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Abstract 

The strong coupling dynamics of string theories in dimension d t> 4 are studied. It is argued, 
among other things, that eleven-dimensional supergravity arises as a low energy limit of the ten- 
dimensional Type HA superstring, and that a recently conjectured duality between the heterotic 
string and Type HA superstrings controls the strong coupling dynamics of the heterotic string in 
five, six, and seven dimensions and implies S-duality for both heterotic and "l~ype II strings. 

1. Introduction 

Understanding in what terms string theories should really be formulated is one of the 

basic needs and goals in the subject. Knowing some of the phenomena that can occur for 
strong coupling - if one can know them without already knowing the good formulation! 

- may be a clue in this direction. Indeed, S-duality between weak and strong coupling 
for the heterotic string in four dimensions (for instance, see Refs. [ 1,2] ) really ought 
to be a clue for a new formulation of string theory. 

At present there is very strong evidence for S-duality in supersymmetric field theories, 
but the evidence for S-duality in string theory is much less extensive. One motivation 
for the present work was to improve this situation. 

Another motivation was to try to relate four-dimensional S-duality to statements or 
phenomena in more than four dimensions. At first sight, this looks well-nigh implausible 
since S-duality between electric and magnetic charge seems to be very special to four 
dimensions. So we are bound to learn something if we succeed. 

Whether or not a version of S-duality plays a role, one would like to determine the 
strong coupling behavior of  string theories above four dimensions, just as S-duality - 
and its conjectured Type II analog, which has been called U-duality [3] - determines the 

Elsevier Science B.V. 

SSDI0550-3213(95)00158-1  



86 E. Witten/Nuclear Physics B 443 (1995) 85-126 

strong coupling limit after toroidal compactification to four dimensions. 1 One is curious 

about the phenomena that may arise, and in addition if there is any non-perturbative 
inconsistency in the higher-dimensional string theories (perhaps ultimately leading to an 

explanation of why we live in four dimensions) it might show up naturally in thinking 
about the strong coupling behavior. 

In fact, in this paper, we will analyze the strong coupling limit of certain string 
theories in certain dimensions. Many of the phenomena are indeed novel, and many of 

them are indeed related to dualities. For instance, we will argue in Section 2 that the 
strong coupling limit of Type IIA supergravity in ten dimensions is eleven-dimensional 

supergravity! In a sense, this statement gives a rationale for "why" eleven-dimensional 
supergravity exists, much as the interpretation of supergravity theories in d ~< 10 as low 

energy limits of string theories explains "why" these remarkable theories exist. How 

eleven-dimensional supergravity fits into the scheme of things has been a puzzle since 

the theory was first predicted [5] and constructed [6]. 
Upon toroidal compactification, one can study the strong coupling behavior of the 

Type II theory in d < 10 using U-duality, as we will do in Section 3. One can obtain a 

fairly complete picture, with eleven-dimensional supergravity as the only "surprise." 

Likewise, we will argue in Section 4 that the strong coupling limit of five-dimensional 

heterotic string theory is Type IIB in six dimensions, while the strong coupling limit 
of six-dimensional heterotic string theory is Type IIA in six dimensions (in each case 
with four dimensions as a K3), and the strong coupling limit in seven dimensions 

involves eleven-dimensional supergravity. These results are based on a relation between 
the beterotic string and the Type IIA superstring in six dimensions that has been proposed 

before [3,4]. The novelty in the present paper is to show, for instance, that vexing 

puzzles about the strong coupling behavior of the heterotic string in five dimensions 
disappear if one assumes the conjectured relation of the heterotic string to Type IIA in 

six dimensions. Also we will see - using a mechanism proposed previously in a more 

abstract setting [7] - that the "string-string duality" between heterotic and Type IIA 
strings in six dimensions implies S-duality in four dimensions, so the usual evidence for 

S-duality can be cited as evidence for string-string duality. 
There remains the question of determining the strong coupling dynamics of the het- 

erotic string above seven dimensions. In this context, there is a curious speculation 2 

that the heterotic string in ten dimensions with SO(32) gauge group might have for its 
strong coupling limit the SO(32) Type I theory. In Section 5 we show that this relation, 
if valid, straightforwardly determines the strong coupling behavior of the heterotic string 
in nine and eight dimensions as well as ten, conjecturally completing the description of 

strong coupling dynamics except for Es x E8 in ten dimensions. 

I By "strong coupling limit" I mean the limit as the string coupling constant goes to infinity keeping fixed 
(in the sigma model sense) the parameters of the compactification. Compactifications that are not explicitly 
described or clear from the context will be toroidal. 

2 This idea was considered many years ago by M. B. Green, the present author, and probably others, but not 
in print as far as I know. 
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The possible relations between different theories discussed in this paper should be 

taken together with other, better established relations between different string theories. 

It follows from T-duality that below ten dimensions the Es x Es heterotic string is 
equivalent to the SO(32) heterotic string [8,9], and Type IIA is equivalent to Type HB 

[ 10,11 ]. Combining these statements with the much shakier relations discussed in the 
present paper, one would have a web of connections between the five string theories 
and eleven-dimensional supergravity. 

After this paper was written and circulated, I learned of a paper [ 12] that has some 
overlap with the contents of Section 2 of this paper. 

2. Type H superstrings in ten dimensions 

2.1. Type l iB in ten dimensions 

In this section, we will study the strong coupling dynamics of Type II superstrings in 
ten dimensions. We start with the easy case, Type IIB. A natural conjecture has already 

been made by Hull and Townsend [3]. Type liB supergravity in ten dimensions has 
an SL(2 ,R)  symmetry; the conjecture is that an SL(2 ,Z)  subgroup of this is an exact 
symmetry of the string theory. 3 This then would relate the strong and weak coupling 

limits just as S-duality relates the strong and weak coupling limits of the heterotic string 

in four dimensions. 
This SL(2, Z) symmetry in ten dimensions, if valid, has powerful implications below 

ten dimensions. The reason is that in d < 10 dimensions, the Type II theory (Type 
IIA and Type liB are equivalent below ten dimensions) is known to have a T-duality 
symmetry S O ( 1 0 -  d, 1 0 -  d; Z).  This T-duality group does not commute with the 

SL(2, Z) that is already present in ten dimensions, and together they generate the 
discrete subgroup of the supergravity symmetry group that has been called U-duality. 4 

Thus, U-duality is true in every dimension below ten if the SL(2, Z) of the Type IiB 
theory holds in ten dimensions. 

In the next section we will see that U-duality controls Type II dynamics below 
ten dimensions. As SL(2, Z) also controls Type IIB dynamics in ten dimensions, this 

fundamental duality between strong and weak coupling controls all Type II dynamics 

in all dimensions except for the odd case of Type IIA in ten dimensions. But that case 
will not prove to be a purely isolated exception: the basic phenomenon that we will 

find in Type IIA in ten dimensions is highly relevant to Type II dynamics below ten 

3 For earlier work on the possible role of the non-compact supergravity symmetries in string and membrane 
theory, see Ref. [ 13]. 

4 For instance, in five dimensions, T-duality is SO(5, 5) and U-duality is E6. A proper subgroup of E6 
that contains SO(5,5) would have to be SO(5,5) itself or SO(5,5) x R* (R* is the non-compact form of 
U(1)), so when one tries to adjoin to SO(5,5) the SL(2) that was already present in ten dimensions (and 
contains two generators that map NS-NS states to RR states and so are not in SO(5, 5)) one automatically 
generates all of E6. 
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dimensions, as we will see in Section 3. In a way ten-dimensional Type HA proves to 
exhibit the essential new phenomenon in the simplest context. 

To compare to N -- 1 supersymmetric dynamics in four dimensions [14], ten- 
dimensional Type IIA is somewhat analogous to supersymmetric QCD with 3Nc/2 > 
Ny > Nc + 1, whose dynamics is controlled by an effective infrared theory that does not 
make sense at all length scales. The other cases are analogous to the same theory with 
3Nc > Nf > 3Nc/2, whose dynamics is controlled by an exact equivalence of theories 
- conformal fixed points - that make sense at all length scales. 

2.2. Ramond-Ramond charges in ten-dimensional type IIA 

It is a familiar story to string theorists that the string coupling constant is really the 
expectation of a field - the dilaton field ~b. Thus, it can be scaled out of the low energy 
effective action by shifting the value of the dilaton. 

After scaling other fields properly, this idea can be implemented in closed string 
theories by writing the effective action as e -2~ times a function that is invariant under 
~b --, ~b + constant. There is, however, an important subtlety here that affects the Type 
IIA and Type liB (and Type I) theories. These theories have massless antisymmetric 
tensor fields that originate in the Ramond-Ramond (RR) sector. If Ap is such a p-form 
field, the natural gauge invariance is gAp = dAp-1, with Ap-i a (p - 1)-form - and 
no dilaton in the transformation laws. If one scales Ap by a power of e ~, the gauge 
transformation law becomes more complicated and less natural. 

Let us, then, consider the Type IIA theory with the fields normalized in a way 
that makes the gauge invariance natural. The massless bosonic fields from the (Neveu- 
Schwarz) 2 or NS-NS sector are the dilaton, the metric tensor g ~ ,  and the antisymmetric 
tensor Bran. From the RR sector, one has a one-form A and a three-form A3. We will write 
the field strengths as H = dB, F = dA, and F4 = dA3; one also needs F~ -- dA3 + A A H. 
The bosonic part of the low energy effective action can be written I = INS + IR where 
INS is the part containing NS-NS fields only and IR is bilinear in RR fields. One has 

(in units with d = 1) 

1 ( R  4(V~b)2 - ]-~H ) (2.1) INS = ~ f dl°x x/g e-2~ + 1 2 

and 

\2.. 

With this way of writing the Lagrangian, the gauge transformation laws of A, B, and 
A3 all have the standard, dilaton-independent form 8X = dA, but it is not true that the 
classical Lagrangian scales with the dilaton like an overall factor of e -2~. 

Our interest will focus on the presence of the abelian gauge field A in the Type 
IIA theory. The charge W of this gauge field has the following significance. The Type 
IIA theory has two supersymmetries in ten dimensions, one of each chirality; call them 



E. Witten/Nuclear Physics B 443 (1995) 85-126 89 

Q,~ and Q~. The space-time momentum P appears in the anticommutators {Q, Q} ,,~ 

{Q', Qt} ,-, P. In the anticommutator of  Q with Q'  it is possible to have a Lorentz- 

invariant central charge 

{Q,~, Q~}  ~ 6,~aW. (2.3) 

To see that such a term does arise, it is enough to consider the interpretation of the Type 

IIA theory as the low energy limit of eleven-dimensional supergravity, compactified on 
]R 1° x S I. From that point of view, the gauge field A arises from the components gm, ll 

of the eleven-dimensional metric tensor, W is simply the eleventh component of the 
momentum, and (2.3) is part of the eleven-dimensional supersymmetry algebra. 5 

In the usual fashion [ 17], the central charge (2.3) leads to an inequality between the 

mass M of a particle and the value of W: 

M >>. colWl, (2.4) 

with co a "constant" that is a function only of the string coupling constant A = e ~, and 
independent of which particle is considered. The precise constant with which W appears 
in (2.3) or (2.4) can be worked out using the low energy supergravity (there is no need 

to worry about stringy corrections as the discussion is controlled by the leading terms in 
the low energy effective action, and these are uniquely determined by supersymmetry). 

We will work this out at the end of this section by a simple scaling argument starting 

with eleven-dimensional supergravity. For now, suffice it to say that the A dependence 

of the inequality is actually 

¢1 M >/~-IWl (2.5) 

with cl an absolute constant. States for which the inequality is saturated - we will 

call them BPS-saturated states by analogy with certain magnetic monopoles in four 
dimensions - are in "small" supermultiplets with 28 states, while generic supermultiplets 
have 216 states. 

In the elementary string spectrum, W is identically zero. Indeed, as A originates in 

the RR sector, W would have had to be a rather exotic charge mapping NS-NS to RR 
states. However, there is no problem in finding classical black hole solutions carrying 
the W charge (or any other gauge charge, in any dimension). It was proposed by Hull 
and Townsend [3] that quantum particles carrying RR charges arise by quantization of 

such black holes. Recall that, in any dimension, charged black holes obey an inequality 
G M  2 >~ const • W 2 (G, M, and W are Newton's constant and the black hole mass 
and charge); with G -,, A 2, this inequality has the same structure as (2.5). These 
two inequalities actually correspond in the sense that an extreme black hole, with the 

5 The relation of the supersymn~try algebra to eleven dimensions leads to the fact that both for the lowest 
level and even for the first excited level of the Type IIA theory, the states can be arranged in eleven-dimensional 
Lorentz muitiplets [15l. If this would persist at higher levels, it might be related to the idea that will be 
developed below. It would also be interesting to look for possible eleven-dimensional traces in the superspace 
formulation [ 16]. 



90 E. Witten/Nuclear Physics B 443 (1995) 85-126 

minimum mass for given charge, is invariant under some supersymmetry [ 18] and so 
should correspond upon quantization to a "small" supermultiplet saturating the inequality 

(2.5). 
To proceed, then, I will assume that there are in the theory BPS-saturated particles 

with W 4: 0. This assumption can be justified as follows. Hull and Townsend actually 
showed that upon toroidally compactifying to less than ten dimensions, the assumption 
follows from U-duality. In toroidal compactification, the radii of the circles upon which 
one compactifies can be arbitrarily big. That being so, it is implausible to have BPS- 
saturated states of W # 0 below ten dimensions unless they exist in ten dimensions; that 
is, if the smallest mass of a W-bearing state in ten dimensions were strictly bigger than 
cIWI/A, then this would remain true after compactification on a sufficiently big torus. 

If the ten-dimensional theory has BPS-saturated states of W 4: 0, then what values of 
W occur? A continuum of values of W would seem pathological. A discrete spectrum 
is more reasonable. If so, the quantum of W must be independent of the string coupling 
"constant" A. The reason is that A is not really a "constant" but the expectation value 
of the dilaton field ~b. If the quantum of W were to depend on the value of ~b, then 
the value of the electric charge W of a particle would change in a process in which ~b 
changes (that is, a process in which ~b changes in a large region of space containing 
the given particle); this would violate conservation of W. 

The argument just stated involves a hidden assumption that will now be made explicit. 
The canonical action for a Maxwell field is 

[ dnx f f~ F 2. (2.6) 
4e 2 J 

Comparing to (2.2), we see that in the case under discussion the effective value of e 
is independent of ~b, and this is why the charge of a hypothetical charged particle is 

independent of ~b. If the action were 

-~ dnx ~ e~'*F 2 (2.7) 

for some non-zero y, then the current density would equal (from the equations of motion 
of A) Jm = 'gn(erOFmn) • In a process in which ~b changes in a large region of space 
containing a charge, there could be a current inflow proportional to V~b • F, and the 
charge would in fact change. Thus, it is really the ~b-independence of the kinetic energy 
of the RR fields that leads to the statement that the values of W must be independent 
of the string coupling constant and that the masses of charged fields scale as A -1 . 

Since the classical extreme black hole solution has arbitrary charge W (which can be 
scaled out of the solution in an elementary fashion), one would expect, if BPS-saturated 
charged particles do arise from quantization of extreme black holes, that they should 
possess every allowed charge. Thus, we expect BPS-saturated extreme black holes of 

m a s s  

m = clnl (2.8) 
A ' 
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where n is an arbitrary integer, and, because of  the unknown value of  the quantum of 
electric charge, c may differ from ¢1 in (2.5).  

Apart from anything else that follows, the existence of  particles with masses of  order 
1/a,  as opposed to the more usual 1/,12 for solitons, is important in itself. It almost 
certainly means that the string perturbation expansion - which is an expansion in powers 
of  A 2 - will have non-perturbative corrections of  order e x p ( - 1 / h ) ,  in contrast to the 
more usual e x p ( - 1 / A  2) 6. The occurrence of  such terms has been guessed by analogy 
with matrix models [20].  

The fact that the masses of  RR charges diverge as h ~ 0 - though only as 1/A - is 

important for self-consistency. It means that these states disappear from the spectrum as 

a ~ 0, which is why one does not see them as elementary string states. 

2.3. Consequences f o r  dynamics 

Now we will explore the consequences for dynamics of  the existence of  these charged 

particles. 
The mass formula (2.8) shows that, when the string theory is weakly coupled, the 

RR charges are very heavy. But if we are bold enough to follow the formula into 
strong coupling, then for ,l ~ oo, these particles go to zero mass. This may seem 

daring, but the familiar argument based on the "smallness" of  the multiplets would 

appear to show that the formula (2.8) is exact and therefore can be used even for 
strong coupling. In four dimensions, extrapolation of  analogous mass formulas to strong 

coupling has been extremely successful, starting with the original work of  Montonen 

and Olive that led to the idea of S-duality. (In four-dimensional N = 2 theories, such 
mass formulas generally fail to be exact [21] because of  quantum corrections to the 

low energy effective action. For N = 4 in four dimensions, or for Type IIA supergravity 

in ten dimensions, the relevant, leading terms in the low energy action are uniquely 

determined by supersymmetry.) 

So for strong coupling, we imagine a world in which there are supermultiplets of  mass 

M = clnl/,~ for every A. These multiplets necessarily contain particles of  spin at least 
two, as every supermultiplet in Type IIA supergravity in ten dimensions has such states. 
(Multiplets that do not saturate the mass inequality contain states of  spin/> 4.) Rotation 

invariance of  the classical extreme black hole solution suggests 7 (as does U-duality) 
that the BPS-saturated multiplets are indeed in this multiplet of  minimum spin. 

Thus, for A ~ co we have light, charged fields of  spin two. (That is, they are charged 
with respect to the ten-dimensional gauge field A.) Moreover, there are infinitely many 
of  these. This certainly does not correspond to a local field theory in ten dimensions. 
What kind of  theory will reproduce this spectrum of  low-lying states? One is tempted to 

6 If there are particles of mass 1/,,l, then loops of those particles should give effects of order e -l/a, while 
loops of conventional solitons, with masses 1/.I 2, would be of order exp(-1/,12). 

7 Were the classical solution not rotationally invariant, then upon quantizing it one would obtain a band of 
states of states of varying angular momentum. One would then not expect to saturate the mass inequality of 
an extreme black hole without taking into account the angular momentum. 
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think of a string theory or Kaluza-Klein theory that has an infinite tower of excitations. 
The only other option, really, is to assume that the strong coupling limit is a sort of 
theory that we do not know about at all at present. 

One can contemplate the possibility that the strong coupling limit is some sort of a 
string theory with the dual string scale being of order 1/A, so that the charged multiplets 
under discussion are some of the elementary string states. There are two reasons that 
this approach does not seem promising: (i) there is no known string theory with the 
right properties (one needs Type IIA supersymmetry in ten dimensions, with charged 
string states coupling to the abelian gauge field in the gravitational multiplet); (ii) we 
do not have evidence for a stringy exponential proliferation of light states as A ~ oc, 
but only for a single supermultiplet for each integer n, with mass ,,~ Inl. 

Though meager compared to a string spectrum, the spectrum we want to reproduce 
is just about right for a Kaluza-Klein theory. Suppose that in the region of large A, one 
should think of the theory not as a theory on R 1° but as a theory on IR t° x S 1. Such a 
theory will have a "charge" coming from the rotations of S I. Suppose that the radius 
r(A) of the S l scales as 1/A (provided that distances are measured using the "string" 
metric that appears in (2.1) - one could always make a Weyl rescaling). Then for large 
A, each massless field in the eleven-dimensional theory will give, in ten dimensions, for 
each integer n a single field of charge n and mass ~ InlA. This is precisely the sort of 
spectrum that we want. 

So we need an eleven-dimensional field theory whose fields are in one-to-one cor- 
respondence with the fields of the Type IIA theory in ten dimensions. Happily, there 
is one: eleven-dimensional supergravity! So we are led to the strange idea that eleven- 
dimensional supergravity may govern the strong coupling behavior of the Type IIA 
superstring in ten dimensions. 

Let us discuss a little more precisely how this would work. The dimensional reduction 
of eleven-dimensional supergravity to ten dimensions including the massive states has 
been discussed in some detail (for example, see Ref. [22] ). Here we will be very 
schematic, just to touch on the points that are most essential. The bosonic fields in 
eleven-dimensional supergravity are the metric GMN and a three-form A3. The bosonic 
part of the action is 

l f d~lxx/-G(R+ldAal2)+ f A3mda3mdA3. I=~ (2.9) 

Now we reduce to ten dimensions, taking the eleventh dimensions to be a circle of 
radius e r. That is, we take the eleven-dimensional metric to be ds 2 10 _m = Gr, md.~ dx n +  

e 2r (dx ~l -Am dx m) 2 to describe a ten-dimensional metric G 1° along with a vector A and 
scalar y; meanwhile A3 reduces to a three-form which we still call A3, and a two-form 
B (the part of the original A3 with one index equal to 11). Just for the massless fields, 
the bosonic part of the action becomes roughly 

1 f dlOx ~ (e~, (R + ]VT] 2 + IDA312) + e3rldAI 2 + e-~[dBI 2) + .  (2.10) t = ~  .. 
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This formula, like others below, is very rough and is only intended to exhibit the powers 

of e r. The point in its derivation is that, for example, the part of A3 that does not have 

an index equal to "11" has a kinetic energy proportional to e r, while the part with such 
an index has a kinetic energy proportional to e - r .  

The powers of e r in (2.10) do not, at first sight, appear to agree with those in (2.1). 
To bring them in agreement, we make a Weyl rescaling by writing G l° = e-rg.  Then in 
terms of the new ten-dimensional metric g, we have 

1 f dlOx v ~  ( e-3y (R + IVyl 2 + [dBI 2) + IdAI2 + Ida3[ 2 -t- .) (2.11) / = ~  . . .  

We see that (2.11) now does agree with (2.1) if 

e -2~ = e -3r. (2.12) 

In the original eleven-dimensional metric, the radius of the circle is r(A) = e r, but now, 
relating y to the dilaton string coupling constant via (2.12), we can write 

r(A)  = e 24'/3 = A 2/3. (2.13) 

The masses of Kaluza-Klein modes of the eleven-dimensional theory are of order 1/r (A)  

when measured in the metric G I°, but in the metric g they are of order 

e-r/2 
- -  ~ A - l .  ( 2 . 1 4 )  
r(,~) 

Manipulations similar to what we have just seen will be made many times in this paper. 
Here are the salient points: 
(1) The radius of the circle grows by the formula (2.13) as A --* cx~. This is 

important for self-eonsistency; it means that when ,~ is large the eleven-dimensional 
theory is weakly coupled at its compactification scale. Otherwise the discussion in terms 
of eleven-dimensional field theory would not make sense, and we would not know how 
to improve on it. As it is, our proposal reduces the strongly coupled Type HA superstring 
to a field theory that is weakly coupled at the scale of the low-lying excitations, so we 
get an effective determination of the strong coupling behavior. 

(2) The mass of a particle of charge n, measured in the string metric g in the 
effective ten-dimensional world, is of order Inl/,~ from (2.14). This is the dependence 
on ~ claimed in (2.5), which we have now in essence derived: the dependence of the 
central charge on ~b is uniquely determined by the low energy supersymmetry, so by 
deriving this dependence in a Type IIA supergravity theory that comes by Kaluza-Klein 
reduction from eleven dimensions, we have derived it in general. 

So far, the case for relating the strong coupling limit of Type HA superstrings to 
eleven-dimensional supergravity consists of the fact that this enables us to make sense 
of the otherwise puzzling dynamics of the BPS-saturated states and that point ( 1 ) above 
worked out correctly, which was not obvious a priori. The case will hopefully get much 
stronger in the next section when we extend the analysis to work below ten dimensions 
and incorporate U-duality, and in Section 4 when we look at the heterotic string in seven 
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dimensions. In fact, the most startling aspect of relating strong coupling string dynamics 
to eleven-dimensional supergravity is the Lorentz invariance that this implies between 
the eleventh dimension and the original ten. Both in Section 3 and in Section 4, we will 
see remnants of this underlying Lorentz invariance. 

3. Type H dynamics below ten dimensions 

3.1. U-duality and dynamics 

In this section, we consider Type II superstrings toroidally compactified to d < 10 
dimensions, with the aim of understanding the strong coupling dynamics, that is, the 
behavior when some parameters, possibly including the string coupling constant, are 
taken to extreme values. 

The strong coupling behaviors of Type IIA and Type liB seem to be completely 
different in ten dimensions, as we have seen. Upon toroidal compactification below ten 
dimensions, the two theories are equivalent under T-duality [ 10,11], and so can be 
considered together. We will call the low energy supergravity theory arising from this 

compactification Type II supergravity in d dimensions. 
The basic tool in the analysis is U-duality. Type II supergravity in d dimensions 

has a moduli space of vacua of the form G/K, where G is a non-compact connected 

Lie group (which depends on d) and K is a compact subgroup, generally a maximal 
compact subgroup of G. G is an exact symmetry of the supergravity theory. There are 
also U(1) gauge bosons, whose charges transform as a representation of G. 8 The 
structure was originally found by dimensional reduction from eleven dimensions [ 23]. 

In the string theory realization, the moduli space of vacua remains G/K since this 
is forced by the low energy supergravity. Some of the Goldstone bosons parametrizing 
G/K come from the NS-NS sector and some from the RR sector. The same is true of 
the gauge bosons. In string theory, the gauge bosons that come from the NS-NS sector 
couple to charged states in the elementary string spectrum. It is therefore impossible for 
G to be an exact symmetry of the string theory - it would not preserve the lattice of 
charges. The U-duality conjecture says that an integral form of G, call it G(Z) ,  is a 
symmetry of the string theory. If so, then as the NS-NS gauge bosons couple to BPS- 
saturated charges, the same must be true of the RR gauge bosons - though the charges 
in question do not appear in the elementary string spectrum. The existence of such RR 
charges was our main assumption in the last section; we see that this assumption is 

essentially a consequence of U-duality. 

8 To make a G-invariant theory on G/K, the matter fields in general must be in representations of the unbroken 
symmetry group K. Matter fields that are in representations of K that do not extend to representations of G 
are sections of some homogeneous vector bundles over G/K with non-zero curvature. The potential existence 
of an integer lattice of charges forces the gauge bosons to be sections instead of a flat bundle, and that is why 
they are in a representation of G and not only of K. 
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The BPS-saturated states are governed by an exact mass formula - which will be 

described later in some detail - which shows how some of them become massless 

when one approaches various limits in the moduli space of vacua. Our main dynamical 
assumption is that the smallest mass scale appearing in the mass formula is always the 

smallest mass scale in the theory. 
We assume that at a generic point in G/K, the only massless states are those in the 

supergravity multiplet. There is then nothing to say about the dynamics: the infrared 
behavior is that of  d-dimensional Type II supergravity. There remains the question of 

what happens when one takes various limits in G / K  - for instance, limits that correspond 
to weak coupling or large radius or (more mysteriously) strong coupling or very strong 

excitation of RR scalars. We will take the signal that something interesting is happening 

to be that the mass formula predicts that some states are going to zero mass. When this 

occurs, we will try to determine what is the dynamics of the light states, in whatever 

limit is under discussion. 
We will get a complete answer, in the sense that for every degeneration of the Type II 

superstring in d dimensions, there is a natural candidate for the dynamics. In fact, there 

are basically only two kinds of degeneration; one involves weakly coupled string theory, 
and the other involves weakly coupled eleven-dimensional supergravity. In one kind of 

degeneration, one sees toroidal compactification of a Type II superstring from ten to d 

dimensions; the degeneration consists of the fact that the string coupling constant is going 
to zero. (The parameters of the torus are remaining fixed.) In the other degeneration 

one sees toroidal compactification of eleven-dimensional supergravity from eleven to d 

dimensions; the degeneration consists of the fact that the radius of  the torus is going 
to infinity so that again the coupling constant at the compactification scale is going to 

zero. 9 (These are actually the degenerations that produce maximal sets of massless 
particles; others correspond to perturbations of these.) 

Thus, with our hypotheses, one gets a complete control on the dynamics, including 

strong coupling. Every limit which one might have been tempted to describe as "strong 
coupling" actually has a weakly coupled description in the appropriate variables. The 

ability to get this consistent picture can be taken as evidence that the hypotheses are 
true, that U-duality is valid, and that eleven-dimensional supergravity plays the role in 
the dynamics that was claimed in Section 2. 

It may seem unexpected that weakly coupled string theory appears in this analysis as 

a "degeneration," where some particles go to zero mass, so let me explain this situation. 
For d < 9, G is semi-simple, and the dilaton is unified with other scalars. The "string" 

version of the low energy effective action, in which the dilaton is singled out in the 
gravitational kinetic energy 

ddx e-2~R (3.1) 

9 It is only in the eleven-dimensional description that the radius is going to infinity. In the ten-dimensional 
string theory description, the radius is fixed but the string coupling constant is going to infinity. 
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is unnatural for exhibiting such a symmetry. The G-invariant metric is the one obtained 
by a Weyl transformation that removes the e -2~ from the gravitational kinetic energy. 
The transformation in question is of course the change of variables g -- e4~/(d-2)g ~, with 
g' the new metric. This transformation multiplies masses by e 2~/(d-2), that is, by 

wd = A 2/(d-2) (3.2) 

(with A the string coupling constant). Thus, while elementary string states have masses 
of order one with respect to the string metric, their masses are of order A 2/(a-2) in the 
natural units for discussions of U-duality. So, from this point of view, the region of 
weakly coupled string theory is a "degeneration" in which some masses go to zero. 

It is amusing to consider that, in a world in which supergravity was known and string 
theory unknown, the following discussion might have been carded out, with a view to 
determining the strong coupling limit of a hypothetical consistent theory related to Type 
II supergravity. The string theory degeneration might then have been found, giving a 
clue to the existence of this theory. Similarly, the strong coupling analysis that we are 
about to perform might a priori have uncovered new theories beyond string theory and 
eleven-dimensional supergravity, but this will not be the case. 

3.2. The Nature of  Infinity 

It is useful to first explain - without specific computations - why NS-NS (rather than 

RR) moduli play the primary role. 
We are interested in understanding what particles become light - and how they interact 

- when one goes to infinity in the moduli space G ( Z ) \ G / K .  The discussion is simplified 
by the fact that the groups G that arise in supergravity are the maximally split forms of 
the corresponding Lie groups. This simply means that they contain a maximal abelian 
subgroup A which is a product of copies of R* (rather than U(1) ) .  l0 

For instance, in six dimensions G = SO(5, 5), with rank 5. One can think of G as 
the orthogonal group acting on the sum of five copies of a two-dimensional real vector 

space H endowed with quadratic form 

Then a maximal abelian subgroup of G is the space of matrices looking like a sum of 

five 2 x 2 blocks, of the form 

(e;0 
e_~i ) (3.4) 

for some Ai. This group is of the form (R*) 5. Likewise, the integral forms arising in 
T- and U-duality are the maximally split forms over Z; for instance the T-duality group 

1o Algebraists call A a "maximal toms"  and T would be the standard name, but 1 will avoid this terminology 
because (i) calling (R*)n a "toms" might be confusing, especially in the present context in which there are 
so many other tori; (ii) in the present problem the letter T is reserved for the T-duality group. 
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upon compactification to 10 -- d dimensions is the group of integral matrices preserving 
a quadratic form which is the sum of d copies of (3.3). This group is sometimes called 
SO(d, d; Z).  

With the understanding that G and G(Z)  are the maximally split forms, the structure 
of infinity in G ( Z ) \ G / K  is particularly simple. A fundamental domain in G(Z) \G/K  
consists of group elements of the form g = tu, where the notation is as follows, u 
runs over a compact subset U of the space of generalized upper triangular matrices; 
compactness of U means that motion in U is irrelevant in classifying the possible ways 
to "go to infinity." t runs over A/W where A was described above, and W is the Weyl 
group. 

Thus, one can really only go to infinity in the A direction, and moreover, because of 
dividing by W, one only has to consider going to infinity in a "positive" direction. 

Actually, A has a very simple physical interpretation. Consider the special case of 
compactification from 10 to 10 - d dimensions on an orthogonal product of circles S~ 
of radius ri. Then G has rank d + 1, so A is a product of d + 1 R*'s. d copies of R* 

act by rescaling the ri (making up a maximal abelian subgroup of the T-duality group 
SO(d, d ) ) ,  and the last one rescales the string coupling constant. So in particular, with 
this choice of A, if one starts at a point in moduli space at which the RR fields are all 
zero, they remain zero under the action of A. 

Thus, one can probe all possible directions at infinity without exciting the RR fields; 
directions in which some RR fields go to infinity are equivalent to directions in which 
one only goes to infinity via NS-NS fields. Moreover, by the description of A just given, 
going to infinity in NS-NS directions can be understood to mean just taking the string 
coupling constant and the radial parameters of the compactification to zero or infinity. 

3.3. The central charges and their role 

Let us now review precisely why it is possible to predict particle masses from U- 
duality. The unbroken subgroup K of the supergravity symmetry group G is realized 
in Type II supergravity as an R-symmetry group; that is, it acts non-trivially on the 
supersymmetries. K therefore acts on the central charges in the supersymmetry algebra. 
The scalar fields parametrizing the coset space G/K enable one to write a G-invariant 
formula for the central charges (which are a representation of K) of the gauge bosons 
(which are a representation of G). For most values of d, the formula is uniquely 
determined, up to a multiplicative constant, by G-invariance, so the analysis does not 
require many details of supergravity. That is fortunate as not all the details we need 
have been worked out in the literature, though many can be found in Ref. [24]. 

For example, let us recall (following Ref. [3] ) the situation in d = 4. The T-duality 
group is SO(6, 6), and S-duality would be SL(2) (acting on the axion-dilaton system 
and exchanging electric and magnetic charge). SO(6, 6) x SL(2) is a maximal subgroup 
of the U-duality group which is G = E7 (in its non-compact, maximally split form) and 
has K = SU(8) as a maximal compact subgroup. 



98 E. Witten/Nuclear Physics B 443 (1995) 85-126 

Toroidal compactification from ten to four dimensions produces in the NS-NS sector 

twelve gauge bosons coupling to string momentum and winding states, and transforming 
in the twelve-dimensional representation of SO(6, 6). The electric and magnetic charges 

coupling to any one of these gauge bosons transform as a doublet of SL(2),  so altogether 
the NS-NS sector generates a total of 24 gauge charges, transforming as (12, 2) of 
SO(6,6)  x SL(2) .  

From the RR sector, meanwhile, one gets 16 vectors. (For instance, in Type IIA, the 
vector of the ten-dimensional RR sector gives 1 vector in four dimensions, and the three- 

form gives 6 . 5 / 2  = 15.) These 16 states give a total of 16.2 = 32 electric and magnetic 
charges, which can be argued to transform in an irreducible spinor representation of 
SO(6,6)  (of  positive or negative chirality for Type IIA or Type liB), while being 

SL(2) singlet. The fact that these states are SL(2) singlets means that there is no 

natural way to say which of the RR charges are electric and which are magnetic. 
Altogether, there are 24 + 32 = 56 gauge charges, transforming as 

(12,2) @ (32, 1) (3.5) 

under SO(6, 6) x SL(2);  this is the decomposition of the irreducible 56 of ET. Let us 

call the space of these charges V. 
The four-dimensional theory has N = 8 supersymmetry; thus there are eight positive- 

chirality supercharges Qi,  i = 1 . . . . .  8, transforming in the 8 of K = SU(8).  The central 

charges, arising in the formula 

{ a i  , Ok  } = eatfl  z i j  , (3.6) 

therefore transform as the second rank antisymmetric tensor of SU(8),  the 28: this 

representation has complex dimension 28 or real dimension 56. Denote the space of 
z i J '  s as W.  

Indeed, the 56 of E7, when restricted to SU(8),  coincides with the 28, regarded as 
a 56-dimensional real representation. (Equivalently, the 56 of E7 when complexified 
decomposes as 28• 28 of SU(8) . )  There is of course a natural, SU(8)-invariant metric 

on W. As the 56 is a pseudoreal rather than real representation of E7, there is no E7- 
invariant metric on V. However, as V and W coincide when regarded as representations of 
SU(8) ,  one can pick an embedding of SU(8) in E7 and then define an SU(8)-covariant 

map T : V ~ W which determines a metric on V. 
There is no reason to pick one embedding rather than another, and indeed the space 

of vacua ET/SU(8) of the low energy supergravity theory can be interpreted as the 

space of all SU(8) subgroups of E7. Given g E E7, we can replace T : V ~ W by 

T~ = Tg -1 . (3.7) 

This is not invariant under g ---> gk, with k E SU(8),  but it is so invariant up to an 
SU(8) transformation of W. So let ~/, E V be a vector of gauge charges of some string 

state. Then 

¢ ~ z ( ~ )  = T84, (3.8) 
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gives a vector in W, representing the central charges of ~p. The map from "states" ~p to 

central charges Z(~p) is manifestly E7-invariant, that is invariant under 

~b ~ g'~b, 

g ~ g 'g .  (3.9) 

Also, under g --* gk, with k C SU(8),  Z transforms to T k - I T - I Z ,  that is, it transforms 
by a "local SU(8) transformation" that does not affect the norm of the central charge. 

The formula (3.8) is, up to a constant multiple, the only formula with these properties, 

so it is the one that must come from the supergravity or superstring theory. 
In supersymmetric theories with central charges, there is an inequality between the 

mass of a state and the central charge. For elementary string winding states and their 
partners under U-duality, the inequality is M/>  IZ[. (More generally, the inequality is 

roughly that M is equal to or greater than the largest eigenvalue of Z; for a description 
of stringy black holes with more than one eigenvalue, see Ref. [ 19]. Elementary string 

states have only one eigenvalue.) 
So far, we have not mentioned the integrality of the gauge charges. Actually, states 

carrying the 56 gauge charges only populate a lattice Vz C V. If  U-duality is true, then 

each lattice point related by U-duality to the gauge charges of an elementary string state 

represents the charges of a supermultiplet of mass Iz(~p)I. 

As an example of the use of this formalism, let us keep a promise made in Section 

2 and give an alternative deduction, assuming U-duality, of the important statement that 
the masses of states carrying RR charges are (in string units) of order 1/,k II Starting 

from any given vacuum, consider the one-parameter family of vacua determined by 

the following one-parameter subgroup of SO(6,6)  × SL(2):  we take the identity in 
SO(6, 6) (so that the parameters of the toroidal compactification are constant) times 

(o 0) gt = e_t  

in SL(2) (so as to vary the string coupling constant). We work here in a basis in which 

the "top" component is electric and the "bottom" component is magnetic. 
Using the mass formula M(~p) = ]Z(¢ )  I = IZg-l~l, the t dependence of the mass 

of a state comes entirely from the g action on the state. The NS-NS states, as they 
are in a doublet of SL(2),  have "electric" components whose masses scale as e - t  and 

"magnetic" components with masses of e t. On the other hand, as the RR states are 
SL(2) singlets, the mass formula immediately implies that their masses are independent 
of t. 

These are really the masses in the U-dual "Einstein" metric. Making a Weyl transfor- 
mation to the "string" basis in which the electric NS-NS states (which are elementary 
string states) have masses of order one, the masses are as follows: electric NS-NS, 
M ~ 1; magnetic NS-NS, M ,,~ e2 / ;  RR, M ,,~ e t. But since we know that the magnetic 

I I The following argument was pointed out in parallel by C. Hull. 
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NS-NS states (being fairly conventional solitons) have masses of order 1/A 2, we iden- 
tify e t = 1 / ~  ( a  formula one could also get from the low energy supergravity); hence 
the RR masses are of order 1/h as claimed. 12 

The basic properties described above hold in any dimension above three. (In nine 
dimensions, some extra care is needed because the U-duality group is not semi-simple.) 
In three dimensions, new phenomena, which we will not try to unravel, appear because 
vectors are dual to scalars and charges are confined (for some of the relevant material, 
see Ref. [25]) .  

3.4. Analysis o f  dynamics 

We now want to justify the claims made at the beginning of this section about the 
strong coupling dynamics. 

To do this, we will analyze limits of the theory in which some of the BPS-saturated 
particles go to zero mass. Actually, for each way of going to infinity, we will look only 
at the particles whose masses goes to zero as fast as possible. We will loosely call these 
the particles that are massless at infinity. 

Also, we really want to find the "maximal" degenerations, which produce maximal 
sets of such massless particles; a set of massless particles, produced by going to infinity 
in some direction, is maximal if there would be no way of going to infinity such that 
those particles would become massless together with others. A degeneration (i.e. a path 
to infinity) that produces a non-maximal set of massless particles should be understood 
as a perturbation of a maximal degeneration. (In field theory, such perturbations, which 
partly lift the degeneracy of the massless particles, are called perturbations by relevant 
operators.) We will actually also check a few non-maximal degenerations, just to make 
sure that we understand their physical interpretation. 

To justify our claims, we should show that in any dimension d, there are only two 
maximal degenerations, which correspond to toroidal compactification of weakly coupled 
ten-dimensional string theory and to toroidal compactification of eleven-dimensional 
supergravity, respectively. The analysis is in fact very similar in spirit for any d, but 
the details of the group theory are easier for some values of d than others. I will first 
explain a very explicit analysis for d = 7, chosen as a relatively easy case, and then 
explain an efficient approach for arbitrary d. 

In d = 7, the T-duality group is SO(3,3) ,  which is the same as SL(4);  U-duality 
extends this to G = SL(5).  A maximal compact subgroup is K = SO(5). 

In the NS-NS sector, there are six U(1) gauge fields that come from the com- 
pactification on a three-torus; they transform as a vector of SO(3, 3) or second rank 
antisymmetric tensor of SL(4).  In addition; four more U( 1)'s, transforming as a spinor 
of SO(3, 3) or a 4 of SL(4) ,  come from the RR sector. These states combine with the 

12 We made this deduction here in four dimensions, but it could be made, using U-duality, in other dimensions 
as well. Outside of four dimensions, instead of using the known mass scale of magnetic monopoles to fix the 
relation between t and A, one could use the known Weyl transformation (3.2) between the string and U-dual 
mass scales. 
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six from the NS-NS sector to make the second rank antisymmetric tensor, the 10 of 

SL(5).  
In Type II supergravity in seven dimensions, the maximal possible R-symmetry is 

K = SO(5) or Sp(4).  The supercharges make up in fact four pseudo-real spinors Q/,  
i = 1 . . . . .  4, of  the seven-dimensional Lorentz group SO(1,6) ,  transforming as the 4 of 
Sp(4).  The central charges transform in the symmetric part of 4 x 4, which is the 10 or 
antisymmetric tensor of SO(5).  Thus, we are in a situation similar to what was described 

earlier in four dimensions: the gauge charges transform as the 10 of SL(5),  the central 

charges transform in the 10 of SO(5),  and a choice of vacuum in G / K  = SL(5) /SO(5)  

selects an SO(5) subgroup of SL(5) ,  enabling one to identify these representations and 

map gauge charges to central charges. 
A maximal abelian subgroup A of SL(5) is given by the diagonal matrices. A one- 

parameter subgroup of A consists of matrices of the form 

(el 0 o 0 
i e a2t 0 0 

gt = 0 ea3t 0 , (3.11 ) 
0 0 e a4t 
0 0 0 ca5 t ] 

where the ai are constants, not all zero, with ~'~i ai = 0. We want to consider the behavior 
of the spectrum as t ~ +oo. By a Weyl transformation, we can limit ourselves to the 

case that 

al /> a2 ~> . . . />  as. (3.12) 

Let  d/ij, i < j be a vector in the 10 of SL(5) whose components are zero except for 
the i j  component, which is 1 (and the j i  component, which is - 1 ) .  We will also use the 

name ~bij for a particle with those gauge charges. The mass formula MOP) = ITg-l~Pl 

says that the mass of ¢ij scales with t as 

M OPij ) "~ e - t (  a'+aj ) . (3.13) 

By virtue of  (3.12), the lightest type of particle is ¢kt2. For generic values of the ai, 

this is the unique particle whose mass scales to zero fastest, but if a2 = a3 then ~b12 is 
degenerate with other particles. To get a maximal set of particles degenerate with ~bl2, 

we need a maximal set of ai equal to a2 and a3. We cannot set all ai equal  (then they 
have to vanish, as ~ i  ai = 0), SO by virtue of  (3.12), there are two maximal cases, with 

al = a2 = a3 = a4, or a2 = a3 = a4 = as. So the maximal degenerations correspond to 
one-parameter subgroups 

/:°°° 
e t 0 0 

0 0 e t 
0 0 0 e -4t  ,] 

(3.14) 
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or  

/e4t0 0 0 
e - t  0 0 

gt = ~ 0 e - t  0 (3.15) 

0 0 e - t  

0 0 0 e - t /  

with t ~ +c~ .  As we will see, the first corresponds to weakly coupled string theory, 

and the second to eleven-dimensional supergravity. 

In (3 .14) ,  the particles whose masses vanish for t ~ +c~  are the d/ij with 1 ~< i < j ~< 

4. There are six o f  these, the correct number of  light elementary string states of  string 

theory compactified from ten to seven dimensions. Moreover, in (3.14),  gt commutes 

with a copy of  SL(4 )  that acts on indices 1 - 2 - 3  - 4 .  This part of  the seven-dimensional 

symmetry group SL(5 )  is unbroken by going to infinity in the direction (3.14),  and 

hence would be observed as a symmetry of  the low energy physics at "infinity" ( though 

most of  the symmetry is spontaneously broken in any given vacuum near infinity).  

Indeed, S L ( 4 )  with six gauge charges in the antisymmetric tensor representation is the 

correct T-duali ty group of  weakly coupled string theory in seven dimensions. 

There is a point  here that may be puzzling at first sight. The full subgroup of  SL(5 )  

that commutes with gt is actually not SL(4 )  but SL(4)  x R*, where JR* is the one- 

parameter subgroup containing gt. What happens to the •*? When one restricts to 

the integral points in S L ( 5 ) ,  which are the true string symmetries, this 1~* does not 

contribute, so the symmetry group at infinity is just  the integral form of  SL(4 ) .  A 

similar comment  applies at several points below and will not be repeated. 

Moving on now to the second case, in (3.15),  the particles whose masses vanish for 

t ~ +c~  are the ~bli, i > 1. There are four of  these, the correct number for compact- 

ification of  eleven-dimensional supergravity on a four-toms T 4 whose dimensions are 

growing with t. The gauge charges of  light states are simply the components of  the 

momentum along T 4. The symmetry group at infinity is again SL(4) .  This SL(4)  has 

a natural interpretation as a group of  linear automorphisms of  T 4. 13 In fact, the gauge 

charges carried by the light states in (3.15) transform in the 4 of  SL(4 ) ,  which agrees 

with the supergravity description as that is how the momentum components along T 4 

transform under SL(4 ) .  As this SL(4 )  mixes three of  the "original" ten dimensions 

with the eleventh dimension that is associated with strong coupling, we have our first 

evidence for the underlying eleven-dimensional Lorentz invariance. 

Finally, let us consider a few non-maximal degenerations, to make sure we understand 

how to interpret them. 14 Degeneration in the direction 

13 That is, if T 4 is understood as the space of real variables y i ,  i = 1 . . . . .  4, m o d u l o  yi  ~ yi + n i, with 
n i C Z, then SL(4) acts by yi ___+ wijyj. For this to be a diffeomorphism and preserve the orientation, the 
determinant of w must be one, so one is in SL(4). Given an n-toms T n, we will subsequently use the phrase 
"mapping class group" to refer to the SL(n) that acts linearly in this sense on T n. 
14 We will see in the next section that when the U-duality group has rank r, there are r naturally distinguished 

one-parameter subgroups. For SL(5), these are (3.14), (3.15), and the two introduced below. 
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e t 0 0 0 i / 
e 3t 0 0 

gt = ~ 0 e -2t 0 (3.16) 
0 0 e -2t 

0 0 0 e -z '  ] 

leaves as t ~ c~ the unique lightest state ~12. I interpret this as coming from partial 
decompactification to eight dimensions - taking one circle much larger than the others so 
that the elementary string states with momentum in that one direction are the lightest. 
This family has the symmetry group SL(3) × SL(2),  which is indeed the U-duality 
group in eight dimensions, as it should be. 

The family (000 / 
e 2t 0 0 

gt = ~ 0 e 2t 0 (3.17) 
0 0 e -3t 
0 0 0 e -3t / 

gives three massless states Oij, 1 ~< i < j ~< 3, transforming as (3 ,1)  of the symmetry 
group SL(3) x SL(2).  I interpret this as decompactification to the Type IIB theory in 
ten dimensions - taking all three circles to be very large. The three light charges are 
the momenta around the three circles; SL(3) is the mapping class group of the large 
three-torus, and SL(2) is the U-duality group of the Type IIB theory in ten dimensions. 

Partially saturated states 
I will now justify an assumption made above and also make a further test of the 

interpretation that we have proposed. 
First of all, we identified BPS-saturated elementary string states with charge tensors 

~bij with (in the right basis) only one non-zero entry. Why was this valid? 
We may as well consider NS-NS states; then we can restrict ourselves to the T-duality 

group SO(3, 3). The gauge charges transform in the vector representation of SO(3,3) .  
Given such a vector va, one can define the quadratic invariant (v, v) = y]a,brlabvavb. 

On the other hand, SO(3,3)  is the same as SL(4),  and v is equivalent to a second 
rank antisymmetric tensor ~ of SL(4).  In terms of ~, the quadratic invariant is (~, ip) = 
¼eijkt~bijOkt. By an SL(4) transformation, one can bring ~ to a normal form in which 
the independent non-zero entries are Olz and ~34 only. Then 

(O, O) = 2~12~/34. (3.18) 

So the condition that the particle carries only one type of charge, that is, that only ~blz 
or ~'34 is non-zero, is that (~b, ¢)  = 0. 

Now let us consider the elementary string states. Such a state has in the toroidal 
directions left- and right-moving momenta p~. and PR. PL and PR together form a vector 
of SO(3, 3), and the quadratic invariant is [8] 

(p ,p )  = Ipt.I 2 -IpRI 2. (3.19) 



104 E. Witten/Nuclear Physics B 443 (1995) 85-126 

BPS-saturated states have no oscillator excitations for left- or right-movers, and the mass 
shell condition requires that they obey IpLI 2 - IPRI 2 -- 0, that is, that the momentum 
or charge vector p is light-like. This implies, according to the discussion in the last 
paragraph, that in the right basis, the charge tensor ¢ has only one entry. That is the 

assumption we made. 
Now, however, we can do somewhat better and consider elementary string states of 

Type II that are BPS-saturated for left-movers only (or equivalently, for right-movers 
only). Such states are in "middle-sized" supermultiplets, of dimension 212 (as opposed 
to generic supermultiplets of dimension 216 and BPS-saturated multiplets of dimension 
28). To achieve BPS saturation for the left-movers only, one puts the left-moving oscil- 
lators in their ground state, but one permits right-moving oscillator excitations; as those 
excitations are arbitrary, one gets an exponential spectrum of these half-saturated states 
(analogous to the exponential spectrum of BPS-saturated states in the heterotic string 
[ 26] ). With oscillator excitations for right-movers only, the mass shell condition implies 
that IpLI 2 > IPRI 2, and hence the charge vector is not lightlike. The charge tensor 
therefore in its normal form has both ¢12 and ~/34 non-zero.  For such states, the mass 
inequality says that the mass is bounded below by the largest eigenvalue of Tg-l~,  with 

equality for the "middle-sized" multiplets. 
With this in mind, let us consider the behavior of such half-saturated states in the 

various degenerations. In the "stringy" degeneration (3.14), a state with non-zero ¢12 
and ~//34 has a mass of the same order of magnitude as a state with only ~12 non-zero. 
This is as we would expect from weakly coupled string theory with toroidal radii of 
order one: the half-saturated states have masses of the same order of magnitude as the 
BPS-saturated massive modes. To this extent, string excitations show up in the strong 

coupling analysis. 
What about the "eleven-dimensional" degeneration (3.15)? In this case, while the 

particles with only one type of charge have masses that vanish a s  e - 3 t  for t ~ c~, the 

particles with two kinds of charge have masses that grow as e +t. The only light states 
that we can see with this formalism in this degeneration are the Kaluza-Klein modes 
of eleven-dimensional supergravity. There is, for instance, no evidence for membrane 
excitations; such evidence might well have appeared if a consistent membrane theory 
with eleven-dimensional supergravity as its low energy limit really does exist. 

3.5. Framework for general analysis 

It would be tiresome to repeat this analysis "by hand" in other values of the dimension. 
Instead, I will now 15 explain a bit of group theory that makes the analysis easy. One of 
the main points is to incorporate the action of the Weyl group. This was done above by 
choosing al >t a2 >t . . .  ~> as, but to exploit the analogous condition in ET, for instance, 

a little machinery is useful. 

15 With some assistance from A. Borel. 



E. Witten/Nuclear Physics B 443 (1995) 85-126 105 

In d dimensions, the U-duality group G has rank r = 11 - d .  Given any one-parameter 

subgroup F of  a maximal abelian subgroup A, one can pick a set of  simple positive 

roots xi such that the action of  F on the xi is 

Xi ~ eCitxi (3.20) 

with ci non-negative. In this restriction on the ci, we have used the Weyl action. Con- 

versely, for every set of  non-negative ci (not all zero), there is a one-parameter subgroup 

F that acts as (3.20). 

The gauge charges are in some representation R of  G; that is, for each weight in 
R there is a corresponding gauge charge. 16 Let p = Eie ix i  be the highest weight 

in R. The ei are positive integers. A particle whose only gauge charge is the one that 

corresponds to p has a mass that vanishes for t ~ +o¢  as 

M p ~ e x p ( - ~ i  cieit ) (3.21) 

Any other weight in R is of  the form pt = ~-~i fixi, with f i  <<. ei. A particle carrying the 
p '  charge has mass of  order 

Thus M o, ) Mp - the particle with only charge p always goes to zero mass at least as 
fast as any other - and Mp, = Mp if and only if 

ci = 0 whenever f i  < ei. (3.23) 

Now, our problem is to pick the subgroup F, that is, the ci, so that a maximal set 

of  Mp, are equal to Mp. If  the ci are all non-zero, then (as the highest weight state 

is unique) (3.23) implies that p '  = p and only one gauge charge is carded by the 
lightest particles. The condition in (3.23) becomes less restrictive only when one of  the 

ci becomes zero, and to get a maximal set of  Mp, degenerate with Mp, we must set as 

many of  the ci as possible to zero. As the ci may not all vanish, the best we can do is 

to set r - 1 of  them to zero. There are therefore precisely r one-parameter subgroups F/ 

to consider, labeled by which of  the ci is non-zero. 

The xi are labeled by the vertices in the Dynkin diagram of  G, so each of  the Fi is 

associated with a particular vertex Pi. Deleting Pi from the Dynkin diagram of  G leaves 

the Dynkin diagram of  a rank r - 1 subgroup Hi of  G. It is the unbroken subgroup 
when one goes to infinity in the F~ direction. 

16 The particular representations R that actually arise in Type II string theory in d /> 4 have the property 
(unusual among representations of Lie groups) that the non-zorn weight spaces are all one-dimensional. It 
therefore makes sense to label the gauge charges by weights. (These representations are actually "minuscule" 
- the Weyl group acts transitively on the weights.) d ~ 3 would have some new features, as already mentioned 
above. 
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3.6. Analysis in d = 4 

With this machinery, it is straightforward to analyze the dynamics in each dimension 
d. As the rank is r = 11 - d, there are 11 - d distinguished one-parameter subgroups 

to check. It turns out that one of them corresponds to weakly coupled string theory in 
d dimensions, one to toroidal compactification of eleven-dimensional supergravity to d 
dimensions, and the others to partial (or complete) decompactifications. In each case, 

the symmetry group when one goes to infinity is the expected one: the T-duality group 
SO( 10 - d, 10 - d) for the string degeneration; the mapping class group SL( 11 - d) 

for supergravity; or for partial decompactification to d t dimensions, the product of the 
mapping class group SL(d  t - d) of a (dt - d)-torus and the U-duality group in d ~ 

dimensions. 

I will illustrate all this in d = 4, where the U-duality group is E7. Going to infinity 
in a direction F/associated with one of the seven points in the Dynkin diagram leaves 

as unbroken subgroup Hi one of the following: 
(1) SO(6, 6): this is the T-duality group for string theory toroidally compactified 

from ten to four dimensions. This is a maximal degeneration, with (as we will see) 12 
massless states transforming in the 12 of SO(6, 6). 

(2) SL(7):  this is associated with eleven-dimensional supergravity compactified to 

four dimensions on a seven-torus whose mapping class group is SL(7).  This is the other 
maximal degeneration; there are the expected seven massless states in the 7 of SL(7).  

(3) E6: this and the other cases are non-maximal degenerations corresponding to 

partial decompactification. This case corresponds to partial decompactification to five 
dimensions by taking one circle to be much larger than the others; there is only one 

massless state, corresponding to a state with momentum around the large circle. E6 

arises as the U-duality group in five dimensions. 
(4) SL2 x SO(5, 5): this is associated with partial decompactification to six dimen- 

sions. There are two light states, corresponding to momenta around the two large circles; 
they transform as (2 ,1)  under SL2 x SO(5,5) .  SL2 acts on the two large circles and 
SO(5, 5) is the U-duality group in six dimensions. 

(5) SL3 × SL(5):  this is associated with partial decompactification to seven dimen- 

sions. SL(3) acts on the three large circles (and the three light charges), and SL(5) is 

the U-duality in seven dimensions. 
(6) SL4 x SL(3) x SL(2):  this is associated with partial decompactification to eight 

dimensions. SL(4) acts on the four large circles and light charges, and SL(3) x SL(2) 

is U-duality in eight dimensions. 
(7) SL6 x SL2: this is associated with decompactification to Type IIB in ten dimen- 

sions. SL6 acts on the six large circles and light charges, and SL(2) is the U-duality in 

ten dimensions. 
In what follows, I will just check the assertions about the light spectrum for the first 

two cases, which are the important ones, and the third, which is representative of the 

others. 
(1) Fl can be described as follows. E7 contains a maximal subgroup SO(6,6)  x 
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SL(2).  F1 can be taken as the subgroup of SL(2) consisting of matrices of the form 

e -  t / . (3.24) 

The gauge charges are in the 56 of ET, which decomposes under LI as (12, 2) @ (32, 1). 
The lightest states come from the part of the (12,2) that transforms as e t under (3.24); 
these are the expected twelve states in the 12 of SO(6, 6). 

(2) E7 contains a maximal subgroup SL(8).  F2 can be taken as the subgroup of SL(8) 
consisting of group elements gt -- diag(e t, e t . . . . .  e t, e-Tt). The 56 of E7 decomposes 
as 28 ~ ~ t  _ the antisymmetric tensor plus its dual. The states of highest eigenvalue 
(namely e St) are seven states in the 28 transforming in the expected 7 of the unbroken 

SL(7).  
(3) E7 has a maximal subgroup E6 x N*, and F3 is just the R*. The 56 of//7 decom- 

poses as 271 @ 27 t-1 ~ 13 G 1-3, where the E6 representation is shown in boldface and 
the N* charge (with some normalization) by the exponent. Thus in the F3 degeneration, 
there is a unique lightest state, the 13. 

The reader can similarly analyze the light spectrum for the other F/, or the analogous 
subgroups in d 4~ 4. 

4. Heterotic string dynamics above four dimensions 

4.1. A puzzle in five dimensions 

S-duality gives an attractive proposal for the strong coupling dynamics of the heterotic 
string after toroidal compactification to four dimensions: it is equivalent to the same 
theory at weak coupling. In the remainder of this paper, we will try to guess the 
behavior above four dimensions. This process will also yield some new insight about 
S-duality in four dimensions. 

Toroidal compactification of the heterotic string from 10 to d dimensions gives 2( 1 0 -  
d) vectors that arise from dimensional reduction of the metric and antisymmetric tensor. 
Some of the elementary string states are electrically charged with respect to these vectors. 

Precisely in five dimensions, one more vector arises. This is so because in five 
dimensions a two-form Bran is dual to a vector Am, roughly by dB = *dA. In the 
elementary string spectrum, there are no particles that are electrically charged with 
respect to A, roughly because A can be defined (as a vector) only in five dimensions. 
But it is easy to see where to find such electric charges. Letting H be the field strength 
of B (including the Chern-Simons terms) the anomaly equation 

dH = t rF  A F -  trR A R (4.1) 

(F  is the E8 x E8 or SO(32) field strength and R the Riemann tensor) implies that the 
electric current of A is 

J = *trF A F - *trR A R. (4.2) 
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Thus, with G = dA, (4.1) becomes 

DmGmn = Jn, (4.3) 

showing that Jn is the electric current. So the charge density J0 is the instanton density, 
and a Yang-Mills instanton, regarded as a soliton in 4 + 1 dimensions, is electrically 
charged with respect to A. 

Instantons (and their generalizations to include the supergravity multiplet [27,28] ) 
are invariant under one half of the supersymmetries. One would therefore suspect that 
quantization of the instanton would give BPS-saturated multiplets, with masses given by 
the instanton action: 

16~lnl  
M = ,~2 (4.4) 

Here n is the instanton number or electric charge and A is the string coupling. 
To really prove existence of these multiplets, one would need to understand and 

quantize the collective coordinates of the stringy instanton. In doing this, one needs 
to pick a particular vacuum to work in. In the generic toroidal vacuum, the unbroken 
gauge group is just a product of U( 1)'s. Then the instantons, which require a non-abelian 
structure, tend to shrink to zero size, where stringy effects are strong and the analysis is 
difficult. Alternatively, one can consider a special vacuum with an unbroken non-abelian 
group, but this merely adds infrared problems to the stringy problems. The situation 
is analogous to the study [29] of H-monopoles after toroidal compactification to four 
dimensions; indeed, the present paper originated with an effort to resolve the problems 
concerning H-monopoles. (The connection between instantons and H-monopoles is 
simply that upon compactification of one of the spatial directions on a circle, the 
instantons become what have been called H-monopoles.) 

Despite the difficulty in the collective coordinate analysis, there are two good reasons 
to believe that BPS-saturated multiplets in this sector do exist. One, already mentioned, 
is the invariance of the classical solution under half the supersymmetries. The second 
reason is that if in five dimensions, the electrically charged states had masses bounded 
strictly above the BPS value in (4.4), the same would be true after compactification on 
a sufficiently big circle, and then the BPS-saturated H-monopoles required for S-duality 
could not exist. 

Accepting this assumption, we are in a similar situation to that encountered earlier 
for the Type HA string in ten dimensions: there is a massless vector, which couples to 
electric charges whose mass diverges for weak coupling. (The mass is here proportional 
to 1/,~ 2 in contrast to 1/A in the other case.) Just as in the previous situation, we have a 
severe puzzle if we take the formula seriously for strong coupling, when these particles 
seem to go to zero mass. 

If we are willing to take (4.4) seriously for strong coupling, then we have for each 
integer n a supermultiplet of states of charge n and mass proportional to [nl, going to 
zero mass as A ~ oo. It is very hard to interpret such a spectrum in terms of local 



E. Witten/Nuclear Physics B 443 (1995) 85-126 109 

field theory in five dimensions. But from our previous experience, we know what to do: 
interpret these states as Kaluza-Klein states on R 5 x S I. 

The S l here will have to be a "new" circle, not to be confused with the five-torus 
T 5 in the original toroidal compactification to five dimensions. (For instance, the T- 
duality group SO(21,5) acts on T 5 but not on the new circle.) So altogether, we seem 
to have eleven dimensions, R 5 x S 1 x T 5, and hence we seem to be in need of an 
eleven-dimensional supersymmetric theory. 

In Section 2, eleven-dimensional supergravity made a handy appearance at this stage, 
but here we seem to be in a quandary. There is no obvious way to introduce an eleventh 
dimension relevant to the heterotic string. Have we reached a dead end? 

4.2. The heterotic string in six dimensions 

Luckily, there is a conjectured relation between the heterotic string and Type II 
superstrings [3,4] which has just the right properties to solve our problem (though 
not by leading us immediately back to eleven dimensions). The conjecture is that the 
heterotic string toroidally compactified to six dimensions is equivalent to the Type IIA 
superstring compactified to six dimensions on a K3 surface. 

The evidence for this conjecture has been that both models have the same supersym- 
metry and low energy spectrum in six dimensions and the same moduli space of vacua, 
namely SO(20, 4; Z) \SO(20, 4; R) / (SO(20)  × SO(4) ). For the toroidally compactified 
heterotic string, this structure for the moduli space of vacua is due to Narain [8]; for 
Type II, the structure was determined locally by Seiberg [30] and globally by Aspinwall 
and Morrison [ 31 ]. 

In what follows, I will give several new arguments for this "string-string duality" 
between the heterotic string and Type IIA superstrings: 

(1) When one examines more precisely how the low energy effective actions match 
up, one finds that weak coupling of one theory corresponds to strong coupling of the 
other theory. This is a necessary condition for the duality to make sense, since we 
certainly know that the heterotic string for weak coupling is not equivalent to the Type 
IIA superstring for weak coupling. 

(2) Assuming string-string duality in six dimensions, we will be able to resolve the 
puzzle about the strong coupling dynamics of the heterotic string in five dimensions. The 
strongly coupled heterotic string on R 5 (times a five-torus whose parameters are kept 
fixed) is equivalent to a Type IIB superstring on R 5 x S 1 (times a K3 whose parameters 
are kept fixed). The effective six-dimensional Type f ib theory is weakly coupled at its 
compactification scale, so this is an effective solution of the problem of strong coupling 
for the heterotic string in five dimensions. 

(3) We will also see that - as anticipated by Duff in a more abstract discussion 
[7] - string-string duality in six dimensions implies S-duality of the heterotic string 
in four dimensions. Thus, all evidence for S-duality can be interpreted as evidence for 
string-string duality, and one gets at least a six-dimensional answer to the question 
"what higher-dimensional statement leads to S-duality in four dimensions?" 
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(4) The K3 becomes singular whenever the heterotic string gets an enhanced sym- 
metry group; the singularities have an A - D - E  classification, just like the enhanced 
symmetries. 

(5) Finally, six-dimensional string-string duality also leads to an attractive picture for 
heterotic string dynamics in seven dimensions. (Above seven dimensions the analysis 
would be more complicated.) 

I would like to stress that some of these arguments test more than a long distance 
relation between the heterotic string and strongly coupled Type IIA. For instance, in 
working out the five-dimensional dynamics via string-string duality, we will be led to 
a Type IIA theory with a small length scale, and to get a semi-classical description will 
require a T-duality transformation, leading to Type 1113. The validity of the discussion 
requires that six-dimensional string-string duality should be an exact equivalence, like 
the SL(2, Z) symmetry for Type IIB in ten dimensions and unlike the relation of Type 
II to eleven-dimensional supergravity. 

4.3. Low energy actions 

Let us start by writing a few terms in the low energy effective action of the heterotic 
string, toroidally compactified to six dimensions. We consider the metric g, dilaton ~b, 
and antisymmetric tensor field B, and we let C denote a generic abelian gauge field 
arising from the toroidal compactification. We are only interested in keeping track of 
how the various terms scale with ~b. For the heterotic string, the whole classical action 
scales as e -24' ,~ A -2, so one has very roughly 

1 = fd6x v ~  e-2* (R + ]V~bl 2 + IdBI 2 + IdCI2). (4.5) 

On the other hand, consider the Type IIA superstring in six dimensions. The low 
energy particle content is the same as for the toroidally compactified heterotic string, 
at least at a generic point in the moduli space of the latter where the unbroken gauge 
group is abelian. Everything is determined by N = 4 supersymmetry except the number 
of U( 1 ) 's in the gauge group and the number of antisymmetric tensor fields; requiring 
that these match with the heterotic string leads one to use Type IIA rather than Type liB. 

So in particular, the low energy theory derived from Type IIA has a dilaton ~b ~, a metric 
gr, an antisymmetric tensor field B t, and gauge fields C ~. 17 Here ~b', gt, and B' come 
from the NS-NS sector, but C' comes from the RR sector, so as we noted in Section 2, 
the kinetic energy of ~b ~, gt, and B ~ scales with the dilaton just like that in (4.5), but 
the kinetic energy of C t has no coupling to the dilaton. So we have schematically 

I t =  dl d6x X/r~t ( e-24'' (R' + IVt~t[2 ÷ [dBt[ 2) + IdCtl2) . (4.6) 

17 We normalize B t and C I to have standard gauge transformation laws. Their gauge transformations would 
look different if one scaled the fields by powers of e ~. This point was discussed in Section 2. 
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We need the change of variables that turns (4.5) into (4.6), In (4.5), the same power 
of e ~ multiplies R and IdC'l 2. We can achieve that result in (4.6) by the change of 
variables gJ = gC'e 2~'. Then (4.6) becomes 

l '  = j d6 x x/~" (eZO'( R" + lV4,'12) + e-2~'ldB'[Z + eZ4" [dC'12) . (4.7) 

Now the coefficient of the kinetic energy of B' is the opposite of what we want, but 
this can be reversed by a duality transformation. The field equations of B' say that 
d * (e-2O'dB ') = 0, so the duality transformation is 

e-2~'dB ' = ,dB".  (4.8) 

Then (4.7) becomes 

I ' = / d 6 x  v/g '' e 2~' ( R " +  IV0'I 2 + IdB"[ 2 + IdC'[2). (4.9) 

This agrees with (4.5) if we identify 4, = -4, ' .  Putting everything together, the change 
of variables by which one can identify the low energy limits of the two theories is 

4, = - 4 , ' ,  
g = e2Og ' = e-2~'g ' ' 

dB = e -2~' * dB ' ,  
C = C ' .  (4.10) 

Unprimed and primed variables are fields of the heterotic string and Type IIA, respec- 

tively. 
In particular, the first equation implies that weak coupling of one theory is equivalent 

to strong coupling of the other. This makes it possible for the two theories to be 
equivalent without the equivalence being obvious in perturbation theory. 

4.4. Dynamics in five dimensions 

Having such a (conjectured) exact statement in six dimensions, one can try to deduce 
the dynamics below six dimensions. The ability to do this is not automatic because (just 
as in field theory) the dimensional reduction might lead to new dynamical problems at 
long distances. But we will see that in this particular case, the string-string duality in 
six dimensions does determine what happens in five and four dimensions. 

We first compactify the heterotic string from ten to six dimensions on a torus (which 
will be kept fixed and not explicitly mentioned), and then take the six-dimensional 
world to be II~ 5 × Sr 1, where S~ will denote a circle of radius r. We want to keep r fixed 
and take A = e ~ to infinity. According to (4.10), the theory in this limit is equivalent to 
the Type IIA superstring on R 5 x S l, times a K3 surface (of fixed moduli), with string 
coupling and radius A' and r' given by 
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r t =  A - l r .  (4.11) 

In particular, the coupling A t goes to zero in the limit for A --* c~. However, the 
radius r t in the dual theory is also going to zero. The physical interpretation is much 
clearer if one makes a T-duality transformation, replacing r t by 

1 a 
r tt - - . (4.12) 

r t F 

The T-duality transformation also acts on the string coupling constant. This can be 
worked out most easily by noting that the effective five-dimensional gravitational con- 
stant, which is A2/r ,  must be invariant under the T-duality. So under r t --~ 1 / r  ~, the 
string coupling A t is replaced by 

A t 
Att = - -  (4.13) 

E t 

so that 

r t r t t  

(~ , )2  - (,~,,)2" (4 .14)  

Combining this with (4.11), we learn that the heterotic string on R 5 × S~ and string 
coupling ,~ is equivalent to a Type II superstring with coupling and radius 

Art = r - 1  , 

r " =  A. (4.15) 
r 

This is actually a Type l ib  superstring, since the T-duality transformation turns the Type 
HA model that appears in the string-string duality conjecture in six dimensions into a 

Type I/B superstring. 
Eq. (4.15) shows that the string coupling constant of the effective Type IIB theory 

remains fixed as ,~ ~ c~ with fixed r, so the dual theory is not weakly coupled at all 
length scales. However, (4.15) also shows that r 't ~ oo in this limit, and this means 
that at the length scale of the compactification, the effective coupling is weak. (The 
situation is similar to the discussion of the strongly coupled ten-dimensional Type HA 
superstring in Section 2.) All we need to assume is that the six-dimensional Type H 
superstring theory, even with a coupling of order one, is equivalent at long distances to 
weakly coupled Type II supergravity. If that is so, then when compactified on a very 
large circle, it can be described at and above the compactification length by the weakly 
coupled supergravity, which describes the dynamics of the light degrees of freedom. 

Modul i  space o f  Type l i B  vacua 

The following remarks will aim to give a more fundamental explanation of (4.15) 
and a further check on the discussion. 

Consider the compactification of Type l ib  superstring theory o n  R 6 X K3. This gives 
a chiral N = 4 supergravity theory in six dimensions, with five self-dual two-forms (that 
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is, two-forms with self-dual field strength) and twenty-one anti-self-dual two-forms 

(that is, two-forms with anti-self-dual field strength). The moduli space of vacua of the 

low energy supergravity theory is therefore [32] G/K with G = SO(21,5) and K the 
maximal subgroup SO(21) x SO(5).  

The coset space G/K has dimension 21 x 5 = 105. The interpretation of this number 

is as follows. There are 80 NS-NS moduli in the conformal field theory on K3 (that, 
the moduli space of (4, 4) conformal field theories on K3 is 80-dimensional). There are 
24 zero modes of RR fields on K3. Finally, the expectation value of the dilaton - the 

string coupling constant - gives one more modulus. In all, one has 80 + 24 + 1 = 105 
states. In particular, the string coupling constant is unified with the others. 

It would be in the spirit of U-duality to suppose that the Type liB theory on ]R 6 x K3 

has the discrete symmetry group SO(21,5; Z).  In fact, that follows from the assumption 

of SL(2, Z) symmetry of Type IIB in ten dimensions [3] together with the demon- 
stration in Ref. [31] of a discrete symmetry SO(20 ,4 ;Z)  for (4,4)  conformal field 

theories on K3. For the SO(20, 4; Z) and SL(2, Z) do not commute and together gen- 
erate SO(21,5;  Z).  The moduli space of Type IIB vacua o n  ~6 X K3 is hence 

N = s o ( 2 1 , 5 ; z ) \ s o ( 2 1 , 5 ; ~ ) / ( s o ( 2 1 )  × s o ( 5 ) ) .  (4.16) 

Now consider the Type IIB theory on R 5 × S l × K3. One gets one new modulus from 
the radius of  the S I. No other new moduli appear (the Type 1113 theory on /1~ 6 x K3 

has no gauge fields so one does not get additional moduli from Wilson lines). So the 
moduli space of Type 1/13 vacua on IR 5 × S l x K3 is 

.A4 =A/" × •+, (4.17) 

where ~+ (the space of positive real numbers) parametrizes the radius of the circle. 
What about the heterotic string on R 5 x Ts? The T-duality moduli space of the toroidal 

vacua is precisely .Af = SO(21,5; Z) \SO(21 ,5 ;  R ) / (SO(21 )  x SO(5)) .  There is one 
more modulus, the string coupling constant. So the moduli space of heterotic string 

vacua on R 5 × T 5 is once again A4 = .A/" × R +. Now the R + parametrizes the string 
coupling constant. 

So the moduli space of toroidal heterotic string vacua on R 5 x T 5 is the same as the 

moduli space of Type IIB vacua on ~s  × S 1 x K3, suggesting that these theories may 

be equivalent. The map between them turns the string coupling constant of the heterotic 
string into the radius of  the circle in the Type IIB description. This is the relation that 
we have seen in (4.15) (so, in particular, strong coupling of the heterotic string goes 
to large radius in Type IIB). 

To summarize the discussion, we have seen that an attractive conjecture - the equiv- 
alence of the heterotic string in six dimensions to a certain Type HA theory - implies 
another attractive conjecture - the equivalence of the heterotic string in five dimensions 
to a certain Type liB theory. The link from one conjecture to the other depended on a 
T-duality transformation, giving evidence that these phenomena must be understood in 
terms of string theory, not just in terms of relations among low energy field theories. 
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Detai led matching o f  states 

Before leaving this subject, perhaps it would be helpful to be more explicit about how 
the heterotic and Type II spectra match up in five dimensions. 

Compactification of the six-dimensional heterotic string theory on ]R 5 x S 1 generates 
in the effective five-dimensional theory three U(1) gauge fields that were not present 

in six dimensions. There is the component gin6 of the metric, the component Bm6 of the 
antisymmetric tensor field, and the vector Am that is dual to the spatial components Bmn 

of the antisymmetric tensor field. Each of these couples to charged states: gin6 couples 
to elementary string states with momentum around the circle, Bin6 tO states that wind 
around the circle, and Am to states that arise as instantons in four spatial dimensions, 
invariant under rotations about the compactified circle. The mass of these "instantons" is 
r / A  2, with the factor of r coming from integrating over the circle and 1/A 2 the instanton 
action in four dimensions. The masses of these three classes of states are hence of order 
I / r ,  r, and r / A  2, respectively, if measured with respect to the string metric. To compare 
to Type II, we should remember (4.10) that a Weyl transformation g = A2g ~ is made in 
going to the sigma model metric of the Type HA description. This multiplies masses by 
a factor of A, so the masses computed in the heterotic string theory but measured in the 
string units of Type IIA are 

A 
gin6 : - - ,  

r 
Bin6 : Ar ,  

r 
Am : - .  a (4.18) 

Likewise, compactification of the six-dimensional Type IIA superstring on IR s x S 1 
t t A t" gives rise to three vectors gmr, Brn6' and The first two couple to elementary string 

states. The last presumably couples to some sort of soliton, perhaps the classical solution 
that has been called the symmetric five-brane [28]. Its mass would be of order r t / ( A t )  2 

in string units for the same reasons as before. The masses of particles coupling to the 
three vectors are thus in string units: 

1 
gtm6: 7 '  

ntm6 : r t , 
F t 

Aim : (A,)2 • (4.19) 

Now, (4.18) agrees with (4.19) under the expected transformation A = 1/a' ,  r = ar '  

provided that one identifies gin6 with g~6; B,n6 with A~m; and Am with B~6. The interesting 
point is of course that Bin6 and Am switch places. But this was to be expected from the 
duality transformation dB ,-- ,dB ~ that enters in comparing the two theories. 

So under string-string duality the "instanton" which couples to Am, is turned into the 
! string winding state, which couples to Bin6, and the string winding state that couples to 

B,n6 is turned into a soliton that couples to Aim . 



E. Witten/Nuclear Physics B 443 (1995) 85-126 

4.5. Relation to S-duality 

115 

Now we would like to use six-dimensional string-string duality to determine the 
strong coupling dynamics of the heterotic string in four dimensions. Once again, we 
start with a preliminary toroidal compactification from ten to six dimensions on a fixed 

torus that will not be mentioned further. Then we take the six-dimensional space to be 
a product ]~4 X T 2, with T 2 a two-torus. String-string duality says that this is equivalent 
to a six-dimensional Type HA theory on R 4 x T 2 (with four extra dimensions in the 

form of  a fixed K3). 
One might now hope, as in six and five dimensions, to take the strong coupling 

limit and get a useful description of strongly coupled four-dimensional heterotic string 

theory in terms of Type II. This fails for the following reason. In six dimensions, the 
duality related strong coupling of the heterotic string to weak coupling of Type IIA. In 

five dimensions, it related weak coupling of the heterotic string to coupling of order 
one of Type IIB (see (4.15)).  Despite the coupling of order one, this was a useful 

description because the radius of the sixth dimension was large, so (very plausibly) 

the effective coupling at the compactification scale is small. A similar scaling in four 

dimensions, however, will show that the strong coupling limit of the heterotic string in 
four dimensions is related to a strongly coupled four-dimensional Type II superstring 

theory, and now one has no idea what to expect. 
It is remarkable, then, that there is another method to use six-dimensional string- 

string duality to determine the strong coupling behavior of the heterotic string in four 

dimensions. This was forecast and explained by Duff [7] without reference to any 
particular example. The reasoning goes as follows. 

Recall (such matters are reviewed in Ref. [33] ) that the T-duality group of a two- 

torus is SO(2, 2) which is essentially the same as SL(2) x SL(2).  Here the two SL(2) ' s  
are as follows. One of them, sometimes called SL(2)v,  acts on the complex structure 

of the torus. The other, sometimes called SL(2)r ,  acts on the combination of the area 

p of the torus and a scalar b = B56 that arises in compactification of the antisymmetric 

tensor field B. 

In addition to SL(2)v  and SL(2)r ,  the heterotic string in four dimensions is conjec- 
tured to have a symmetry SL(2)s  that acts on the combination of the four-dimensional 
string coupling constant 

h4 = ~p- l /2  (4.20) 

and a scalar a that is dual to the space-time components B ~  ( m , n  = 1 . . . . .  4). We 
know that the heterotic string has SL(2)u  and SL(2) r  symmetry; we would like to know 
if it also has SL(2)s  symmetry. If  so, the strong coupling behavior in four dimensions 
is determined. 

Likewise, the six-dimensional Type HA theory, compactified on Max T a, has SL (2)tl, × 
SL(2)r ,  symmetry, and one would like to know if it also has SL(2)s,  symmetry. Here 
SL(2)v,  acts on the complex structure of the toms, SL(2)r ,  acts on the area p~ and 
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scalar b' derived from B~6, and SL(2)s, would conjecturally act on the string coupling 
constant A~ and the scalar a t that is dual to the ~4 components of B t. 

If string-string duality is correct, then the metrics in the equivalent heterotic and 
Type HA descriptions differ only by a Weyl transformation, which does not change the 
complex structure of the toms; hence SL(2)v  can be identified with SL(2)v,.  More 
interesting is what happens to S and T. Because the duality between the heterotic string 
and Type HA involves dB ~ *dB', it turns a into b ~ and a'  into b. Therefore, it must turn 

SL(2)s  into SL(2)T, and SL(2)s,  into SL(2)T. Hence the known SL(2)T invariance 
of the heterotic and Type IIA theories implies, if string-string duality is true, that these 
theories must also have SL(2)s  invariance! 

It is amusing to check other manifestations of the fact that string-string duality 
exchanges SL(2)s  and SL(2)T. For example, the four-dimensional string coupling ,~4 -- 
Ap -1/2 = A/r (r is a radius of the toms) turns under string-string duality into 1/r ~ = 
(p~)-l/2. Likewise p = r 2 is transformed into A2(r') 2 = (r'/,,V) 2 = 1/(,A~) 2. So string- 

string duality exchanges A4 with p-l /2,  as it must in order to exchange SL(2)s  and 

SL(2)r .  

Some other models with S-duality 
From string-string duality we can not only rederive the familiar S-duality, but attempt 

to deduce S-duality for new models. For instance, one could consider in the above a 
particular two-toms T 2 that happens to be invariant under some SL(2)u transforma- 
tions, and take the orbifold with respect to that symmetry group of the six-dimensional 
heterotic string. This orbifold can be regarded as a different compactification of the 
six-dimensional model, so string-string duality - if true - can be applied to it, relating 
the six-dimensional heterotic string on this orbifold (and an additional four-toms) to a 

Type IIA string on the same orbifold (and an additional K3). 
Orbifolding by a subgroup of SL(2)v  does not disturb SL(2)T, so the basic structure 

used above still holds; if six-dimensional string-string duality is valid, then SL(2)s  of 
the heterotic string on this particular orbifold follows from SL(2)T of Type HA on the 
same orbifold, and vice versa. This example is of some interest as - unlike previously 
known examples of S-duality - it involves vacua in which supersymmetry is completely 
broken. The S-duality of this and possible related examples might have implications in 
the low energy field theory limit, perhaps related to phenomena such as those recently 

uncovered by Seiberg [ 14]. 

4.6. Enhanced gauge groups 

Perhaps the most striking phenomenon in toroidal compactification of the heterotic 
string is that at certain points in moduli space an enhanced non-abelian gauge symmetry 
appears. The enhanced symmetry group is always simply-laced and so a product of A, 
D, and E groups; in toroidal compactification to six dimensions, one can get any product 
of A, D, and E groups of total rank ~< 20. 



E. Witten/Nuclear Physics B 443 (1995) 85-126 117 

How can one reproduce this with Type IIA on a K3 surface? 18 It is fa i ry  obvious 
that one cannot get an enhanced gauge symmetry unless the K3 becomes singular; only 

then might the field theory analysis showing that the RR charges have mass of order 
1/A break down. 

The only singularities a K3 surface gets are orbifold singularities. (It is possible for 
the distance scale of the K3 to go to infinity, isotropically or not, but that just makes field 
theory better.) The orbifold singularities of a K3 surface have an A - D - E  classification. 
Any combination of singularities corresponding to a product of groups with total rank 
~< 20 (actually at the classical level the bound is ~< 19) can arise. 

Whenever the heterotic string on a four-toms gets an enhanced gauge group G, the 
corresponding K3 gets an orbifold singularity of type G. This assertion must be a key to 
the still rather surprising and mysterious occurrence of extended gauge groups for Type 
IIA on K3, so I will attempt to explain it. 

The moduli space 

A4 = SO(20, 4; Z) \SO(20,4 ;  R) / (SO(20)  x SO(4) ) (4.21) 

of toroidal compactifications of the heterotic string to six dimensions - or K3 compact- 
ifications of Type II - can be thought of as follows. Begin with a 24 dimensional real 
vector space W with a metric of signature (4, 20), and containing a self-dual even inte- 
gral lattice L (necessarily of the same signature). Let V be a four-dimensional subspace 
of W on which the metric of W is positive definite. Then .M is the space of all such 
V's, up to automorphisms of L. Each V has a twenty-dimensional orthocomplement V ± 

on which the metric is negative definite. 
In the heterotic string description, V is the space of charges carded by right-moving 

string modes, and V ± is the space of charges carried by left-moving string modes. 
Generically, neither V nor V ± contains any non-zero points in L. When V ± contains 
such a point P, we get a purely left-moving (antiholomorphic) vertex operator Oe of 
dimension de -- - ( P , P ) / 2 .  (Of course, (P ,P)  < 0 as the metric of W is negative 
definite on V±.) de is always an integer as the lattice L is even. The gauge symmetry is 
extended precisely when V ± contains some P of de = 1; the corresponding Op generate 
the extended gauge symmetry. 

In the K3 description, W is the real cohomology of K3 (including H °, H 2, and 
H a together [31]) .  The lattice L is the lattice of integral points. V is the part of the 
cohomology generated by self-dual harmonic forms. The interpretation is clearest if 
we restrict to K3's of large volume, where we can use classical geometry. Then H ° 
and H 4 split off, and we can take for W the 22-dimensional space H 2, and for V the 
three-dimensional space of self-dual harmonic two-forms. 

Consider a K3 that is developing an orbifold singularity of type G, with r being the 
rank of G. In the process, a configuration of r two-spheres Si (with an intersection 
matrix given by the Dynkin diagram of G) collapses to a point. These two-spheres 

18 This question was very briefly raised in Section 4.3 of Ref. [34] and has also been raised by other 
physicists. 
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are holomorphic (in one of the complex structures on the K3), and the corresponding 
cohomology classes [Si] have length squared - 2 .  As they collapse, the [Si] become 
anti-self-dual and thus - in the limit in which the orbifold singularity develops - they 
lie in V ±. (In fact, as Si is holomorphic, the condition for [Si] to be anti-self-dual is 

just that it is orthogonal to the K~ihler class and so has zero area; thus the [Si] lie in 
V ± when and only when the orbifold singularity appears and the Si shrink to zero.) 
Conversely, the Riemann-Roch theorem can be used to prove that any point in V ± of 

length squared - 2  is associated with a collapsed holomorphic two-sphere. 

In sum, precisely when an orbifold singularity of type G appears, there is in V ± an 
integral lattice of rank r, generated by points of length squared - 2 ,  namely the Si; the 

lattice is the weight lattice of G because of the structure of the intersection matrix of 

the Si. This is the same condition on V ± as the one that leads to extended symmetry 
group G for the heterotic string. In the K3 description, one U(1) factor in the gauge 

group is associated with each collapsed two-sphere. These U( 1) 's  should make up the 
maximal torus of the extended gauge group. 

Despite the happy occurrence of a singularity - and so possible breakdown of field 
theory - precisely when an extended gauge group should appear, the occurrence of 
extended gauge symmetry in Type IIA is still rather surprising. It must apparently mean 

that taking the string coupling to zero (which eliminates the RR charges) does not 
commute with developing an orbifold singularity (which conjecturally brings them to 

zero mass), and that conventional orbifold computations in string theory correspond to 
taking the string coupling to zero first, the opposite of what one might have guessed. 

4. 7. Dynamics in seven dimensions 

The reader might be struck by a lack of unity between the two parts of this paper. In 
Sections 2 and 3, we related Type II superstrings to eleven-dimensional supergravity. In 

the present section, we have presented evidence for the conjectured relation of Type II 
superstrings to heterotic superstrings. If  both are valid, should not eleven-dimensional 

supergravity somehow enter in understanding heterotic string dynamics? 
I will now propose a situation in which this seems to be true: the strong coupling 

limit of the heterotic string in seven dimensions. I will first propose an answer, and then 
try to deduce it from six-dimensional string-string duality. 

The proposed answer is that the strong coupling limit of the heterotic string on 
R 7 × T 3 gives a theory whose low energy behavior is governed by eleven-dimensional 

supergravity on R 7 × K3! The first point in favor of this is that the moduli spaces 

coincide. The moduli space of vacua of the heterotic string on R 7 × T 3 is 

.A,4 = .A.41 x ~+ (4.22) 

with 

./k4~ = SO( 19, 3; Z ) \ S O(  19, 3; • ) /SO(19)  × SO(3).  (4.23) 
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Here .A41 is the usual Narain moduli space, and R + parametrizes the possible values 

o f  the string coupling constant. For eleven-dimensional supergravity compactified on 

R 7 × K3, the moduli space of  vacua is simply the moduli space of  Einstein metrics on 

K3. This does not coincide with the moduli space of  (4, 4) conformal field theories on 

K3, because there is no second rank antisymmetric tensor field in eleven-dimensional 

supergravity. Rather the moduli space of  Einstein metrics of  volume 1 on K3 is isomor- 
phic to .A41 = S O ( 1 9 , 3 ; Z ) \ S O ( 1 9 , 3 ; R ) / S O ( 1 9 )  x SO(3) .  19 Allowing the volume 

to vary gives an extra factor of  •+, so that the moduli space of  Einstein metrics on K3 

coincides with the moduli space .A4 of  string vacua. 

As usual, the next step is to see how the low energy effective theories match up. 

Relating these two theories only makes sense if large volume of  eleven-dimensional 

supergravity (where perturbation theory is good) corresponds to strong coupling of  the 

heterotic string. We recall that the bosonic fields of  eleven-dimensional supergravity are 

a metric G and three-form A3 with action 

' /  / 1= 7 dllxv/-G(R+ldA312)+ A 3 A d A 3 A d A  3. (4.24) 

To reduce on R 7 × K3, we take the eleven-dimensional line-element to be ds 2 = 
"~mndxmdx n + e2rh,~#dy'~dy ~, with m, n = 1 . . . . .  7, a ,  fl = 1 . . . . .  4; here ~ is a met- 

ric on ~7, h a fixed metric on K3 of  volume 1, and e r the radius of  the K3. The 

reduction of  A3 on ~7 x K3 gives on ]R 7 a three-form a3, and 22 one-forms that we 

will generically call A. The eleven-dimensional Lagrangian becomes very schematically 

(only keeping track of  the scaling with e r)  

f dTxv/~(e4"(R+ldylZ+lda312)+ldal2 ) . (4.25) 

To match this to the heterotic string in seven dimensions, we write ~ = e-4rg,  with g 

the heterotic string metric in seven dimensions. We also make a duality transformation 

e6rda3 = , d B ,  with B the two-form of the heterotic string. Then (4.25) turns into 

f d7x e -6r  (R + Idyl = + Idnl 2 + Idml2). (4.26) 

The important point is that the Lagrangian scales with an overall factor of  e -6r, similar 

to the overall factor of  A -2 = e -2~ in the low energy effective action of  the heterotic 

string. Thus, to match eleven-dimensional supergravity o n  ~;~7 × K3 with the heterotic 

string in seven dimensions, one takes the radius of  the K3 to be 

e r = e 4'/3 = ,h. 1 /3 .  (4.27) 

In particular, as we hoped, for a ~ cx~, the radius of  the K3 goes to infinity, and the 

eleven-dimensional supergravity theory becomes weakly coupled at the length scale of  

the light degrees of  freedom. 

t9 This space parametrizes three-dimensional subspaces of positive metric in H2(K3, R). The subspace cor- 
responding to a given Einstein metric on K3 consists of the part of the cohomology that is self-dual in that 
metric. 
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Now, let us try to show that this picture is a consequence of  string-string duality in 
six dimensions. We start with the heteroric string on  ~[6 X S 1 × T 3, where S 1 is a circle 

of  radius r l ,  and T s is a three-torus that will be held fixed throughout the discussion. 20 

I f  ,~7 and ~6 denote the heterotic string coupling constant in seven and six dimensions, 

respectively, then 

1 rl (4.28) 

46 = 

We want to take rl to infinity, keeping ,~7 fixed. That will give a heterotic string in 

seven dimensions. Then, after taking rl to infinity, we consider the behavior for large 

,~7, to get a strongly coupled heterotic string in seven dimensions. 
The strategy of  the analysis is o f  course to first dualize the theory, to a ten-dimensional 

Type II theory, and then see what happens to the dual theory when first rl and then A 

are taken large. Six-dimensional string-string duality says that for fixed rl and A, the 
heterotic string o n  ~6 X S 1 X T 3 is equivalent to a Type I IA superstring o n  ~6 × K3, 

with the following change of  variables. The six-dimensional string coupling constant a~ 

of  the Type HA description is 

1 rll/2 
- -  = (4.29) 

A~ -- .,~6 ,A7 

The metrics g and g~ of  the heterotic and Type IIA descriptions are related by 

g = e2~g ' = A2g ' = )t72g '. (4.30) 
F1 

In addition, the parameters of  the K3 depend on rl (and the parameters of  the T 3, which 

will be held fixed) in a way that we will now analyze. 
There is no unique answer, since we could always apply an S O ( 2 0 , 4 ; Z )  transfor- 

marion to the K3. However, there is a particularly simple answer. The heterotic string 
compactified on S 1 x T 3 has 24 abelian gauge fields. As the radius rl of  the S 1 goes to 

infinity, the elementary string states carrying the 24 charges behave as follows. There is 
one type of  charge (the momentum around the S 1 ) such that the lightest states carrying 

only that charge go to zero mass, with 

1 
M ~ - -  (4.31) 

r l  

There is a second charge, the winding number around S 1, such that particles carrying 
that charge have masses that blow up as r l .  Particles carrying only the other 22 charges 

have fixed masses in the limit. 
Any two ways to reproduce this situation with a K3 will be equivalent up to a T- 

duality transformation. There is a particularly easy way to do this - take a fixed K3 and 

2o Generally, there are also Wilson lines on T 3 breaking the gauge group to a product of U( 1 ) 's; these will 
be included with the parameters of the T 3 that are kept fixed in the discussion. 
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scale up the volume V, leaving fixed the "shape" This reproduces the above spectrum 

with a relation between V and rl that we will now determine. 

We start with the Type IIA superstring theory in ten dimensions. The bosonic fields 
include the metric g~0, dilaton ~b~0, gauge field A, and three-form A3. The action is 
schematically 

f d l°X~lo(e-24;lOR~o+ldaI2+lda312+. . . ) .  (4.32) 

Upon compactification on R 6 x K3, massless modes coming from A and A3 are as 

follows. A gives rise to a six-dimensional vector, which we will call a. A3 gives rise 
to 22 vectors - we will call them CI - and a six-dimensional three-form, which we 
will call a3. If  V is the volume of the K3, the effective action in six dimensions scales 

schematically as 

S d6 x v'~ f l---2- ( aD z ) + Vldal 2 + Vlda31 z + IdCll 2) (4.33) 

Visible in (4.33) are 23 vectors, namely a and the C#. However, precisely in six 

dimensions a three-form is dual to a vector, by Vda3 =*db. So we can replace (4.33) 

with 

S ), d6xv/~ "+- Vldal 2 + LldOl 2 + IdC, I 2 (4.34) 
V 

with 24 vectors. As the canonical kinetic energy of a vector is 

f d6x .-~-Idal 2, (4.35) 
4eeff 

with eeff the effective charge, we see that we have one vector with effective charge of 
order V -1/2, one with effective charge of order V V2' and 22 with effective charges of 

order one. 
According to our discussion in Section 2, the mass of a particle carrying an RR charge 

is of order ee~/a~. So for fixed A~ and V ~ c~, one type of particle goes to zero mass, 
one to infinite mass, and 22 remain fixed - just like the behavior of the heterotic string 

as rl ~ c~. The lightest charge-bearing particle has a mass of order 

1 
M t - - -  (4.36) 

V~I2,V6" 

To compare this to the mass (4.31) of the lightest particle in the heterotic string descrip- 
tion, we must remember the Weyl transformation (4.30) between the two descriptions. 

Because of this Weyl transformation, the relation between the two masses should be 
M = ~.~l M ~ = A~6M~. So ,t~ scales out, and the relation between the two descriptions 
involves the transformation 

V = r~. (4.37) 
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The reason that the string coupling constant scales out is that it does not enter the map 
between the moduli space of heterotic string vacua on a four-toms and (4, 4) conformal 
field theories on K3; the relation (4.37) could have been deduced by studying the 
description of quantum K3 moduli space in Ref. [ 31] instead of using low energy 
supergravity as we have done. 

Since we know from (4.37) and (4.29) how the parameters V and A~ of the Type 
IIA description are related to the heterotic string parameters, we can identify the ten- 
dimensional Type IIA string coupling constant a~0, given by 

V 1 
(~o)2  = (a~) 2. (4.38) 

We get 

_3/2 

a~o = q A7 (4.39) 

Thus, for rl --+ oo, the Type IIA theory is becoming strongly coupled. At the same 
time, according to (4.37) one has V ~ oo, so the Type IIA theory is becoming 
decompactified. 

In Section 2 we proposed a candidate for the strong coupling behavior of Type IIA 
on IRl°: it is given by deven-dimensional supergravity on R 1° x S 1 . To be more precise, 

the relation acted as follows on the massless modes. If  the line dement of the eleven- 
dimensional theory is ds 2 = G~?dxidx j -4- r21 (dxll)  2, i , j  = 1 . . . . .  10, with G l° a metric 

on IR 1° and rll the radius of  the circle, then rll is related to the ten-dimensional Type 
IIA string coupling constant by 

rl (4.40) rll = (A~0)2/3 = ,,~2/3 

and the Type IIA metric g~ is related to G 1° by 

g' = ( .,~tl0 ) 2/3G1°. (4.41) 

As this result holds for any fixed metric g~ on R 1°, it must, physically, hold on any 

ten-manifold M as long as the dimensions of M are scaled up fast enough compared to 

the growth of the ten-dimensional string coupling constant. I will assume that with A~0 
and V going to infinity as determined above, one is in the regime in which one can use 
the formulas (4.40), (4.41) that govern the strong coupling behavior on R l°. 

If  this is so, then from (4.41) the volume l~l of the K3 using the metric of the 
eleven-dimensional supergravity is related to the volume V using the string metric of 
the Type IIA description by 

VI 1 = ( ,~tl 0)  - 4 / 3 V  = 1 4 / 3 " - 2 I / -  " 7  "1 - - A4/3" (4.42) 

Now we have the information we need to solve our problem. The heterotic string on 
]~6 X S 1 )< T 3, with radius rl of the S l and string coupling constant AT, is related to 
eleven-dimensional supergravity o n  R 6 × S 1 × K3, where the radius of the S 1 is given in 
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(4.40) and the volume of the K3 in (4.42). We are supposed to take the limit rl ~ cxD 

and then consider the behavior for large A7. The key point is that Vll is independent of  
rl. This enables us to take the limit as rl ~ c~; all that happens is that rll --* ~ ,  SO 
the R 6 )< S 1 )< K3 on which the supergravity theory is formulated becomes R 7 x K3. 

(Thus we see Lorentz invariance between the "eleventh" dimension which came from 
strong coupling and six of the "original" dimensions.) The dependence on the heterotic 
string coupling ,~7 is now easy to understand: it is simply that the volume of the K3 

,~4/3 That is of course the behavior of the volume expected from (4.27). So is Vii ~ "'7 " 

the relation that we have proposed between the heterotic string in seven dimensions and 

eleven-dimensional supergravity on N 7 × K3 fits very nicely with the implications of 
string-string duality in six dimensions. 

5. On heterotic string dynamics above seven dimensions 

By now we have learned that the strong coupling dynamics of Type II superstrings 

is, apparently, tractable in any dimension and that the same appears to be true of the 

heterotic string in dimension ~< 7. Can we also understand the dynamics of the heterotic 
string above seven dimensions? 

It might be possible to extend the use of six-dimensional string-string duality above 
seven dimensions (just as we extended it above six dimensions at the end of the last 

section). This will require more careful analysis of the K3's and probably more subtle 
degenerations than we have needed so far. 

But is there some dual description of the heterotic string above seven dimensions that 
would give the dynamics more directly? For instance, can we find a dual of the heterotic 
string directly in ten dimensions? 

Once this question is asked, an obvious speculation presents itself, at least in the case 

of SO(32).  (For the E8 × E8 theory in ten dimensions, I have no proposal to make.) 
There is another ten-dimensional string theory with SO(32) gauge group, namely the 
Type I superstring. Might they in fact be equivalent? 21 

The low energy effective theories certainly match up; this follows just from the low 

energy supersymmetry. Moreover, they match up in such a way that strong coupling of 
one theory would turn into weak coupling of the other. This is an essential point in any 
possible relation between them, since weak coupling of one is certainly not equivalent 

to weak coupling of the other. In terms of the metric g, dilaton ~b, two-form B, and 
gauge field strength F, the heterotic string effective action in ten dimensions scales with 
the dilaton like 

f dl°x x/~ + + + (5 . l )  e-24, (R IV,~l 2 F ~ IdBI2). 

21 The SO(32) heterotic string has particles that transform as spinors of SO(32); these are absent in the 
elementary string spectrum of Type I and would have to arise as some sort of solitons if these two theories 
are equivalent. 
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If  we transform g = e~g ~ and ~b = -~b', this scales like 

f ÷ I ,'t ÷e ÷ 

This is the correct scaling behavior for the effective action of the Type I superstring. 

The gauge kinetic energy scales as e - #  instead of e -2#  because it comes from the disc 
instead of the sphere. The B kinetic energy scales trivially with ~b ~ in Type I because B 

is an RR field. The fact that ~b = -~b ~ means that strong coupling of one theory is weak 
coupling of the other, as promised. 

Though a necessary condition, this is scarcely strong evidence for a new string-string 

duality between the heterotic string and Type I. However, given that the beterotic and 
Type II superstrings and eleven-dimensional supergravity all apparently link up, one 
would be reluctant to overlook a possibility for Type I to also enter the story. 

Let us try to use this hypothetical new duality to determine the dynamics of the 

heterotic string below ten dimensions. (Below ten dimensions, the SO(32) and E8 × Es 

heterotic strings are equivalent [9], so the following discussion applies to both.) We 
formulate the heterotic string, with ten-dimensional string coupling constant A, on R e x 

T l°-d with T l°-e  a ( 10 - d)-torus of radius r. This would be hypothetically equivalent 
to a toroidally compactified Type I theory with coupling constant A t = 1/A and (in view 

of the Weyl transformation used to relate the low energy actions) compactification scale 
r' = r /A  1/2. Thus, as A ~ co for fixed r, A' goes to zero, but r r also goes to zero, making 

the physical interpretation obscure. It is more helpful to make a T-duality transformation 
of the Type I theory to one with radius r n = 1/r ~. The T-duality transformation has 

a very unusual effect for Type I superstrings [ 11], mapping them to a system that is 
actually somewhat similar to a Type II orbifold; the relation of this unusual orbifold to 

the system considered in Section 4 merits further study. The T-duality transformation 

also changes the ten-dimensional string coupling constant to a new one A" which obeys 

(r ')lO-d (r , ' ) lo-a 
= - -  ( 5 . 3 )  (a,) 2 (,v,) 2 

so that the d-dimensional effective Newton constant is invariant. Thus 

ar '=  ,~' ( r " ~  (~°-d)/2 A(s-d)/2 
\-~71 = riO_ a (5.4) 

So for d = 9, the strong coupling problem would be completely solved: as A --* co 
with fixed r, A" --, 0 (and r" --~ oo, which gives further simplification). For d = 8, we 
have a story similar to what we have already found in d = 5 and 7 (and for Type IIA 
in d = 10): though A n is of  order 1, the fact that r n --* co means that the coupling is 

weak at the compactification scale, so that one should have a weakly coupled description 
of the light degrees of freedom. But below d = 8, the transformation maps one strong 

coupling limit to another. 
Of course, once we get down to seven dimensions, we have a conjecture about the 

heterotic string dynamics from the relation to Type II. Perhaps it is just as well that the 
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speculative relation of the heterotic string to Type I does not give a simple answer below 
eight dimensions. If there were a dimension in which both approaches could be applied, 
then by comparing them we would get a relation between (say) a weakly coupled Type 
II string and a weakly coupled Type I string. Such a relation would very likely be false, 
so the fact that the speculative string-string duality in ten dimensions does not easily 
determine the strong coupling behavior below d = 8 could be taken as a further (weak) 
hint in its favor. 
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