ >= +v and < φ >= −v. Such a solution φcl must satisfy

lim
z→+∞

φcl(z) = v ; lim
z→−∞

φcl(z) = −v (7.11)

or vice versa.
But then, φcl(z) must vanish at some point, and due to the symmetry

φ −→ −φ it will happen at z = 0. Our solution should look like:

-2

-1

0

1

2

x

φ(x)

Of course, the shape is to be determined by the construction of the actual
solution. However, before we do it, we can still say something about its
properties. Suppose we wish to define the “width” of our solution, i.e. the
distance in which the field carries energy. Namely, at z = 0 we know that
φ = 0 which is the local maximum of V (φ) and V (0) = λ

4v4 > 0. Let us
approximate our solution in the figure by a simple step function, so that
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φ(z) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v, z ≥ δ

0, −δ ≤ z ≤ δ

0, ≤ z ≤ −δ

(7.12)

From (7.7), we get for the energy per unit area

E

S
=

∫ +∞

−∞
dz

[

1

2
(∂tφ)2 +

1

2
(∂zφ)2 + V (φ)

]

(7.13)

And since we look for a static solution

E

S
=

∫ +∞

−∞
dz

[

1

2

(

∂φ

∂z

)2

+ V (φ)

]

(7.14)

From (7.12) we can write

E

S
=
λ

4
v4 · 2δ +

1

2

(

v2

δ2

)

· 2δ (7.15)

or
E

S
≃
λv4

2
δ +

v2

δ
(7.16)

The width of the wall is determined by minimizing the energy per unit
area

∂

∂δ

(

E

S

)

=
λv4

2
−

v2

δ2
= 0 (7.17)

and so

δ =

√

2

λ
v−1 (7.18)

In what follows we shall construct an actual solution and we shall see that
the above approximation of a thin wall works perfectly well. More precisely,
we will find that the width of a domain wall is exceedingly small on the
macroscopic scales.
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7.2 B. The domain wall solution

Once again, we are searching for a static solution in the x − y plane, i.e.
we assume that φ(x⃗, t) depends only on z. Thus from the Euler-Lagrange
equation

!φ =

(

∂2

∂t2
−
∂2

∂x2
−
∂2

∂y2
−
∂2

∂z2

)

φ = −
∂V

∂φ
(7.19)

we get

d2φ

dz2
=
∂V

∂φ
(7.20)

multiplying (7.20) by dφ/dz we get

d

dz

[

1

2

(

dφ

dz

)2
]

=
dV

dz
(7.21)

or

1

2

(

dφ

dz

)2

− V = C (7.22)

where C is a constant.
On the other hand, from (7.14) the energy per unit area for our solution

is

E

S
=

∫ +∞

−∞
dz

[

1

2

(

∂φ

∂z

)2

+ V (φ)

]

(7.23)

By demanding that E/S is finite (we are looking for a well defined finite
energy solution), we must demand

V (φ) −→ 0 ;
(

dφ
dz

)2 −→ 0
z → ±∞ z → ±∞

This implies C = 0 in eq. (7.22) and thus

dφ

dz
= ±
√

2V (7.24)

We get a single first order equation which can be readily integrated. From
(7.24) we can write for the energy per unit area

E

S
=

∫ φ(+∞)

φ(−∞)

dφ
dz

dφ
2V = ±

∫ φ(+∞)

φ(−∞)

dφ
√

2V (7.25)
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Formulas (7.24) and (7.25) are essential for what follows; for a given V
they give the form and the energy of the solution.

Notice that the above discussion offers a useful mechanical analogy with
a particle moving in a potential U = −V . Namely, take

φ ↔ x

dφ

dz
↔

dx

dt
(7.26)

Since

d2x

dt2
= −

dU

dx
(7.27)

analogy with (7.20) gives U = −V . Thus for our potential V = λ/4(φ2−
v2)2 which can be depicted as

v-v

V (φ)

φ

the inverted potential for the mechanical analogy is
The solution we are looking for with φ(−∞) = −v, φ(+∞) = +v ,

dφ
dz (±∞) = 0, corresponds to the motion of the particle above which starts
with a zero velocity at x(−∞) = −v and obviously arrives at x(+∞) = +v
again with a zero velocity. This encourages the existence of the solution we
are looking for.

Inserting the form of V in (7.24) we get
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v-v

U(x)

x

dφ

dz
= ±

√

λ

2
(φ2 − v2)2 (7.28)

If we chose φ(±∞) = ±v, we get easily the domain wall solution

φcl = v tanh
z

δ

δ =

√

2

λ
v−1 (7.29)

notice that δ comes close to our approximate expression for a thin wall
in the step function approximation. We call δ the thickness of the wall due
to the exponential nature of the solution (7.29); for all practical purposes it
is in the region −δ ≤ z ≤ δ where the field φcl sits away from its boundary
values ±v. Notice furthermore that there exists a classical solution

φ′
cl = −φcl (7.30)

which obviously satisfies the reversed boundary conditions φ′
cl(±∞) =

∓v. Furthermore, from (7.25) we can easily compute the energy per unit
area of our solution

E

S
=

2
√

2λ

3
v3 (7.31)

62



Clearly, since v is the only dimensional parameter in the theory, its value
determines both the thickness and the energy of the solution. To get a feel
for the scales, imagine that v is of order of the weak interaction physics, i.e.
v ≃ vW ≃ 100GeV . Taking λ ≃ 1 for simplicity, we find

δ ≃ 10−2GeV −1 ≃ 10−16cm
E

S
≃ 106GeV 3 (7.32)

The domain wall thickness n is given by the microscopic scales as expected
and we can view the wall as situated at the origin for all practical macroscopic
purposes.

7.2.1 The wall and the Universe

To get a further feel for the scales involved, let us imagine that there exists a
large domain wall in the Universe, large in the sense of spreading throughout
the visible universe. Such a wall is expected to result from a phase transition
at high temperature in the early universe. Now, the size of the visible universe
is its age

RU ≃ 1010yr ≃ 1018sec ≃ 1028cm (7.33)

and the matter density o the universe is

ρU ≃ 10−7GeV/cm3 (7.34)

we can then compute the ratio between the energies of the wall and the
matter in the universe

Ewall

EU
≃

106GeV 3R3

10−7GeV/cm3R3
U

≃
1013(GeV cm)2

1028
(7.35)

which for GeV cm ≃ 1014 gives

Ewall

EU
≃ 1013 (7.36)

The energy of a wall corresponding to the weak interaction physics would
be some thirteen orders of magnitude bigger than the observed one, and
would dramatically affect the big-bang scenario. This is known as the domain
wall problem and its solution is being actually searched for.
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7.3 C. Topology and stability of domain walls

We have demonstrated the existence of the domain wall solution (also called
“kink” in the literature), but have not proved its stability. In other words,
we should show that that for φ(z) = φcl(z)+ ϵ, the energy of φ(z) is bigger or
equal than the corresponding one for φcl(z) independently of what ϵ is. In-
stead of going through this tedious computation, we offer rather a topological
argument for its stability.

If φ is only a function of z, we can view this as a 1+1 dimensional problem
with coordinates t and z. It is readily seen that the current

jµ = ϵµν∂νφ (7.37)

is conserved

∂µ
µ = ϵµν∂µ∂νφ = 0 (7.38)

The above conservation law is not a product of a symmetry as in the
Noether case; rather it is called a topological conservation law.

from (7.38), we know that the corresponding charge is conserved

dQ

dt
= 0 (7.39)

where

Q =

∫ +∞

−∞
dzjo(z) =

∫ +∞

−∞
dz

dφ

dz
= φ(+∞)− φ(−∞) (7.40)

for the pure vacuum, characterized by φ(z) = v, or φ(+∞) = φ(−∞) the
charge vanishes

Qvac = 0 (7.41)

and for our domain wall solution with φcl(±∞) = ±v

Qwall = 2v (7.42)

while for the inverted solution (anti wall) φcl(±∞) = ∓v , we get

Qantiwall = −2v (7.43)

This proves the stability of the domain wall solution. Namely, although
the quantum vacuum carries less energy, the wall cannot “decay” into it,
since Qwall = 2v is conserved. In other words, the boundary conditions we
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v-v

U(x)

x

have chosen prevent the wall from untwisting itself and taking the value +V
(or −v) everywhere, as would be preferable from the energy point of view.

Let us discuss at some length the origin and the criteria for the existence
of our solution. Notice that it was crucial to choose nontrivial boundary
conditions φ(−∞) ̸= φ(+∞) for its existence, but also it was necessary that
the potential V allowed for such a nontrivial choice. To appreciate this, let
us take a potential which does not break the symmetry D: φ→ −φ, i.e. the
potential with a positive mass term

V ′(φ) =
λ

4
(φ2 + v2)2 (7.44)

Now, < φ >= 0 and the symmetry D remains unbroken. Since at infinity
we must demand V ′ (φ(∞)) → 0, this implies φ(±∞) → 0, and thus there
can be no nontrivial solution such as φcl(z) in (7.29).

It is again useful to use our mechanical analogy of a point particle moving
in a potential U = −V ′

Obviously now a particle that starts from the maximum of −V ′ at x = 0
with a zero velocity will never turn back, it will simply continue falling down
for ever. We must have a nontrivial potential −V ′ with at least two different
maxima.

Physically, we must have a spontaneously broken discrete symmetry, since
a domain wall is simply a reflection of the fact that it costs us energy to go
from one vacuum to another. Its stability is connected to the fact that the
boundary conditions provide a nontrivial map φcl(±∞) = ±v.
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Let us denote by M0 the manifold of the zeroes of V (φ), i.e. the minima
of the energy; and by M∞ the manifold of the points at infinity. In our case

M∞ = {z → −∞ ; z → +∞}
M0 = {φ0

·· · V (φo) = 0⇒ φ0 = ±v} (7.45)

But M0 and M∞ consist of two points. Thus the boundary conditions
φ(±∞) provide a well defined map from M∞ to M0. A nontrivial solution
demands at least two discrete points on M.

For a further example, we could choose

V (φ) =
λ

4
(φ4 − v4)2 (7.46)

In which case we have a Z4 discrete symmetry D φ → ±iφ, φ → ±φ.
The manifold M0 contains 4 points

M0 = {φ0
·· · V (φ0) = 0⇒ φ0 = ±iv, ±v} (7.47)

and again we have a well-defined map M∞
φ(±∞)→ M0. We expect stable

domain walls connecting different vacua. Keep in mind though that the
example (7.46) is not realistic, since it would imply a nonrenormalizable
theory.

Let us take yet another example, now of a continuos U(1) symmetry with
a complex field φ and the potential

V (φ) =
λ

4
(φ∗φ− v2)2 (7.48)

Now the manifold M0 is a circle

M0 = {φ0
·· · V (φ0) = 0⇒ φ0 = veiα} (7.49)

and the map M∞ to M0 cannot guarantee the stability of the solution
φcl(∞). Namely, the points −v and +v can be simply connected by a contin-
uous phase change in α from π to zero. The solution is not stable anymore
and you can show that φ(z) = φcl(z) + iϵ can lead to less energy than φcl.

Clearly, to get a stable solution we should map as circle on a circle. This
will give a so called string solution, but more about it later.
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7.4 D. The gravitational field of a domain
wall

We shall close this section with an amusing example of what kind of grav-
itational field a static large domain wall would produce. We shall study it
only in the Newtonian approximation of a weak field felt by slowly moving
objects.

Einstein’s equations

Rµν −
1

2
gµνR = −8πGTµν (7.50)

or

Rµν = −8πG

(

Tµν −
1

2
gµνT

)

(7.51)

where R = Rµ
µ, T = T µ

µ ; in the Newtonian limit reduce to R00 =
−∇2Vgrav, and thus

∇2Vgrav = 8πG

(

Tµν −
1

2
gµνT

)

(7.52)

In the above Vgrav is the gravitational potential. The energy momentum
tensor for a field φ is easily calculated from

Tµν = −Lgµν + ∂µφ
∂L

∂(∂νφ)
(7.53)

and thus

Tµν = −Lgµν + ∂µφ∂νφ (7.54)

for the Lagrangian given in (7.7). Since only dφ/dz ̸= 0, we can compute
easily (for φcl(z)) the nonvanishing components of Tµν

T00 = −L =
1

2

(

dφcl

dz

)2

+ V (φcl) = ρ(φcl)

T11 = T22 = L = −ρ(φcl)

T33 = L +

(

dφcl

dz

)2

=
1

2

(

dφcl

dz

)2

− V (φcl) = 0

where ρ(φcl) denotes the energy density of the classical solution in (7.25):
ρ(φcl) = 2V (φcl). Notice that is is a perfectly well defined positive quantity.
Since T 1

1 = −T11, T 2
2 = −T22, we get
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T µ
µ = 3T00 = 3ρ(φcl) (7.55)

This in turn leads to a negative sign in (7.52)

∇2Vgrav = −4πGρ(φcl) < 0 (7.56)

The gravitational field of a domain wall is repulsive in spite of the positive
mass, or energy density - we have a remarkable phenomenon of antigravity.

The source of this extraordinary fact lies in the nonvanishing (and nega-
tive) quantities T11 and T22. In Newtonian gravity (not in a Newtonian limit
of Einstein’s gravity) one writes

∇2Vnewt = 4πGρ(φcl) > 0 (7.57)

which is manifestly positive and implies an attractive gravitational force.
By analogy with a perfect fluid, the T i

i are called −pi, the pressure in the
i direction, and thus T11 = T22 < 0, implies T 1

1 = T 2
2 > 0 or p1 = p2 < 0.

The domain wall system behaves as if it carries negative pressure. This is the
virtue of relativistic field theory. For example, if you imagine a nonvanishing
energy in the vacuum, then obviously

Tµν(vacuum) = gµνV (vacuum) (7.58)

and thus T ν
µ = 4V = 4T 0

0 = 4T00 and we have a repulsive force

∇2Vgrav = −8πGT00 = −8πGV (vacuum) < 0 (7.59)

This is the principle of the so-called inflationary cosmology which makes
the universe grow by having the vacuum energy dominating over the matter
and radiation one. But this is a different story we must leave aside.
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Chapter 8

Realistic examples of Discrete
Symmetries

The example we have studied based on the discrete symmetry φ→ −φ is the
simplest one and the prototype for more complicated and realistic particle
physics systems. Before we turn to other examples, let us ask ourselves if the
symmetry D exists in the Standard Model. Naively, one would be tempted to
say yes, since φ→ −φ (φ being the SU(2)L × U(1)Y doublet) is obviously a
symmetry of the SU(2)L×U(1)Y symmetric theory. However it is a continuos
gauge symmetry, since the gauge transformation

φ −→ eiτ3θφ (8.1)

reduces to D for θ = π.
The most natural candidates for realistic discrete symmetries are clearly

time reversal T and parity P . We discuss them in what follows.

8.1 A. T (or CP ) symmetry

In relativistic field theory, the time reversal symmetry T is equivalent to
CP ; thus we study CP as a potential candidate for a spontaneously broken
discrete symmetry.

Under CP a fermion field transforms as

ψL,R
CP←→ C ψ

T
L,R (8.2)

and thus

ψLψR
CP←→ ψRψL (8.3)
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From the general form of Yukawa couplings

Ly = hφψ̄LψR + h∗φ†ψ̄RψL (8.4)

we demand

φ
CP←→ φ† (8.5)

and furthermore CP invariance would require h = h∗.
In the Standard Model φ is the Higgs doublet and the Yukawa couplings

take the form given in (1.22). Since by a SU(2) transformation we can always
arrange

< φ >=

(

0
v

)

(8.6)

where v is a positive, real number, the spontaneous breaking of SU(2)L×
U(1)Y preserves CP . Thus in the Standard Model or better in its mini-
mal version) it is not possible to break CP spontaneously and one instead
opts for complex Yukawa couplings which imply CP breaking already at the
Lagrangian level.

Some more than two decades ago, T.D. Lee has suggested a simple ex-
tension of the Standard Model which can break CP spontaneously. He
assumes simply the existence of two Higgs doublets, φ1 and φ2, and by a
SU(2)L × U(1)Y puts their vevs in the form

< φ1 >=

(

0
1

)

v1 ; < φ2 >=

(

sin θ
cos θ

)

v2e
iδ (8.7)

where v1, v2, θ and δ are real, positive numbers. Notice that we cannot
demand θ = 0 on the basis of gauge invariance. The values of θ and δ must
be obtained by minimizing the Higgs potential.

The most general d=4 potential for two Higgs doublets φ1 and φ2 can be
written as

V = −
µ2

i

2
φ†

iφi +
λi

4
(φ†

iφi)
2

+
λ3

2
(φ†

1φ1)(φ
†
2φ2) +

λ′3
2

(φ†
1φ2)(φ

†
2φ1)

+ (
λ4

2
φ†

1φ1 +
λ5

2
φ†

2φ2)(φ
†
1φ2 + φ†

2φ1)

+
λ6

2
[(φ†

1φ2)
2 + (φ†

2φ1)
2] (8.8)
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Notice that the only term which depends on θ, but not on the phase δ, is
λ′3, and it becomes for the vevs in (8.7)

λ′3
2

v2
i v2

2 (8.9)

Obviously the sign of λ′3 determines the value of θ at the minimum. Thus
for

1. λ′3 > 0 , in order to minimize the positive value of (8.9) cos θ is forced
to vanish: θ0 = π/2.

2. λ′3 < 0 , the λ′3 term is negative and the potential prefers to maximize
the negative contribution from (8.9), thus θ0 = 0

Since θ0 = π/2 would imply the breaking of electromagnetic charge in-
variance, we choose 2), i.e. λ′3 < 0. It is easy then to write down the potential
(8.8) as a function of the phase δ

V = A− B cos δ + C sin δ (8.10)

where A depends on µi,λi,λ3 and λ′3, and

B = −(λ4v
2
1 + λ5v

2
2)v1v2

C = λ6v
2
1v

2
2 (8.11)

We wish to minimize V as a function of δ

∂V

∂δ
= (B − 4C cos δ) sin δ = 0 (8.12)

and thus either

δ0 = 0 (8.13)

or

cos δ1 =
B

4C
(8.14)

are the extrema. It is easy to see that for

B > 0 ; C > 0 ;
B

4C
> 1 (8.15)

δ1 is a minimum and δ0 is a maximum of the potential (8.10). In the
range of parameters given by (8.15), which amounts to
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λ4v
2
1 + λ5v

2
2 < 0

λ6 > 0 (8.16)

CP symmetry is spontaneously broken.
Notice that, just like in our toy model with a D symmetry, there are

two solutions δ1 and −δ1 which satisfy (8.14) -this is due to the symmetry
δ → −δ of the potential (8.10).

Thus the field φ of our toy model can be viewed as the phase field δ(x)
and we can imagine a classical solution, a domain wall with

δ(z → −∞) = −δ1
δ(z → +∞) = +δ1 (8.17)

where again we take a wall in the x − y plane. The precise form of the
solution(8.17) is very hard to obtain and for the sake of simplicity we give
an exact solution for the case B = 0 or

L(δ) =
1

2
v2∂µδ∂

µδ + m4[1− cos 2δ] (8.18)

where v and m are the scales given for dimensional reasons (in the
SU(2)L × U(1) we expect v ∼ m ≃MW ).

The minimum of (8.18) lies at δ = 0, π and the domain wall interpolates
between these two degenerate vacua ( the discrete symmetry is δ → δ + π).
From ()

(

dδ

dz

)2

= 2v (8.19)

we get

dδ

sin δ
=

m2

v
dz (8.20)

and it is easy to show that for the boundary conditions

δ(−∞) = 0

δ(+∞) = π (8.21)

we get

δ(z) = 2 tan−1 exp(
m2

v
z) (8.22)

Everything else we have said about domain walls applies to this example.
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8.2 B. Parity

Equally fundamental is the symmetry between left and right, the parity. In
the standard model P is broken explicitly and clearly, in order to break P
spontaneously we must enlarge the gauge group. The minimal model is based
on the gauge group

GLR = SU(2)L × SU(2)R × U(1)Y ′

with the quarks and leptons completely symmetric under L↔ R

QL =

(

u
d

)

L

P←→ QR =

(

u
d

)

R

ℓL =

(

ν
e

)

L

P←→ ℓR =

(

ν
e

)

R

(8.23)

Notice that the requirement of left-right symmetry leads to the existence
of the right-handed neutrino and now the neutrino mass becomes a dynamical
issue, related to the pattern of symmetry breaking. In the Standard Model,
where νR is absent, mν = 0; here instead we shall need to explain why
neutrinos are so much lighter than the corresponding charged leptons.

In this theory, the formula for the electromagnetic charge becomes

Qem = I3L + I3R +
Y ′

2
(8.24)

with Y ′ being left-right symmetric.
It checks readily from Y ′ = 2(Qem − I3L − I3R) that

Y ′
(

u
d

)

L

=
1

3

(

u
d

)

L

; Y ′
(

ν
e

)

L

= −
(

ν
e

)

L

Y ′
(

u
d

)

R

=
1

3

(

u
d

)

R

; Y ′
(

ν
e

)

R

= −
(

ν
e

)

R

(8.25)

which tells us that Y ′ has a physical interpretation

Y ′ = B − L (8.26)

This is in sharp contrast with the Standard Model, where the hypercharge
Y was completely devoid of any physical meaning.

Our primary task is to break L-R symmetry, i.e. to account for the fact
that MWR

≫ MWL
, WR and WL denoting right-handed and left-handed gauge
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bosons respectively. In order to do so we need a set of left-handed and right-
handed Higgs scalars whose quantum numbers we will specify later. Imagine
for the moment two scalars ϕL and ϕR with

ϕL
P←→ ϕR (8.27)

Assume no terms linear in the fields (since ϕL and ϕR should carry quan-
tum numbers under SU(2)L and SU(2)R ) we can write down the left-right
symmetric potential

V = −
µ2

2
(ϕ2

L + ϕ2
R) +

λ

4
(ϕ4

L + ϕ4
R) +

λ′

2
ϕ2

L ϕ
2
R (8.28)

where λ > 0 in order for V to be bounded from below, and we choose
µ2 > 0 in order to achieve symmetry breaking in the usual manner. We
rewrite the potential as

V = −
µ2

2
(ϕ2

L + ϕ2
R) +

λ

4
(ϕ2

L + ϕ2
R)2 +

λ′ − λ
2

ϕ2
L ϕ

2
R (8.29)

which tells us that the pattern of symmetry breaking depends crucially on
the sign of λ′−λ, since the first two terms do not depend on the direction of
symmetry breaking (of course µ2 > 0 guarantees that < ϕL >=< ϕR >= 0
is a maximum and not a minimum of the potential).

Thus for

1. λ′ − λ > 0, in order to minimize V we have either < ϕL >= 0, <
ϕR > ̸= 0, or vice versa. Due to the symmetry of V both solutions are
equally probable.

2. λ′ − λ < 0, we need < ϕL > ̸= 0 ̸=< ϕR > and L-R symmetry implies
< ϕL >=< ϕR >.

Obviously we choose 1), which implies that P is broken in nature. The
phenomenology tells us that < ϕL >= 0, < ϕR > ̸= 0; but the other, sym-
metric solution < ϕL > ̸= 0, < ϕR >= 0 exists as well and it tells us that
there must be domain walls between the two dependent minima. To make
this more clear, let us introduce fields

ϕ = ϕL + ϕR
P−→ ϕ

ϕ′ = ϕL − ϕR
P−→ −ϕ′ (8.30)

and the solution 1) implies that < ϕ′ > ̸= 0. Then, this is precisely the
situation that we have encountered before with the symmetry D, and the
field ϕ′ plays the role of our domain wall solution in section A of Lecture 8.
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8.2.1 Left-Right and the phenomenology of weak in-
teractions

What fields should we choose for the role of ϕL and ϕR ? It is not an easy
question and only after long thought one arrives to the conclusion that the
ideal candidates should be triplets, i.e.

∆L(3̄L , 1R , 2) ; ∆R(1̄L , 3R , 2) (8.31)

where the quantum numbers denote SU(2)L , SU(2)R and B − L trans-
formation properties. Simply speaking, ∆L and ∆R are SU(2)L and SU(2)R

triplets, respectively, with B − L numbers equal to two.
Writing ∆L,R = ∆i

L,Rτi/2 (τi being the Pauli matrices) as is usual for the
adjoint representations, we find Yukawa couplings

L∆ = h∆(ℓTL C iτ2 ∆L ℓL + L→ R) + h.c. (8.32)

To check the invariance of (8.32) under the Lorentz group and the gauge
symmetry SU(2)L × SU(2)R × U(1)B−L, recall

• that ψT
LCψL is a Lorentz invariant quantity for a chiral Weyl spinor ψL

(and similarly for ψR).

• under the gauge symmetry SU(2)L

ℓL −→ ULℓL , ∆L −→ UL∆LU †
L

UT
L (iτ2) = (iτ2)U †

L (8.33)

and similarly for SU(2)R

• the B-L number of the ∆L,R fields is two.

This proves the invariance of (8.32) under all the relevant symmetries.
Now, from their definition, the fields ∆L,R have the following decomposition
under the charge eigenstates

∆L,R =

[

∆+ ∆++

∆0 −∆+

]

L,R

(8.34)

where we use the fact that Tr∆L,R = 0 and the charge is computed from
Q = I3L + I3R + (B − L)/2.

Furthermore, ∆’s being in the adjoint representation have
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I3L∆L =
[τ3

2
, ∆L

]

I3R∆R =
[τ3

2
, ∆R

]

(8.35)

Notice the interesting consequence of doubly charged physical Higgs scalars
in this theory.

From the general analysis of the spontaneous L-R symmetry breaking,
we know that for a range of parameters of the potential the minimum of the
theory can be chosen as

< ∆L >= 0 , < ∆R >=

[

0 0
vR 0

]

(8.36)

From (8.32), we the obtain the mass for the right-handed neutrino νR

Lm = h∆ vR (νT
R C νR + ν†R C† ν∗R) (8.37)

Thus the right-handed neutrino gets a large mass mN = h∆vR, which
corresponds to the scale of breaking of parity.

At the same time, < ∆R > ̸= 0 breaks the SU(2)R gauge symmetry and
furthermore (B − L) < ∆R >= 2 < ∆R >, thus using (8.36)

Y

2
< ∆R >= (I3R +

B − L

2
) < ∆R >= [

τ3
2

, < ∆R >]+ < ∆R > (8.38)

In other words, the original gauge symmetry is broken down to the Stan-
dard Model one

SU(2)L × SU(2)R × U(1)B−L
<∆R>−→ SU(2)L × U(1)Y (8.39)

This can be checked by computing the gauge boson mass matrix. Use

Dµ∆R = (∂µ − igI⃗R · A⃗R
µ − igB−LAB−L

µ )∆R (8.40)

where

I⃗R∆R = [
τ⃗

2
, δR] (8.41)

and gB−L and AB−L
µ are the gauge coupling and the gauge potential of

the U(1)B−L symmetry; and
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1

2
Tr(Dµ < ∆R >)†(Dµ < ∆R >) = Tr

1

2

∣

∣

∣
(gI⃗R · A⃗R

µ + gB−LAB−L
µ )∆R

∣

∣

∣

2

(8.42)
The above computation is straightforward; by defining

W±
R =

A1
R ∓ iA2

R√
2

(8.43)

we get

M2
WR

= g2 v2
R (8.44)

M2
ZR

= (g2 + 4g2
B−L) v2

R (8.45)

where

ZR =
2gB−LA3

R + gAB−L
√

g2 + 4g2
B−L

(8.46)

is the massive neutral gauge field.
Thus the scale of parity breaking is related to the mass of the right-

handed charged gauge bosons W±
R . The predominant V-A nature of the

weak interactions puts a lower limit on MWR

MWR
> 1TeV (8.47)

while the theory at this point cannot predict it. All we can say is that
at E ≫ 1TeV , one may be able to see a L-R symmetric world one day.
This gives mN ≃MWR

> 1TeV and the right-handed neutrino becomes very
heavy.

We shall not go any further into the phenomenological details of this
theory, but we wish to close this section with some important comments on
neutrino mass.

To complete the theory, one needs to include new Higgs fields (which
contain the Weinberg-Salam Higgs doublet) that can give masses to quarks
and leptons. This is done easily and it proceeds along the same lines as in the
Standard Model. In the process we get the Dirac neutrino mass between νL

and νR and in turn we end up with the see-saw mechanism for the neutrino
mass described in the solution to problem #1. The important point here
is that the mass of νR is determined by the scale of parity breaking and
the smallness of the nuetrino mass is a reflection of the predominant V-A
structure of the weak interaction.
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In the see-saw mechanism, we have (assuming mD ≃ me)

mν ≃
me

mνR

≃
me

MWR

From MWR
≥ 1 TeV , and me = 0.5 MeV we get

mν ≤ 1 eV

which explains clearly the observed smallness of mν . Obviously the mea-
surement of the neutrino mass is an importnt probe of the idea of parity
restoration at high energies E > MWR
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Chapter 9

Strings

It is intuitively clear that the form of the solution, i.e. its symmetry, cor-
responds to the type of symmetry which is spontaneously broken. We have
just learned that the spontaneous breaking of discrete symmetries leads to
the existence of domain walls, topological defects with a discrete symmetry.
It should not come out as a surprise that the spontaneous breakdown of a
U(1) symmetry allows for cylindrically symmetric solutions, the so called
strings. Recall that the existence of domain walls was tied to the choice
of boundary conditions; by asking that the solutions carry finite energy we
demanded that the scalar field φ belongs to a set of zeros of the potential,
i.e. we demanded φ(±∞ ∈ M0, where M0 is the vacuum manifold. This
provides, as we said, a map from M∞ into M0, and the nontriviality of the
map leads to the nontriviality of the solution.

Now, we wish to construct cylindrically symmetric solutions, and so we
will ask (in cylindrical coordinates ρ, φ, z) that for ρ → ∞, the scalar field
again belongs to an approppiate M0. But now M∞ is a circle and thus in
order to have a nontrivial map M∞ → M0, we need M0 to be a circle.
This suggests obviously to take the group G = U(1), and φ a complex field,
charged under U(1).

9.1 G = U(1)

The Lagrangian in this case is

L = −
1

4
FµνF

µν +
1

2
(Dµφ)∗(Dµφ)− V (φ) (9.1)

where

Fµν = ∂µAν − ∂νAµ
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Dµφ = (∂µ − igAµ)φ (9.2)

and the potential we choose to have the usual Mexican hat form

V =
λ

4
(φ∗φ− v2)2 (9.3)

Clearly, the vacuum manifold is a circle, since the minimum of V is at
V = 0 for φ0 which satisfies

|φ0|2 = v2

φ0 = veiα (9.4)

Thus M0 = S1. Next, as we said, in cylindrical coordinates ρ, θ, z we
look for a static, cylindrically symmetric solution, which defines M∞ =
ρ = R, R→∞. Thus M∞ = S1, too.

We look for a finite energy solution, or better to say for a solution with
finite energy per unit length.

From (9.1), it is readily found that

E

L
=

∫

ρ dρ

[

1

2
(Diφ)∗(Diφ) +

1

2
(E⃗2 + B⃗2) + V (φ)

]

(9.5)

where

Ei = F0i

Bi =
1

2
ϵijkF

jk (9.6)

Since each term in (9.5) is non-negative, we ask that for R→∞

V (φ) −→ 0

Diφ −→ 0

Eiφ −→ 0 , Biφ −→ 0 (9.7)

Thus

φ(R→∞) ∈M0 (9.8)

which provides a map M∞ →M0. It can be shown that all such maps
are characterized by integers, i.e. we can write
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φ(R→∞) −→ v eiθ (9.9)

The crucial demand is the single-valuedness of φ. We shall be mostly
interested in the “minimal” solution with n = 1.

Notice that the form (9.9) appears to be a “pure gauge”, since under U(1)
φ transforms as φ → e−iαφ and you could argue that by choosing α = nθ
we can cast φ in the form φ(R → ∞) = v. However, such a transformation
is not well defined at the origin; alternatively you can say that (9.9) cannot
hold to be true everywhere. More precisely, if we look for a solution in the
form

φ = v f(ρ) einθ (9.10)

then f(ρ) → 1 when R → ∞, and f(ρ) must vanish at the origin. At
that point φ is in the local maximum of the potential (9.3), and there will
be some energy stored in the Higgs field. This is reminiscent of the situ-
ation encountered with domain walls before, when the nontrivial boundary
conditions forced φ to vanish at z = 0.

From Diφ→ 0 at M∞ we get

Aµ −→
n

g
∂µθ (9.11)

Again, at first glance Aµ appears to be a pure gauge, but this appearance
is deceiving for the same reason that φ(∞) is not a pure gauge.

Now, since the magnetic flux is given by
∫

B⃗ · dS⃗ =

∮

R→∞
Aµdxµ =

n

g

∮

R→∞
∂µθdxµ =

n

g
∆θ (9.12)

we get

F lux =
2πn

g
(9.13)

This means that there is (for n ̸= 0) a nonvanishing magnetic flux “inside”
our solution, and furthermore that the flux is quantized. It can also be shown
that this flux is conserved in time. For the minimal solution, n = 1, we get
that the flux = 2π/g. The symmetry of the problem dictates B⃗ = Bz, and
for n = 1 we get

2π

∫ ∞

0

B ρ dρ =
2π

g
(9.14)

Let us summarize the situation. By analogy with the domain wall solu-
tion, we expect an exponential die-off of φ(ρ) and B(ρ), i.e. we expect to
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find the thickness to be δ ≃, 1/v (1/v is the only length scale in the theory),
which characterizes the core of the string. In other words, for

r ≤ δ : φ = 0 , B = const

r > δ : φ→ veiθ , B → 0 (9.15)

If we take B = const, (9.14) gives

B

∫ δ

0

ρ dρ =
1

g
(9.16)

or

B =
2

gδ2
(9.17)

Then from (9.5), in the approximation (9.15)

E

L
= 2π

[
∫ δ

0

1

2

4

(gδ2)2
ρ dρ+

∫ δ

0

λ

4
v4 ρ dρ

]

(9.18)

which gives

E

L
= 2π

[

1

g2δ2
+
λ

8
v4δ2

]

(9.19)

You can see why there is a finite core: the energy in the magnetic field
prefers δ → ∞ (due to (9.17) ), whereas the energy in the Higgs field likes
δ → 0. Minimizing the energy with respect to δ

∂E/l

∂δ
= 2π

[

−
1

g2δ3
+
λ

4
v4δ

]

= 0 (9.20)

gives the thickness of the string

δ =

(

8

g2λ

)1/4

v−1 (9.21)

and the energy per unit length becomes

E

L
= 4π81/4

√

λ

g2
v2 (9.22)

where we should not trust the numerical factor
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9.1.1 The stability of the string solution

We have remarked before that it can be shown that the flux of the string
is conserved in time. Thus, for the minimal string n = 1 this implies the
stability, since the state with lower energy than the string, i.e. the vacuum,
has n = 0 and n cannot be changed in time. The interested reader will be
referred to the original work by Nielsen and Olesen. We will, on the other
hand, discuss in detail the analogous issue of the stability of monopoles.

9.1.2 Strings and Cosmology

Just like domain walls, strings are expected to be produced in the phase
transitions of the early hot universe. We cannot do justice to this interest-
ing subject here, but suffice it to mention that at very high temperatures
one expects symmetries to be restored, i.e. for some T > Tc, we expect
< φ(T ) >= 0. If so, there will be a phase transition when the Universe
learns that < φ > ̸= 0 (as it cools down). It is clear that the whole Universe
cannot manage to choose one and the same value of < φ >; its variation is
expected to lead to the production of strings. It is hoped that these objects
may actually provide the seeds for the formation of clusters of galaxies.

9.2 Realistic models of strings

We have found that the domain walls do not exist in the Standard Model,
but that some of its simple extensions which break P or CP spontaneously
do contain them. What is the analogue situation with strings ? What about
strings in the Standard Model ?

Well, the message of the last section is that we need a spontaneously bro-
ken U(1) symmetry in order to have a string, since then M0 = S1 and the
map φ(R → ∞) ∈M0 becomes a well-defined map M∞ →M0 character-
ized by an integer n. Now, in the standard Model SU(2)L×U(1)Y is broken
down to U(1)em through the vev of the doublet Φ, which means that it is
actually SU(2) which is broken; U(1) is only redefined. But M0(Φ) = S3

(see the section on monopoles), and there is no nontrivial map S1 → S3 (if
you wish a circle on the sphere S3 can be always shrunk to a point).

This, of course, may sound too formal or too complicated. After all, you
can always look for an embedded string solution so that for R → ∞ the
doublet Φ has the form

Φ −→
(

0
veinθ

)

(9.23)
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This looks very much like a string, one could say. The trouble is that
now we can make a full SU(2)L × U(1) gauge transformation on Φ and it
is not clear that we cannot rotate the phase θ away (in the U(1) case such
a transformation did not make sense at ρ → 0). We shall not enter into
the subtleties of this interesting question here. Suffice it to say that one
can construct the same solution with (9.23) in the U(1) case, but that such
solution is not stable; the instability is found in the other direction of the
SU(2) space. Thus in the Standard Model there are no stable string solutions.

It can be shown that the same is true of a minimal SU(5) theory. At the
first stage of symmetry breaking we break SU(5) down to U(1)em×SU(2)L×
SU(3)c and no strings get formed (see however the discussion on monopoles
below). To get strings one must resort to more complicated grand unified
theories, such as SO(10), that we did not discuss in this course. We turn
rather to the more promising and for us more important issue of monopoles.
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Chapter 10

Monopoles

The machinery for constructing classical solutions we have learned so far
serves (to us) mainly to discuss the important topological defects which carry
monopole charge. Such objects are expected to exist in GUTs based on simple
groups, since these theories imply the quantization of charge. The connection
between the quantization of charge and the existence of magnetic monopoles
has been realized long ago by Dirac, who has studied the consistence of the
quantum theory of monopoles.

We offer here a simplified, semi-classical argument in favor of this connec-
tion. Imagine that there exists one monopole in the universe with a monopole
charge gm. Its magnetic field is given by

B⃗ =
gm

4π

r̂

r2
(10.1)

where r̂ is the unit vector in the r⃗ direction (r̂ r = r⃗). Notice that
in the case of the magnetic monopole we cannot write B⃗ = ∇⃗ × A⃗, since
∇⃗ · (∇⃗ × A⃗) = 0, but now ∇⃗ · B⃗ = gmδ3(0). Thus we cannot ask in general
Fµν = ∂µAν−∂νAµ. We will be able to say more about this when we construct
a monopole solution below.

Furthermore, imagine a particle of arbitrary electric charge q and mass
m moving in the field of a monopole; it will feel the force

F⃗ = q
dr⃗

dt
× B⃗ (10.2)

Let us now calculate the rate of change of angular momentum of such a
particle. From L⃗ = mr⃗ × dr⃗

dt

dL⃗

dt
= mr⃗ ×

d2r⃗

dt2
= r⃗ × F⃗ (10.3)

and thus
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dL⃗

dt
=

gmq

4πr2
r⃗ ×

dr⃗

dt
× r̂

=
gmq

4πr2

[

r
dr⃗

dt
− r̂

(

dr⃗

dt
· r⃗
)]

=
gmq

4πr2

[

r
dr⃗

dt
− r⃗

dr⃗

dt

]

(10.4)

Now, from

d

dt
(r̂) =

d

dt

(

r⃗

r

)

=
r(dr⃗

dt )− r⃗ dr
dt

r2
(10.5)

we find that the angular momentum is not conserved in time, its rate of
change is

dL⃗

dt
=

gmq

4π

d

dt
(r̂) (10.6)

We can define the “total” angular momentum J⃗ which is conserved in
time

J⃗ = L⃗−
gmq

4π
r̂ (10.7)

with dJ⃗/dt = 0
Up to now our discussion was purely classical, but eventually we need

to quantize the theory. Obviously, the consistency with the quantization of
angular momentum requires

gmq

4π
= n (10.8)

where n is an integer: n = 0, 1, 2, .... But this is a remarkable finding:
even a single monopole in the Universe would demand the quantization of
charge, since q = 4π

gm
n. Of course, the basic unit is not predictable, but the

observed phenomena of charges being an integer multiple of the charge of
the down quark would be reproduced. It is not surprising that the quest for
those objects became a dream of both theorists and experimentalists.

I wish to stress here that the work of Dirac dealt with the full quantum
mechanics of monopoles, not just our simple-minded argument. By demand-
ing the single-valuedness of the wave function of the electron Dirac provided
a quantum mechanical version of (10.8). On the other hand, the motiva-
tion to study these objects is inspired by the possibility of making Maxwell’s
theory symmetric between electric and magnetic charges.
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Now, we have repeatedly stressed the fact that unified theories based on
the simple group G imply the quantization of charge, since now

Qem =
∑

i

ciTi (10.9)

where Ti are the generators of G with TrTi = 0. But then TrQem = 0,
and so Qem can only come in integer units. Should we then expect the
existence of magnetic monopoles in these theories? The answer is yes, as we
now demonstrate.

10.1 Monopole solution

A prototype for a simple unified theory is the group SO(3), the minimal and
simplest such theory. The only neutral generator is T3 and thus Qem = T3,
and the eigenvalues of T3 are quantized as we know. Ignoring for the moment
the question of the theory being realistic or not, imagine simply an SO(3)
local gauge theory with a triplet of Higgs scalars. Its Lagrangian is then

L = −
1

4
F a

µνF
µν a +

1

2
(Dµφ

a)(Dµφa) + V (φ) (10.10)

where

F a
µν = ∂µAa

ν − ∂νAa
µ + gϵabcA

b
µA

c
ν

Dµφ
a = ∂µφ

a + ϵabcA
b
µφ

c

V (φ) =
λ

4
(φaφa − v2)2 a = 1, 2, 3 (10.11)

The theory consists of the triplet of gauge bosons in the adjoint repre-
sentation and the similar triplet of Higgs scalars. In our notation, the SO(3)
generators are given by

(Ta)
ij = −iϵaij (10.12)

Of course, one of them, say T3, can be diagonalized (SO(3) has rank 1),
and for a triplet the eigenvalues are 1, 0, -1. In this representation

Qem = (T3)diag. =

⎛

⎝

1
0
−1

⎞

⎠ (10.13)

which is nothing but the reflection of the act that the charge is quantized.
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It is easy to find the vacuum manifold M0 from (10.11): V ≥ 0 dictates
at the minimum

φa
oφ

a
o = v2 (10.14)

or
M0 =

{

(φ1
0)

2 + (φ2
0)

2 + (φ3
0)

2 = v2
}

= S2 (10.15)

which shows that M0 is a three-dimensional sphere S2.
By now the procedure for constructing a static classical solution is straight-

forward.: in order to have a nontrivial map M∞ −→ M0, we choose the
boundary conditions such as to have M∞ = S2, too. This implies spherical
symmetry, and in spherical coordinates r, θ,φ we define a sphere at “infinity”
r = R→∞, or

M∞ = {fixed r = R , R→∞} = S2 (10.16)

Next, as before with domain walls and strings we ask that the energy
of the solution be finite. From (10.10) and (10.11) the energy of a static
configuration is

E =

∫

d3x

[

1

2
B⃗aB⃗a +

1

2
E⃗aE⃗a +

1

2
Diφ

aDiφ
a + V (φ)

]

(10.17)

where we expect E⃗a = 0, but more about it later. Each of the terms in
(10.17) is non-negative and thus at M∞ we must have

B⃗a −→ 0 , E⃗a −→ 0

Diφ
a −→ 0 , V (φ) −→ 0 (10.18)

the last condition implying

φa(M∞) ∈M0 (10.19)

which is a map from S2 onto S2 and can be characterized by an integer.
More precisely, the most general such map has the form

φ1
0 = sin θ cos nϕ

φ2
0 = sin θ sin nϕ

φ3
0 = cos θ (10.20)
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which covers a sphere M0 times. We are interested in the minimal case
n = 1, which can also be written

φa
0 = v

xa

r
(10.21)

Thus, from now on we demand φa → φa
0 in (10.21).

Now, before we go on studying the properties of the solution which sat-
isfies (10.21), we should first construct the charge and the field tensor which
correspond to it. Recall that for the vacuum, the state of energy zero, the
field should point in one and the same direction. If we choose

< φ0 >a= vδa3 (10.22)

then the charge Qem is given by T3, since

(Qem < φ0 >)a = (Qem)ab < φ0 >b= (T3)ab < φ0 >b

= −iϵiabvδb3 (10.23)

This means that Qem annihilates the vacuum as it should.
It is equally easy to see that T1 < φ0 > ̸= 0 ̸= T2 < φ0 >, and thus the

SO(3) gauge symmetry is broken down to U(1), which we wish to identify
with U(1)em. The same can be seen from (10.10) and (10.11), which give

1

2
(Dµ < φ >)a ∗(Dµ < φ >)a =

1

2
g2v2ϵab3ϵac3A

b
µA

µ c

=
1

2
g2v2(A1

µA
µ 1 + A2

µA
µ 2) (10.24)

Thus two gauge bosons get the mass, and the third A3
µ remain massless.

We identify A3
µ with the photon, and we can write W±

µ = 1√
2
(A1

µ ∓ A2
µ) for

the massive gauge bosons of the fixed charge, with m2
W = g2v2.

For the case (10.21), we obviously need an analogous expression for Qem.
A little thought suggests

Qem = T axa

r
(10.25)

since now

(Qemφ)a =
xc

r
(T c)abφ

b

= −iϵabcv
xcxb

r2
= 0 (10.26)
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where we have inserted (10.21) for φb.
Similarly, we can show that the photon is now given by

Aµ =
xa

r
Aa

µ (10.27)

since the gauge boson mass matrix from (10.21) becomes

1

2
g2v2ϵabcϵade

xcxe

r2
Ab

µA
µ d

=
1

2
g2v2[δbd −

xbxd

r2
]Ab

µA
µ d (10.28)

or

M2
ab(A) = g2v2 r2δab − xaxb

r2
(10.29)

But then M2
ab(A)xb/r = 0, which shows that Aµ in (10.27) remains mass-

less and thus can be identified with the photon.
Finally, we need the U(1)em electromagnetic tensor, the analog of Fµν(vac) =

∂µA3
ν−∂νA3

µ. You may say that we could take Fµν = ∂µAν−∂νAµ in (10.27),
but we must be more careful about it, since as we said before this is only
true when there are no magnetic monopoles. We need a form of Fµν which
satisfies the following two conditions

1. it is gauge invariant, i.e. it does not depend on any direction in the
group space SO(3); and

2. it reduces to Fµν = ∂µAi
ν−∂νAi

µ for the vacuum configuration < φa >=
vδa i (more precisely, for any configuration < φa >= vδa 3, we should
get Fµν = ∂µA3

ν − ∂νA3
µ ).

Some thought tells us that it will take the form

Fµν = F a
µν

φa

|φ|
−

1

g
ϵabc (Dµφ)a(Dνφ)bφc

|φ|3
(10.30)

where |φ| is the magnitude of φ⃗ : |φ|2 = φaφa.
The form in (10.30) is dictated by the conditions 1) and 2) above, and

the requirement to be linear in the derivatives of Aa
µ and at most quadratic

in Aa
µ. For the vacuum configuration < φa >= vδa3,
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Fµν(< φ >) = F 3
µν −

1

g
ϵ3bcg2Ab

µA
c
µ

= ∂µA
3
ν − ∂νA3

µ + g(A1
µA

2
ν − A2

µA1
ν)− g(A1

µA
2
ν − A2

µA
1
ν)

= ∂µA
3
ν − ∂νA3

µ (10.31)

Thus 2) is satisfied, and so is 1) as it is obviously gauge invariant.
Now, for our choice (10.1), i.e. Diφa → 0 and φa → νxa/r, we get

Fµν −→ F a
µν

xa

r
(10.32)

a form that we could have guessed by analogy with (10.27).
Now, from (10.27), i.e. from Diφa = 0, we get

∂iφ
a + gϵabcAb

µφ
c = 0 (10.33)

which using (10.21) gives

Aa
i

r→∞−→ ϵaij xj

gr2
(10.34)

It is easy to compute Fµν in (10.32) for the above form of (10.34)

Fij
R→∞−→ (∂iA

a
j − ∂jA

a
i + gϵabcAb

iA
c
j)

xa

r

= 2ϵaji xa

gr3
+ ϵabcϵbikϵcjl

xkxlxa

gr5

= 2ϵaji xa

gr3
− (δaiδck − δakδci)ϵ

cjl xkxlxa

gr5

= 2ϵaji xa

gr3
− ϵkjl xixkxl

gr5
+ ϵijl

xl(xaxa)

gr5

= −ϵija
xa

gr3
(10.35)

From Fij = ϵijkBk, we find that (10.35) corresponds to the field of a
magnetic monopole

Bk
r→∞−→ −

xa

gr3
(10.36)

with a magnetic charge

gm =
4π

g
(10.37)

91



This is the promised solution of a magnetic monopole and you explicitly
have Fµν ̸= ∂µAν − ∂νAµ, since from (10.27) for Aa

i satisfying (10.34) we one
gets Aµ → 0. Of course, by now the above fact should not come as a surprise,
since the fact that there is a magnetic monopole means precisely B⃗ ̸= ∇⃗× A⃗.

Now, we should study the stability of our solution whose asymptotic
form is given by (10.36), and we do it by showing that the magnetic charge
is conserved in time.

It is easy to see that the following current

kµ =
1

8π
ϵµνρσϵ

abc∂ν φ̂a ∂ρφ̂b ∂σφ̂c (10.38)

is conserved (φ̂a is the unit vector: φ̂a ≡ φa/|φ|)

∂µkµ = 0 (10.39)

due to the antisymmetry of ϵµνρσ and the symmetry of partial derivatives.
Thus the corresponding charge

Q =

∫

d3xk0 (10.40)

is conserved in time

dQ

dt
= 0 (10.41)

A simple computation gives

Q =
1

8π

∫

d3xϵijkϵabc∂iφ̂
a ∂jφ̂

b ∂kφ̂
c

=
1

8π

∫

d3xϵijkϵabc∂i(φ̂
a ∂jφ̂

b ∂kφ̂
c)

=
1

8π

∫

dSi(ϵijkϵabcφ̂
a ∂jφ̂

b ∂kφ̂
c) (10.42)

where the last integral is just a surface one. We can turn it into an integral
over θ,φ variables called αi (α1 = θ, α2 = φ), using

dSi = dθdφ
∑

m n

∑

p q

∂xm

∂αp

∂xn

∂αq
(10.43)

In turn, this gives the conserved charge Q
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Q =
1

8π

∫

dθdφ

[

2φ̂1

(

∂φ̂2

∂θ

∂φ̂3

∂φ
−
∂φ̂3

∂θ

∂φ̂2

∂φ

)

+ cyclic

]

(10.44)

which for the map (10.20) gives

Q =
n

4π

∫ π

o

dθ

∫ 2π

0

dφ
[

sin3 θ(cos2 nφ+ sin2 nφ) + cos2 θ sin θ(cos2 nφ+ sin2nφ)
]

=
n

4π

∫ π

o

dθ sin θ

∫ 2π

0

dφ = n (10.45)

Thus the charge Q is an integer which counts how many times φa(R→∞)
maps around the sphere M0 = S2.

The physical meaning of the charge Q becomes clear if one proves (and
we will not) the following expression

ϵµνρσ∂
νF ρσ =

4π

e
kµ (10.46)

For Bi = 1
2ϵijkF

jk, this means

∇⃗ · B⃗ =
4π

e
k0 (10.47)

and thus using Stoke’s theorem

gm =

∮

R→∞
B⃗dS⃗ =

∫

∇⃗ · B⃗d3x =
4π

e
Q (10.48)

Thus the conserved charge Q is proportional to the magnetic charge and
(10.45) together with (10.46) implies

1. that dgm/dt = 0, i.e. the monopole charge is conserved.

2. that gm is quantized

gm =
4π

e
n (10.49)

The importance of 1) should be clear, since it implies immediately the
stability of a monopole solution with n = 1, it simply has no state to decay
into. Of course, a solution with n = 2 can in principle decay into two n = 1
states and thus higher n solutions may not be stable.
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The formula (10.49) may be somewhat of a surprise. It agrees with (10.8)
which we offered by semiclassical arguments, asking for the quantization of
the total angular momentum for the electric charge-magnetic monopole sys-
tem. On the other hand, (10.49) was derived by purely classical arguments.
It may be a bit more clear, if we notice that our condition (10.21) is invariant
under the total angular momentum

J⃗ = L⃗(A) + T⃗ (10.50)

where L⃗(A) is the total orbital angular momentum in the presence of the

electromagnetic field and T⃗ is an internal SO(3) isospin. Now

L⃗(A) = r⃗ × [p⃗ + gA⃗aT a] (10.51)

using the form for A⃗ in (10.34), we can write

L(A) i = Li + gϵijkxjA
a
kT

a = Li + gϵijkϵakl
xjxlTa

gr2
(10.52)

This gives

L(A) i = Li − Ti +
xixaTa

r2
(10.53)

and thus we get from (10.50)

J⃗ = L⃗ + r̂
xaTa

r
= L⃗ + r̂Qem (10.54)

Comparison with (10.7) gives

Qem = −
qgm

4π
(10.55)

and since the eigenvalues of Qem are integers, we again get the quantiza-
tion condition (10.49).

In summary, it has been known for a long time that the existence of
magnetic monopoles would imply the quantization of charge. On the other
hand, a theory based on a simple group such as SO(3) has already charge
quantization built in, and it predicts the existence of monopoles as extended
objects whose magnetic charge comes out properly quantized. I say extended
objects, since the size of the monopole is nonzero. We can determine it from
the minimization of the energy or the mass of the monopole, as we did in the
case of domain walls and strings.

We know that at the origin φa → 0 and thus the potential is at its
maximum: similarly the magnetic field vanishes. Define again the interior of
the string r ≤ δ as the region where this happens, i.e.
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r ≤ δ; φa = 0, B⃗ = 0 A⃗ = 0

In this approximation (to be justified by the smallness of the thickness of
the monopole δ) the energy of the monopole is given by

EM =
λ

4
v44

3
πδ3 +

1

2
4π

∫ ∞

δ

B⃗2r2dr

=
λ

3
v4πδ3 +

2π

g2δ
(10.56)

Just as in the case of the string, the energy stored in the Higgs field prefers
δ → 0, while the magnetic field energy grows with small δ. The minimum of
the energy is obtained by δ satisfying

0 =
∂Em

∂δ
= λv4πδ2 −

2π

g2δ2
(10.57)

Thus, we get

δ ≃ (λg2)−1/4 1

v
(10.58)

as expected on purely dimensional grounds.
Now, what scale should we associate with v, the scale of the symmetry

breaking in our O(3) model ? More precisely, can v be MW , the scale of the
weak interactions, i.e. can there be monopoles in the standard model?

The answer, unfortunately, is no. Namely, in the standard electro-weak
model the symmetry breaking is SU(2)L×U(1)Y → U(1)em, through the vev
of the Higgs doublet Φ, which is equivalent to a full braking of SU(2), rather
than SU(2)→ U(1) which we needed in our example above. More precisely,
the vacuum manifold in the case of a doublet is the three-sphere

M0 =
{

Φ†
0Φ0 = v2

}

= S2 (10.59)

since we can write

Φ =

(

φ+

φ0

)

=

(

φ1 + iφ2

φ3 + iφ4

)

, φi ∈ R (10.60)

and Φ†Φ =
∑4

i=1 φ
2
i

Thus

M0 =
{

(φ01)
2 + (φ02)

2 + (φ03)
2 + (φ04)

2 = v2
}

(10.61)

95



which is precisely the equation for a three-dimensional sphere embedded
in a four-dimensional Euclidean space.

Since M∞ = S2, the map M∞ → M0 by our boundary conditions
φi → φ0i when R → ∞ becomes a map S2 → S3. It can be shown that no
such nontrivial map exists; if you wish in this case the result is equivalent to
the case n = 0.

Another way of understanding this result follows from the fact that the
monopole solution exists when the electric charge is quantized, or when a
simple group is broken down to a subgroup containing a U(1) factor. In the
case of the Standard Model, it is U(1)Y which is the culprit responsible for
the absence of the quantization of charge or the absence of monopoles.

10.1.1 Grand unified Monopoles

Well, we know of a realistic example of a theory that provides quantization
of charge; these are the grand unified theories whose minimal prototype is
SU(5), the theory which was object of our focus. In the first step of sym-
metry breaking, the SU(5) symmetry is broken down to the standard model
symmetry

SU(5)
MX−→ SU(3)c × SU(2)L × U(1)Y (10.62)

at a a large scale MX ≃ 1016GeV . This scale is simply the vacuum
expectation value of the adjoint representation Σ

Σ = vX

⎛

⎜

⎜

⎜

⎜

⎝

1
1

1
−3

2
−3

2

⎞

⎟

⎟

⎟

⎟

⎠

(10.63)

with

MX ≃ gvX (10.64)

As we have discussed in section 5, the above vev preserves obviously
SU(3)c and SU(2)L × U(1).

The neutral generators of SU(2)L × U(1) are given in (3.3) and (3.4),
which corresponds to the electro-magnetic charge operator
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Qem =

⎛

⎜

⎜

⎜

⎜

⎝

−1
3
−1

3
−1

3
1

0

⎞

⎟

⎟

⎟

⎟

⎠

(10.65)

Now, we wish to find a spherically symmetric solution, the monopole, as
we did for the SO(3) case. To start with, we should find an analogue of
formula (10.25) for the SU(5) theory. There is clearly more than one way of
doing it; we choose

Qem(r) =

⎡

⎢

⎢

⎣

−1
3
−1

3
1
31−

2
3 r̂ · τ⃗

0

⎤

⎥

⎥

⎦

(10.66)

where τ⃗ are the usual 2× 2 Pauli matrices and (10.66) will be valid for
r →∞, i.e. very far from the monopole.

Notice that for the direction r̂ = ẑ, we get

Qem(r) =

⎡

⎢

⎢

⎢

⎢

⎣

−1
3
−1

3

1
3

(

1 0
0 1

)

− 2
3

(

1 0
0 −1

)

0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎛

⎜

⎜

⎜

⎜

⎝

−1
3
−1

3
−1

3
1

0

⎞

⎟

⎟

⎟

⎟

⎠

(10.67)

which agrees with (10.65) for the vacuum as it should.
The next task is to generalize the formula (10.32) which gave us the

electromagnetic field for the monopole configuration. To achieve this, notice
that(10.32) can be rewritten in a somewhat different form

Fµν =
1

2
Tr(F a

µνT
aQem) =

= Tr
1

2
F a

µνT
aT bxb

r
= F a

µν

xa

r
(10.68)
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We can use the same trick for the SU(5) case, i.e. use the same formula
above, but with Ta = λa

2 being the SU(5) generators. We will not bother you
with the details of the SU(5) solution here, but it should be clear from the
above that such a solution can be constructed in exactly the same manner as
in the SO(3) case. Besides having monopole charge, it can be shown that it
carries color too, and of course, we believe that the color degrees of freedom
will be confined.

The crucial point in all this is that in the realistic SU(5) theory we expect
the existence of a superheavy magnetic monople with a mass of the order of

Mm ≃ 1016 − 1017GeV (10.69)

The hunt for these particles is one of the central tasks of today’s physics,
and their discovery would be a confirmation of the ideas of unification and
charge quantization.
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