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Abstract15

Standard heuristic mathematical models of population dynamics are often constructed16

using ordinary differential equations (ODEs). These deterministic models yield pre-17

dictable results which allow researchers to make informed recommendations on public18

policy. A common immigration, natural death, and fission ODE model is derived from19

a quantum mechanics view. This macroscopic ODE predicts that there is only one20

stable equilibrium point µ̄ = 1. We therefore presume that as t → ∞, the expected21

value should be E [µ̄ = 1] = 1. The quantum framework presented here yields the22

same standard ODE model, however with very unexpected quantum results, namely23

E [µ̄ = 0] = E [µ̄ = 1] ≈ 0.37. The obvious questions are: why isn’t E [µ̄ = 1] = 1,24

why are the probabilities ≈ 0.37, and where is the missing probability of 0.26? The25

answer lies in quantum tunneling of probabilities. The goal of this paper is to study26

these tunneling effects that give specific predictions of the uncertainty in the population27

at the macroscopic level. These quantum effects open the possibility of searching for28

”black–swan” events. In other words, using the more sophisticated quantum approach,29

we may be able to make quantitative statements about rare events that have significant30

ramifications to the dynamical system.31
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1 Motivation and introduction35

Standard temporal population models describe how population changes given the cur-36

rent status of the population. Environmental conditions such as limited resources, com-37

petition, disease, etc. affect changes in the population. Additionally, processes such as38

birth, death, immigration, and emigration affect changes to the age–size–distribution.39

These standard models are based on heuristic arguments. In other words, the models40

are based on the modeler carefully deciding which are the most important aspects of41

the system. Usually population balance equations are heuristically constructed in order42

to characterize those mechanisms/interactions that the modeler ”thinks” are important43

to the model.44

In 1838 Pierre–François Verhulst published a Note on the law of population growth45

[8].46

”We know that the famous Malthus showed the principle that the human47

population tends to grow in a geometric progression so as to double after48

a certain period of time, for example every twenty five years. This propo-49

sition is beyond dispute if abstraction is made of the increasing difficulty50

to find food. . .51

The virtual increase of the population is therefore limited by the size and52

the fertility of the country. As a result the population gets closer and closer53

to a steady state.”54

Verhulst proposed the commonly accepted macroscopic ordinary differential equation55

dP
dt

= rP
(

1− P
M

)
with specified initial condition P(0) = P0 and is commonly referred to as the logistic56

model. The basic assumption is that the population, P(t) at time t, is homogeneous57

and uniformly mixed. That is, interactions between any member of the population are58

equally likely. The heuristic assumptions are the processes of intrinsic birth at rate r59

and limited resources via the carrying capacity M respectively.60

In this paper, we also use the heuristic approach. However, the essential difference61

is that the mechanisms and interactions are formulated at the quantum level. For il-62

lustrative purposes, we will construct a quantum toy model where we assume the only63

important quantum interaction is competition as shown in Figure 1.64
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Competition γ

1

Figure 1: Competition With Rate γ

We will define an appropriate Schrödinger equation for which we will find that the65

time dependent expected value µ(t) of the ”wave function” is governed by the logistic66

model67

dµ
dt

= γµ (1−µ)− γσ2,

where σ2 denotes the variance of an underlying probability distribution of the popu-68

lation. Notice the quantum approach yields the familiar macroscopic logistic model69

with a time varying ”harvesting” term γσ2 that appears as noise. This effect initially70

seems to have no relation to assuming competition as the only mechanism of interaction71

within the population. The quantum approach suggests that the inevitable fluctuations72

of interactions within the population needs to be included in the standard heuristic73

macroscopic ODE models. It is also surprising that assuming only competition, the74

quantum approach yields a growth term γµ . From a macroscopic viewpoint, if the75

only interactions are decay processes, we would not expect growth to occur.76

One major goal of this study is to establish an intimate connection between the77

principals of quantum/stochastic mechanics [2] and the foundations of single species78

population dynamics. Additionally, we provide a formal framework for a deeper un-79

derstanding of the underlying processes in single species population dynamics.80

For instance, the noise that is predicted by the quantum approach adds a new feature81

which is not usually included in standard ODE models. Specifically, we propose that82

the quantum viewpoint validates, explains, and makes specific predictions about the83

quantum tunneling of probabilities.84

Consider another toy quantum model where we assume that the only important85

quantum mechanisms are immigration, natural death and fission as shown in Figure 2.86
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Immigration α Natural Death β Fission γ

1

Figure 2: Immigration Birth (α), Natural Death (β ), Fission (δ )

The quantum/stochastic mechanics approach will yield the specific Schrödinger equa-87

tion88

∂Φ

∂ t
= α(z−1)Φ+

(
β (1− z)+ γ(z2− z)

) ∂Φ

∂ z
,

where the Markov generating function Φ is defined as89

Φ(t,z) =
∞

∑
n=0

φn(t)zn.

This function describes the temporal probability φn(t) of having exactly n objects at any90

time t. The monomials zn have no physical meaning and can be thought of as place-91

holders. The expected value of Φ, denoted by µ(t) := E[Φ], yields the the standard92

macroscopic linear ODE model93

dµ
dµ

= (γ−β )µ +α,

with intrinsic growth rate γ−β and constant growth α . This ODE has the non–negative94

stable equilibrium µ̄ = α
β−γ , provided β > γ .95

We will examine the very simple case where α = γ = 1 and β = 2, which yields96

the stable equilibrium µ̄ = 1. Let φ0(t) denote the probability of having exactly zero97

objects at time t. Similarly, φ1(t) denotes the probability of having exactly one object98

at time t, φ17(t) denotes the probability of having exactly 17 objects at time t, etc.. The99

standard macroscopic ODE model predicts that µ(t → ∞) = 1. This suggests that the100

quantum approach should therefore predict that φ1(t→ ∞) = 1 and φ j(t→ ∞) = 0 for101
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all j 6= 1. The quantum approach predicts the very surprising and non–intuitive result102

φ0(t→ ∞) =
1

0!e
≈ 0.3679

φ1(t→ ∞) =
1

1!e
≈ 0.3679

which does not sum to 1! The obvious question is: where is the missing probability103

1−2/e? Examining the higher order terms φ j(t→ ∞) for j ≥ 2 we find that104

φ2(t→ ∞) =
1

2!e
≈ 0.1839

φ3(t→ ∞) =
1

3!e
≈ 0.06131

...

φn(t→ ∞) =
1

n!e
.

Due to the sophistication of the quantum mechanics paradigm, this means that the105

probability of having 17 objects is not zero, however it will be very small.106

This quantum tunneling effect of probabilities opens the possibility of searching for107

”black–swan” events. In other words, we may be able to make quantitative statements108

about rare events that have significant ramifications to the dynamical system. In future109

work, this framework will be extended to multiple species dynamics such as such as110

the predator–prey/Lotka–Volterra and the standard susceptible, infected, and recovered111

(SIR) epidemiological ODE models. The following section contains a short discussion112

of quantum physics concepts that are applicable to this work.113

1.1 Quantum physics114

One of the most profound paradigm shifts of the 20th century was the quantum theory115

of physics which was first developed by Bohr, Einstein, Planck, among others [5]. It116

became quite clear that the elementary processes of physics did not follow the com-117

monly accepted principles of classical mechanics. Prior to the quantum viewpoint, the118

prevailing notion was that the macroscopic description of nature could be described by119

an averaging process. As the results of key experiments such as the Youngs’ double–120

slit experiment were analyzed, the accepted macroscopic viewpoint was shown to be121

completely inadequate in describing submicroscopic processes.122

Most physical systems consist of an astronomical number of individual compo-123

nents along with a corresponding overwhelming number of interactions between the124

components. Many of the properties of the components often can have significant vari-125

ation about nominal values. If the modeler was to include all the interactions, a discrete126

agent model would result which we refer to as a fine scale model. The astronomical127

number of interactions could not be determined analytically, in which case the modeler128

would have to resort to computer simulation.129
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In chemistry, mathematical biology, mathematical epidemiology, population dy-130

namics and other related fields, master equations such as the logistics equation and131

predator–prey models such as the Lotka–Volterra ODEs, are constructed and used to132

describe the macroscopic behavior of the time evolution of the dynamical system and133

will be referred to as a coarse scale model.134

These master equations are constructed by making simplified heuristic assumptions135

in order to define tractable deterministic models. However, these simplifications pre-136

clude prediction as well as a deeper understanding about what can occur at the quantum137

level. In this work we examine in depth the quantum processes as well as the subse-138

quent predictions made to the macroscopic realm–hence a medium scale model.139

In the following section we present an a novel approach to address this problem by140

borrowing concepts of quantum physics.141

1.2 Feynman diagrams142

In order to motivate why we propose a quantum/stochastic mechanics approach to mod-143

eling processes, consider the Feynman diagram [7] depicting the interaction of an elec-144

tron with another electron in a perfectly elastic collision as shown in Figure 3.145

e− e−

e− e−

1

Figure 3: Feynman Diagram of Electron–Electron Interaction

The crucial elements of this diagram are146

• objects enter a common location and undergo an interaction with each other and147

• objects emerge from the common location after the interaction has occurred.148

Consider the four fundamental forces of nature as depicted in the Feynman dia-149

grams as shown in Figure 4.150
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Figure 4: Feynman Diagram of Four Fundamental Forces

Notice that each graph depicts very complex interactions without the burdensome151

mathematical formalism. Feynman diagrams dramatically validate the old adage: ”A152

picture is worth a thousand words.”153

Using the Feynman diagram paradigm, the tools and techniques from quantum154

physics can be used to describe and understand population dynamics. The beauty of the155

Feynman diagram approach is that very complex interactions can easily be visualized156

without the complicated mathematical machinery.157

Although the focus of this study is single species population dynamics, it is instruc-158

tive to point out that future work will provide a natural extension to multiple species159

interactions such as susceptible or infected populations (SI), or the Lotka–Volterra160

predator–prey models. For example, consider the interaction between a susceptible161

and infectious person. Here we assume that the only two possibilities that can occur162

are the susceptible stays susceptible, or the susceptible becomes infected as seen in163

Figures 5 and 6, respectively.164
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S S

I I

Ineffective Contact

1

Figure 5: Unsuccessful Transmis-
sion of Pathogen

S I

I I

Effective Contact

1

Figure 6: Successful Transmission
of Pathogen

1.3 Memory–less vs memory processes165

Dynamical systems, such as single species populations [1, 3, 4, 6], can evolve whereby166

the current state of the system has or has no memory of previous states of the sys-167

tem. For example, a Markov chain is an evolution through a sequence of transitions168

determined entirely by the roll of dice. Ignoring the possibility that the dice have the169

property of being quantum entangled, previous rolls of the dice cannot possibly affect170

future outcomes of the dice.171

Card games such as blackjack and poker however do have a ”memory” of previ-172

ous states. In fact, a seasoned card player uses this information to their advantage by173

remembering which cards have been exposed. Deductions can be made by regarding174

which cards remain in the deck. In the dynamical systems discussed in this paper, the175

transitions are assumed to be strictly determined by the roll of the dice. In other words,176

the past, present and future states are statistically independent via a stochastic Markov177

chain.178

1.4 Quantum mechanics and population dynamics179

In quantum mechanics the actors in the play are the creation operator a+ and the anni-180

hilation1 operator a−. The operator a+ takes an object from energy level En and moves181

it up one level to En+1. The operator a− takes an object from energy level En and moves182

it down one level to En−1. Analogously, in population dynamics we define the creation183

operator a+ to take n objects and turn them into n+1 objects. The annihilation operator184

a− destroys one of the n objects into n−1 objects.185

1.4.1 Growth and the creation operator a+186

Consider the scenario where we initially have three objects A, B and C, and then add187

one generic external object D as seen in Figure 7. Notice there is only one way of188

adding an additional generic object D. Now introduce a monomial z3 which represents189

the fact that initially there are exactly three objects. Please note that the independent190

variable z has no physical meaning. The only point of interest is the exponent 3 and191

1For the physics community we use the symbol a− instead of the commonly accepted notation a.
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A B C

A B C D

1

Figure 7: {A,B,C}→ {A,B,C,D}

the coefficient of the monomial. In other words, we can think of the monomial z3 as192

a placeholder. After the interaction has occurred, there are now exactly four objects,193

which we associate with the monomial z4. This means that the initial monomial z3
194

now becomes z4. We assume that this holds true for any initial number of n objects, in195

which case by induction the initial monomial zn becomes zn+1, ∀n ∈ N. The creation196

operator a+ simply multiplies the monomial zn by z yielding zn+1. Hence we define the197

action of the creation operator a+ to be198

a+ [zn] := zn+1, (1)

∀n ∈ N.199

1.4.2 Decay and the annihilation operator a−200

Now consider the reverse scenario where three objects interact, but now one object201

is annihilated, resulting in two remaining objects. Since there are three ways for two202

objects to remain in existence, as seen in Figure 8, we associate the action of a− to

A B C

A B

1

(a) {A,B,C}→ {A,B}

A B C

A C

1

(b) {A,B,C}→ {A,C}

A B C

B C

1

(c) {A,B,C}→ {B,C}

Figure 8: Eliminate One Object From {A,B,C}
203
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be a−[z3] = 3z2. We assume this holds true for any non–negative integer number of n204

objects, the initial monomial zn becomes nzn−1, in which case the annihilation opera-205

tor a− is just the usual derivative operator ∂/∂ z. Hence, we define the action of the206

annihilation operator a− to be207

a− :=
∂
∂ z

, (2)

and by induction define208

(a−)n :=
∂ n

∂ zn , (3)

where n ∈ N. [2].209

1.4.3 Combinatorial meaning of the operators a+ and a−210

Consider the interaction where two objects interact sexually and produce a single off-211

spring with rate λ as shown in Figure 9.212

◦ ◦ → ◦ ◦ ◦◦ ◦ → ◦ ◦ ◦ λ

1

Figure 9: Sexual Reproduction with Rate λ

In order to motivate how the number of ways that objects change from the input side j =213

2 as compared to the output side k = 3 we discuss the formulation of the Hamiltonian214

operator as found in [2]. A Hamiltonian operator can be thought of as a change in215

energy, a change in probability flux, or in our situation, the change in the number of216

ways that the input side does not change vs. the number of ways the output changes. To217

simplify the idea to its most basic form, we casually define the Hamiltonian operator218

as219

H := ”Final State”− ”Initial State”.

The expressions ”Final State” and ”Initial State” need to be appropriately defined.220

For this example, consider the action of annihilating two objects on the input side,221

followed by the action of creating two objects. In other words, the total number of222

ways that two objects do not change is given by the composition of the operators223

(
a+
)2 (a−)2

= z2 ∂ 2

∂ z2 .
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In order to understand the combinatorial interpretation, consider the action of (a+)2
(a−)2

224

on an arbitrary monomial such as z5, that is225 (
a+
)2 (a−)2

[
z5
]
= 5 ·4 · z5.

The combinatorial interpretation is: How many ways can we annihilate 2 objects out of226

5 objects (∂ 2/∂ z2) and then followed by bringing back 2 objects (z2). In other words,227

this action is nothing more than the permutation P(5,2). Moreover, this means P(5,2)228

is the total number of ways that nothing has changed, hence this is how we calculate229

the number of ways the ”Initial State” does not change.230

Next, consider the action of (a+)3
(a−)2 on an arbitrary monomial such as z7, that231

is232 (
a+
)3 (a−)2 [z7]= 7 ·6 · z8.

The combinatorial interpretation is: How many ways can we annihilate 2 objects out233

of 7 objects (∂ 2/∂ z2) and then followed by bringing back 3 objects (z3). In other234

words, this action is how we calculate the ”Final State.” The net change is defined as235

the Hamiltonian operator236

H :=
(
a+
)3 (a−)2−

(
a+
)2 (a−)2

.

In general, the scenario where j distinct objects enter into an interaction and k237

objects emerge is shown in Figure 10. We describe these type of processes where the

· · ·

· · ·

j inputs

k outputs

1

Figure 10: j Objects Enter into an Interaction & k Objects Emerge

238

net flux is quantified by the change in the number of the objects via the Hamiltonian239

operator H [

j−−inputs︷ ︸︸ ︷◦ · · · ◦ →
k−−outputs︷ ︸︸ ︷◦ · · · ◦ ]. Towards this goal, the linear operator H will be240

a modified Hamiltonian operator from quantum mechanics and will be composed of241

suitably modified creation and annihilation operators as has been defined in [2].242
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Now that the Hamiltonian operator has been appropriately defined, the solution of243

an associated Schrödinger equation will describe how the probability of having exactly244

n objects at time t evolves over time.245

246

First, consider the input side of the interactions. We quantify the scenario where247

all distinct input objects are annihilated followed by the action where all destroyed248

objects are then recreated. In other words, we are counting the total number of ways249

that the input configuration is unchanged. In general, if there are j objects in the initial250

configuration then the action is given by251

(a+) j (a−) j = z j z j

∂ z j .

Next, examine the output configuration which is defined by annihilating j inputs252

and then recreating k outputs. The action of this process is given by253

(a+)k (a−) j = zk z j

∂ z j .

The stochastic Hamiltonian is defined in [2] as the difference between the final and254

initial configurations and is given by the stochastic Hamiltonian for the homogeneous255

class of j–inputs and k–outputs as follows:256

H [ j,k] := λ
[Create k outputs︷ ︸︸ ︷(

a+
)k ◦

(
a−
) j︸ ︷︷ ︸

Annihilate j inputs

−

Create j inputs︷ ︸︸ ︷(
a+
) j ◦

(
a−
) j︸ ︷︷ ︸

Annihilate j inputs

]
. (4)

2 Quantum and stochastic mechanics257

This section provides a short and self contained discussion of some of the tools of258

quantum/stochastic mechanics. The basic object describing the evolution in time of the259

probabilities of n distinct objects is the formal Markov generating function. Generating260

functions (GF) acts as a conduit between discrete and continuous mathematics.261

”A generating function is a clothesline on which we hang up a sequence262

of numbers for display.” [9]263

The clothespins are the monomials zn and the individual laundry items are the proba-264

bilities φn(t). A GF is written as an infinite power series where the coefficients of the265

monomials are the objects of interest. The monomials act as place holders and do not266

have any physical role in the analysis.267
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2.1 Generating functions268

An ordinary2 generating function GF [9] is a formal power series of the form269

Φ(t,z) =
∞

∑
n=0

φn(t)zn, (5)

where the coefficients φn(t) may or may not have physical meanings. Generating func-270

tions are extensively used in combinatorics, number theory, probability, and recurrence271

relations. The formal variable z has no physical meaning; it is basically a place holder.272

Additionally the analytic properties of the formal series Φ(t,z) will not be considered3.273

In quantum mechanics the GF is defined as274

Ψ(t,z) =
∞

∑
n=0
‖ψn(t)‖2zn,

where the coefficients ‖ψn(t)‖2 represent the amplitude of the wave function. In275

stochastic mechanics [2] the associated GF is defined in equation (5) where the density276

functions 0≤ φn(t)≤ 1 represent the probability of having exactly n objects at time t.277

Consider the special case where z = 1. In order to have a valid probability distribution,278

Φ(t,z) must satisfy the constraint279

Φ(t,z)
∣∣∣
z=1

=
∞

∑
n=0

φn(t)zn
∣∣∣
z=1

(6)

=
∞

∑
n=0

φn(t)

= 1, (7)

in which case280

∂
∂ t

[Φ(t,z)]
∣∣∣
z=1

= 0. (8)

The master equation for the GF is given by281

∂Φ

∂ t
= H ◦Φ,

where H is the Hamiltonian operator associated with the interactions. The boundary282

and initial conditions are283

Φ(t,z)
∣∣∣∣
z=1

= 1,
∂Φ(t,z)

∂ t

∣∣∣∣
z=1

= 0, and Φ(t,z)
∣∣∣∣
t=0

= 1 · zu0 ,

where u0 ∈ N denotes the initial number of objects.284

2In this paper we will not discuss other generating functions such as Dirichlet, exponential, etc., gener-
ating functions.

3The reason for ignoring whether the series is/is not convergent is that the manipulations that will be
performed are defined over the product topological ring of formal power series.
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2.2 Expected value–first moment/mean of an observable285

Recall that the expected value of a discrete probability distribution is given by286

µ = ∑payoff×probability.

Suppose we are interested in the expected number of objects at time t. Consider the287

number operator defined as288

N := a+a−

= z
∂
∂ z

.

The reason it is called the number operator is that its action basically returns the number289

of objects as seen here290

N
[
zk
]

= z
∂
∂ z

[
zk
]

= kzk

(N − k1 )zk = O ,

in which case291

N = k1 .

Now consider the action of the number operator N on the GF292

N

[
∞

∑
n=0

φn(t)zn

]
=

∞

∑
n=0

nφn(t)zn.

Next, define the expected number operator as293

E[·] := z
∂
∂ z

[·]
∣∣∣∣∣
z=1

and lastly define the first moment µ(t) as294

µ(t) := E [Φ(t;z)] = N ◦Φ(t;z)

∣∣∣∣∣
z=1

=
∞

∑
n=0

nφn(t). (9)

The standard macroscopic ODEs describing population dynamics will be derived and295

be of the form296

dµ
dt

= f (µ).

This quantum approach will surprisingly yield standard models such as the logistic297

equation.298
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2.3 Variance of an observable299

The variance is defined as300

σ2 := E
[
Φ

2]−E [Φ]2

= N2 [Φ(t,z)]

∣∣∣∣∣
z=1

− [N Φ(t,z)]2
∣∣∣∣∣
z=1

=
∞

∑
n=0

n2φn(t)−
(

∞

∑
n=0

nφn(t)

)2

(10)

=
∞

∑
n=0

n2φn(t)−µ(t)2. (11)

Another surprising result of this quantum approach is that the variance will also ap-301

pear in the macroscopic ODEs. The implication is that noise, due to fluctuations in302

the interactions between members of the population, should also be included in the303

macroscopic model.304

3 Immigration, natural death and fission305

Consider a single species population undergoing the parallel processes of immigration,306

natural death, and fission as shown in Figure (11).307

Immigration α Natural Death β Fission γ

1

Figure 11: Immigration Birth (α), Natural Death (β ), Fission (δ )

The parameters α , β , and γ are the rates (per unit time) at which each of these processes308

occur respectively. The immigration process has the associated Hamiltonian309

α
(
a+(a−)0− (a+)0(a−)0)= α (z−1)Φ,
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the death process operator is310

β
(
(a+)0a−−a+a−

)
= β (1− z)

∂
∂ z

,

and the fission operator is311

γ
(
(a+)2a−−a+a−

)
= γ(z2− z)

∂
∂ z

.

The associated master equation is given by312

∂Φ

∂ t
= α(z−1)Φ+

(
β (1− z)+ γ(z2− z)

) ∂Φ

∂ z
, (12)

where Φ(t,z) is the GF of this Markov process.313

3.1 Method of characteristics314

In order to use the method of characteristics [10], rewrite the master equation as315

∂Φ

∂ t
+
(
−γz2 +(β + γ)z−β

) ∂Φ

∂ z
= α (z−1)Φ. (13)

Assume that there exists differentiable parameterizations t = t(r,s) and z = z(r,s) such316

that317

∂ t
∂ s

= 1, (14)

t(r,s = 0) = 0, (15)
∂ z
∂ s

= −γz2 +(β + γ)z−β , (16)

z(r,s = 0) = r, (17)
∂Φ

∂ s
= α(z−1)Φ, (18)

Φ(r,s = 0) = 1 · ru0 . (19)

Integrating (14) and using the initial condition (15) yields t = s. Integrating (16) and318

using the initial condition (17) yields319

r =
β (z−1)+(β − γz)e(β−γ)s

γ(z−1)+(β − γz)e(β−γ)s , and z =
(β − γr)+β (r−1)e(β−γ)s

(β − γr)+ γ(r−1)e(β−γ)s .

Lastly, integrating (18) and using the initial condition (19) yields the closed form ex-320

pression321

Φ(t,z) = (β − γ)−
α
γ

[
β (z−1)+(β − γz)e(β−γ)t

γ(z−1)+(β − γz)e(β−γ)t

]u0
[

(β − γ)2e(β−γ)t

γ(z−1)+(β − γz)e(β−γ)t

] α
γ

. (20)

322

Using standard methods of analysis, it can be shown that the GF satisfies the essen-323

tial properties324

lim
z→1

Φ(t,z) = 1, and lim
t→0

Φ(t,z) = 1 · zu0

as well as the master equation given in equation (12).325
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3.2 Expected value326

We now show that the quantum/stochastic paradigm predicts a familiar ODE model327

found in population dynamics. We find that NΦ is328

−
z

(
et(β−γ)(β−γz)+β (z−1)
et(β−γ)(β−γz)+γ(z−1)

)u0(
(β−γ)et(β−γ)

et(β−γ)(β−γz)+γ(z−1)

)α/γ (
u0(β − γ)2et(β−γ) +α

(
et(β−γ) −1

)(
et(β−γ)(β − γz)+β (z−1)

))
(

et(β−γ)(β − γz)+β (z−1)
)(

γ + et(β−γ)(γz−β )+ γ(−z)
) .

Evaluating at z = 1 yields the expected value is329

µ(t) =
α− et(γ−β )(α +u0(γ−β ))

β − γ
, (21)

with initial condition µ(0) = u0. Notice that the first moment µ(t) satisfies the standard330

ODE population model331

µ ′(t) = α +
(γ−β )e−t(β−γ)

(
−α +αet(β−γ)+βu0− γu0

)
β − γ

= (γ−β )µ +α. (22)

as found in single species population dynamics. The expression γ −β is a proxy for332

the net growth rate.333

3.3 Second moment/variance of an observable334

The variance is given by335

σ2 := N2 [Φ(t,z)]

∣∣∣∣∣
z=1

− [N Φ(t,z)]2
∣∣∣∣∣
z=1

.

which is in fact336

σ2 = µ2−µ

as expected.337

3.4 Quantum tunneling of probabilities338

We now discuss the implications of the quantum paradigm that cannot be deduced from339

the macroscopic viewpoint as given by the standard single species population model340

given in equation (22).341

By expanding the explicit GF given in equation (20) the first two densities φ1(t)342

and φ2(t) are given by343

φ0(t) :=

(
(β − γ)eβ t

βeβ t − γeγt

) α
γ
(

β
(
eβ t − eγt

)
βeβ t − γeγt

)u0

,
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344

φ1(t) :=

(
(β−γ)eβ t

βeβ t−γeγt

)α/γ
(

β(eβ t−eγt)
βeβ t−γeγt

)u0−1(
αβe2γt +αβe2β t + et(β+γ) (u0(β − γ)2−2αβ

))
(
βeβ t − γeγt

)2 .

Obviously these discrete density functions are extremely complicated. In order to il-345

lustrate quantum tunneling of probabilities, we examine a special case. The above346

standard ODE model predicts that a stable equilibrium point is given by347

µ̄ :=
α

β − γ
,

provided γ < β . If we choose α = γ = 1, β = 2, and u0 = 1 then the equilibrium point348

µ̄ = 1 is stable and the GF reduces to the much simpler expression349

Φ(t,z) =
et (et(2− z)+2(z−1))

(et(2− z)+ z−1)2 . (23)

The individual densities reduce to350

φ0(t) =
2et (et −1)

(2et −1)2 (24)

φ1(t) =
et
(
2e2t −3et +2

)
(2et −1)3 (25)

φ2(t) =
2et (et −1)

(
e2t − et +1

)
(2et −1)4 (26)

φ3(t) =
et (et −1)2 (2e2t − et +2

)
(2et −1)5 (27)

φ4(t) =
2et (et −1)3 (e2t +1

)
(2et −1)6 (28)

φ5(t) =
et (et −1)4 (2e2t + et +2

)
(2et −1)7 (29)

φ6(t) =
2et (et −1)5 (e2t + et +1

)
(2et −1)8 (30)

φ7(t) =
et (et −1)6 (3et +2e2t +2

)
(2et −1)9 (31)

...

The graphs of the first 6 densities are shown in Figure (12). Note that the probabilities351

(as t→ ∞) satisfy the decreasing monotonicity condition φ j+1 ≤ φ j.352
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Figure 12: φ0, . . . ,φ5

In fact, numerically it can be shown that lim
t→∞

φ j(t) = (1/2) j+1 for j = 0, . . . ,17. Before353

rigorously proving this observation, we pause and compare the prediction made by354

the macroscopic model versus the quantum model. Specifically, if we start with one355

object, the macroscopic ODE model predicts that as t→∞ the stable equilibrium point356

is µ̄ = 1. The quantum model however predicts that as t→∞ the probability of having357

zero objects is 1
2 , the probability of having one object is 1

4 . By extension, the probability358

of having 15 objects is 1
216 , small but not zero. The quantum model given in equation359

(12) predicts a quantum tunneling effect of probabilities as a type of ”noise” that is not360

captured by the standard deterministic ODE model given in equation (22).361

3.5 Long–term behavior of the individual probabilities362

In order to rigorously prove the above observation, substitute the GF into equation (12)363

with α = γ = 1, β = 2, and u0 = 1. Collecting the coefficients of the monomials zn
364

yields the infinite system of first order ODE/difference equations365

φ ′0(t) = −φ0(t)+2φ1(t)

φ ′1(t) = φ0(t)−4φ1(t)+4φ2(t)

φ ′2(t) = 2φ1(t)−7φ2(t)+6φ3(t)

φ ′3(t) = 3φ2(t)−10φ3(t)+8φ4(t)
...

φ ′n+1(t) = (n+1)φn(t)− (3n+4)φn+1(t)+(2n+4)φn+2(t) for n≥ 0.

Since the GF can be written as Φ(t,z) = ∑
∞
n=0 φn(t)zn and the {φn(t)} is a valid prob-366

ability distribution, then ∑
∞
n=0 φn(t) = 1 and so ∑

∞
n=0 φ ′n(t) = 0 If a steady state exists367
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for each density function then lim
t→∞

φ ′j(t) = 0. The infinite system of recurrence ODEs368

reduces to the infinite system of difference equations369

−φ0 +2φ1 = 0
φ0−4φ1 +4φ2 = 0

2φ1−7φ2 +6φ3 = 0
3φ2−10φ3 +8φ4 = 0

...
(n+1)φn− (3n+4)φn+1 +(2n+4)φn+2 = 0 for n≥ 0.

Using induction proves the desired result that lim
t→∞

φ j(t) = (1/2) j+1 for j ∈ N.370

4 ODE w/o closed form expression of Φ(t,z)371

If the number of inputs j ≥ 2 then the associated PDE is of order j ≥ 2. In general,372

PDEs of 2nd order or higher cannot be solved explicitly for Φ(t,z). In this short section373

we show how to bypass having the explicit form of Φ.374

The first moment is defined as µ(t) := E [Φ], where375

E [Φ] := z
∂Φ

∂ z

∣∣∣∣
z=1

=
∞

∑
n=0

nφn(t).

Differentiating µ376

dµ
dt

=
d
dt

E [Φ]

= E

[
∂Φ

∂ t

]
= z

∂
∂ z

[H ◦Φ]

∣∣∣∣
z=1

,

in which case377

dµ
dt

= z
∂
∂ z

[H ◦Φ]

∣∣∣∣
z=1

. (32)

5 Immigration, death, competition and fission378

We now derive a logistic ODE for the processes of immigration (rate α), natural death379

(rate β ), competition (rate γ) and fission (rate δ ). Since the Hamiltonian operator H380

is a linear operator, we examine each of these processes individually and then add all381

the individual ODEs to obtain the initial value problem382

dµ
dt

= α︸︷︷︸
Immigration

−
Natural Death︷︸︸︷

β µ +γµ (1−µ)− γσ2︸ ︷︷ ︸
Competition

+

Fission︷︸︸︷
δ µ , (33)
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where σ2 denotes the variance.383

5.1 Immigration384

Consider the process of immigration with rate α as shown in Figure (13).385

Immigration α

1

Figure 13: Immigration with rate α

The associated master equation is given by386

∂ΦI

∂ t
= α (z−1)ΦI (34)

and using equation (32) we obtain the ODE387

dµI

dt
= αz

∂
∂ z

[
(z−1)

∞

∑
n=0

φn(t)zn

]∣∣∣∣
z=1

= α

[
∞

∑
n=0

(n+1)φn(t)zn+1−
∞

∑
n=0

nφn(t)zn

]∣∣∣∣
z=1

= α
∞

∑
n=0

φn(t),

in which case388

dµI

dt
= α. (35)

5.2 Natural death389

Now consider the natural death process, as shown in Figure (14)390
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Natural Death β

1

Figure 14: Natural Death With Rate β

with the associated master equation391

∂ΦD

∂ t
= β (1− z)

∂ΦD

∂ z
.

The associated macroscopic ODE is given by392

dµD

dt
= β z

∂
∂ z

[
(1− z)

∞

∑
n=0

nφn(t)zn−1

]∣∣∣∣
z=1

= β

[
∞

∑
n=0

n(n−1)φn(t)zn−1−
∞

∑
n=0

n2φn(t)zn

]∣∣∣∣
z=1

= −β
∞

∑
n=0

nφn(t)

= −β µ,

in which case393

dµ
dt

=−β µ. (36)

5.3 Competition394

Next, consider the competition interaction process as shown in Figure (15)395
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Competition γ

1

Figure 15: Competition With Rate γ

with the associated master equation396

∂ΦC

∂ t
= γ

(
z− z2) ∂ 2ΦC

∂ z2 .

The macroscopic behavior is governed by the ODE397

dµC

dt
= γz

∂
∂ z

[(
z− z2) ∂ 2ΦC

∂ z2

]∣∣∣∣
z=1

= γ

[
∞

∑
n=0

n(n−1)2φn(t)−
∞

∑
n=0

n2(n−1)φn(t)

]
= γµC (1−µC)− γσ2,

which yields the macroscopic description of competition398

dµC

dt
= γµC (1−µC)− γσ2. (37)

Consider the logistic equation with time dependent harvesting399

dµC

dt
= γµC︸︷︷︸

Birth

−
Competition︷︸︸︷

γµC
2 − γσ2︸︷︷︸

Harvesting

.

It is very interesting to note that the quantum formalism for a strictly decay process,400

namely competition, introduces two very unexpected terms in the macroscopic descrip-401

tion. One would expect that there would not be any growth terms such as the intrinsic402

birth expression γµC. Additionally, the quantum approach predicts a time dependent403

harvesting term via the variance expression γσ2. In other words, the quantum approach404

predicts that ad hoc birth and harvesting heuristic assumptions commonly included are405

actually justified by way of the effect of the quantum tunneling of probabilities.406
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5.4 Fission407

Lastly, consider the process of fission as shown in Figure (16)408

FissionFission δ

1

Figure 16: Fission With Rate δ

Using the same methods as above yields the macroscopic description409

dµF

dt
= δ µF. (38)

5.5 Equilibrium points & stability410

Since each of the above Hamiltonian operators are linear, the macroscopic ODE is411

dµ
dt

= α−β µ + γµ (1−µ)− γσ2 +δ µ.

In order to discuss the equilibrium points as well as the stability, define f (µ̄), where412

f (µ̄) := α−β µ̄ + γ µ̄ (1− µ̄)− γσ2 +δ µ̄. (39)

The positive equilibrium point413

µ̄+ =
(γ +δ −β )+

√
(γ +δ −β )2 +4γ (α− γσ2)

2γ
(40)

is ensured to be real and non-negative provided414

γ +δ > β and
α
γ
> σ2.

In other words, in order for the equilibrium point to be real and non–negative the rates415

must satisfy the constraints416

Competition Rate+Fission Rate>Natural Death Rate and
Immigration Rate
Competition Rate

>Variance.
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Since417

f ′(µ̄+) = −2γ µ̄++(γ +δ −β )

= −
√
(γ +δ −β )2 +4γ (α− γσ2)< 0,

in which case µ̄+ is stable. The one weakness in this analysis is that we do not have418

any knowledge on the temporal behavior of the variance σ2.419

6 Concluding remarks420

The quantum formalism, as defined in [2], is used to construct Schrödinger equations421

for single species population dynamics. The solution Φ(t,z) is given as a Markov422

generating function which describes the probability φn(t) of having exactly n objects at423

time t. These probabilities exhibit quantum tunneling effects which predict events that424

are not seen or even expected in the standard deterministic models. The expected value425

of the solution Φ(t,z) yields similar deterministic models but with an additional noise426

term. This means that the quantum approach suggests that standard heuristic models427

lack one feature, namely noise. Furthermore, we have shown that the lone assumption428

of decay via competition results in the surprising result that a growth term occurs.429

Future work will explore the use of these added features and may be helpful in430

predicting black–swan events. For example, consider a quantum model of HIV. Deter-431

ministic models, as they currently exist, do not allow the quantitative prediction of the432

possibility of a black–swan event such as an infected person actually surviving. This433

means that the quantum framework as discussed in this paper will need to be extended434

to multispecies interactions such as the standard SIR epidemiological model and the435

Lotka–Volterra predator–prey model. Additionally, we intend to explore the possibility436

of extending this framework to finite state automata with applications to gene regula-437

tory networks. These mutations are eventually expressed as mutations. Lastly, includ-438

ing spatial aspects would yield spatial–temporal PDE models as well as the extension439

to cellular automata.440
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