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1 Introduction

In 1907, Einstein described his “happiest thought” [1] which marked the commencement of

the race to create the Theory of General Relativity. Unrealized, he was already decidedly

at a disadvantage. As early 1900, the astronomer Karl Schwarzschild (1873–1916) [2] had

written about Riemann’s geometrical concepts to describe curved space — but not curved

space-time. The latter would not emerge until Hermann Minkowski introduced the concept

of “four-geometry” into physics [3, 4].

By 1914, there were a number of competitors. At a minimum, these included Max

Abraham (1875–1922), Gustav Mie (1868–1957), and Gunnar Nordström (1881–1923).

Even the accomplished mathematician David Hilbert (1862–1943) became involved but

at the conclusion made the comment in his own work, “The differential equations of grav-

itation that result are, as it seems to me, in agreement with the magnificent theory of

general relativity established by Einstein [5].”

Along the pathway to the end of the race, the idea of scalar gravitational theories was

explored. It is of note that Nordström created two such sets of equations [6, 7] and even

Einstein looked at this idea before discarding it. In the scalar approach, the usual metric

of the space-time manifold is replaced by a single scalar field. A way to do this is to begin

with the Minkowski metric and simply multiply it by a scalar field. This implies that,

geometrically, scalar theories of gravitation are all members of the same conformal class as

the usual flat Minkowski metric. Mathematically, scalar gravitation theories are perfectly

consistent models they simply do not describe the physical laws observed in our universe.

In the nineteen eighties, superspace geometrical descriptions of supergravity in eleven

and ten dimensions were presented in the physics literature. To the best of our knowledge

a list of these inaugural publications looks as:

(a). 11D, N = 1 supergravity [8, 9],

(b). 10D, N = 2A supergravity, [10],

(c). 10D, N = 2B supergravity [11, 12], and

(d). 10D, N = 1 supergravity [13].

Of course these theories had been obtained in other descriptions even earlier. Interested

parties are directed to these works for such references.

If we think of the references in [8–13] as the eleven and ten dimensional analogs of

Einstein’s “happiest thought,” then by analogy all developments since these works are

analogs of the race to find the Theory of General Relativity. This also reveals a glaring

disappointment. Since the “bell was rung” in this new race, all the competition is still at

the starting line.

How would one know the race has been successfully ended? As indicated by the title of

the work [9] (“Eleven-Dimensional Supergravity on the Mass-Shell in Superspace”), these

descriptions possess sets of Bianchi identities that are consistent only when the equations

of motion for the component fields in the theory satisfy their mass-shell conditions. This
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holds true for all of the works in [8–13]. So we may take as the sign of the successful

completion of the race, if a set of superspace geometries were explicitly found such that

their Bianchi identities do not require a mass shell condition. By way of comparison,

for 4D, N = 1 superspace supergravity, the analogs of the “happiest thought” and the

conclusion of the race occurred within one year as is seen via the works completed by Wess

and Zumino [14, 15].

A new urgency has recently appeared and which drives a need to improve the current

situation. Recent progress [17–19] occurred in the derivation of M-Theory corrections to

11D Supergravity. A series of procedures connecting the corrections to a 3D, N = 2 Chern-

Simons theory [20–23] (used in a role roughly analogous to world-sheet σ-model β-function

calculations for string corrections) has been successfully demonstrated.

Though the works in [17–19] have presented a method of deriving these corrections

beyond the supergravity limit, these solely treat purely bosonic M-Theory corrections, with

no equivalent results describing fermionic corrections. One traditional way of accomplishing

this is to embed the purely bosonic results into a superspace formulation. This impels us

to a renewed interest in 11D supergravity in superspace. The goal we are pursuing is

to find a Salam-Strathdee superspace [24], as modified by Wess & Zumino [14, 15], such

that superspace Bianchi identities in the Nordström limit allow for the appearance of the

M-Theory corrections.

In the earliest days of formulating the superspace understanding of supergravity, an

important discovery was made in a work by Grimm, Wess and Zumino [16] where it was

shown the dynamical equations of motion of the component fields contained within the

supergravity supermultiplet could be derived with no reference at all to a superspace action.

It is important to note all the superspace formulations in [8–13] exhibit this feature. In

fact, for the case of [12], there exists no universally accepted action principle to describe the

theory. . . even at the component level. Thus, using superspace formulations, the dynamics

of the component fields can be obtained without a complete knowledge of the structure of

the superfields that contain them. This allows for a “clean separation” between issues of

representations from those of dynamics of the component fields so being described. Our

investigation will follow this minimalist approach.

As noted by Misner and Watt [25], though scalar gravitational theories are not real-

istic, they have value as computational tools in numerical relativity. This raises a very

intriguing question. The quote, “History doesn’t repeat itself, but it often rhymes”,1 has

been stated about many situations. Since scalar gravitation models have value as compu-

tational tools for General Relativity, might extending them to eleven and ten dimensional

supergeometries offer new ways to replicate Einstein’s path from the “happiest thought”

to the higher level of understanding as indicated by his lectures at Göttingen?

It is the purpose of this work to lay a new foundation for such an exploration. We take

as a guiding principle the procedure used to provide the first example of a four dimensional

supergravity supermultiplet including auxiliary fields and where the closure of the local

simple supersymmetry algebra was not predicated on the use of field equations. This was

1Though often attributed to Mark Twain, there is little evidence of this being accurate.
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accomplished by Breitenlohner [26] who took his starting point as an off-shell supermulti-

plet, the so-called “non-abelian vector supermultiplet.” The final form of Breitenlohner’s

initial presentation realized a reducible representation of supersymmetry. Finally, this first

work also did not consider the issue surrounding the construction of an action for the

supermultiplet.

His approach is equivalent to starting with the component fields of the Wess-Zumino

gauge 4D, N = 1 vector supermultiplet (va, λb, d) together with their familiar SUSY trans-

formation laws,

Da vb = (γb)a
c λc ,

Daλb = − i 1

4
([ γc , γd ])ab ( ∂c vd − ∂d vc ) + (γ5)a b d ,

Da d = i (γ5γc)a
b ∂cλb ,

(1.1)

followed by choosing the gauge group as the spacetime translations, SUSY generators,

and the spin angular momentum generators as well as allowing additional internal sym-

metries. For the spacetime translations, this requires a series of replacements of the fields

according to:

vb → hb c , λb → ψc b , d→ Ac , (1.2)

(in the notation in [26] Aa = B5
a) while for the SUSY generators, the replacements occur

according to:

vb → χb c , λb → φb c , d→ χc
5 , (1.3)

and finally for the spin angular momentum generator, a replacement of

vb → ωb c d , λb → χb c d , d→ Dc d , (1.4)

was used. However, to be more exact, Breitenlohner also allowed for more symmetries like

chirality to be included. Because the vector supermultiplet was off-shell (up to WZ gauge

transformations) the resulting supergravity theory was off-shell and included a redundant

set of auxiliary component fields, i.e. this is not an irreducible description of supergrav-

ity. But as seen from (1.2) the supergravity fields were all present and together with the

remaining component fields a complete superspace geometry can be constructed.

With the Breitenlohner approach as a guiding principle to the study of a class of

curved supermanifolds containing eleven and ten dimensions, it is thus to be expected

the extensions will manifest the same structure of being off-shell but reducible, and not

address the issue of the construction of actions. No off-shell gauge vector supermultiplet

is known beyond six dimensions, thus one is forced to deviate from completely following

the Breitenlohner approach. Since a scalar superfield in any dimension greater than three

is guaranteed to be off-shell, but reducible, the expectation is to be led to the study of

Nordström supergravity theories in eleven and ten dimensions in this approach.

– 3 –
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In our approach to Nordström SG, the analog of the Wess-Zumino gauge 4D, N = 1

vector supermultiplet is played by a scalar superfield in any of the 11D or 10D superspaces

to be studied. This scalar superfield guarantees off-shell supersymmetry. However, like the

approach taken by Breitenlohner, the resulting theory is expected to be reducible. Also

like this earlier approach, the question of an action principle is not addressed.

We organize this current paper in the manner described below.

Section 2 provides a self-consistent introduction to the field-theory and gauge-theory

based formulation of gravitation described solely by a metric in D dimensions. We use a

frame field/spin-connection formulation from the beginning point of our discussion. This

eases the transition to the case of superspace as for these latter theories it is an impos-

sibility [27] to introduce a metric/Christoffel formulation (i.e. a Riemannian formulation)

in the context of a superspace geometry appropriate to supersymmetry. The restriction of

the full frame field to retain only the degree of freedom associated with its determinant is

presented along with:

(a). the well-known vanishing of the Weyl tensor, and

(b). the residual form of the Einstein-Hilbert action under this restriction.

Section 3 is a transitional one where we review 4D, N = 1 supergravity as a paradigm

setting arena. We show how the structure of this superspace in this well studied the-

ory suggests pathways that can be pursued for how to carry out construction of scalar

supergravitation in all higher dimensions including ten and eleven dimensional theories.

In sections 4 through 7, we deploy the lessons found in the third section to work in

making respective proposals for linearized theories of scalar supergravitation in the 11D,

N = 1, 10D, N = 2A, 10D, N = 2B, and 10D, N = 1 superspaces.

Section 8 is devoted to presentations of all the component level results implied by the

previous four sections. Each respective higher dimensional theory is treated as subsection

of this section.

Section 9 is a short section in comparison to the two that precede it. In 4D, N = 1

supergravity [28, 29], the concept of the “conformal compensator” was introduced some

time ago. The first of these references is distinguished from the second in that the compen-

sator is described by a chiral superfield, while in the second the alternative case where the

compensator is a complex linear superfield was introduced. It is the latter case which is

relevant to our exploration. However, we will demonstrate evidence that chiral superfields

exist for the 10D, N = 2B superspace. This is unique among superspaces of eleven and

ten dimensions. However, we also present evidence that though chiral superfields appear

to consistently exist in this context, the linearized Nordström superspace is such that a

chiral superfield of this type cannot be used as a compensator.

We follow this work with our conclusions, two appendices, and the bibliography.

– 4 –



J
H
E
P
0
7
(
2
0
1
9
)
0
6
3

2 Gauge theory perspective on ordinary gravity

The traditional geometrical approach to describing gravity can be regarded as having driven

an apparent wedge between general relativity and theory of elementary particles. Instead,

a gauge theory and field theory based point of view provides a logical foundation for gravity

which permits an alternative to geometry.

For gravitational theories in D dimensions, the gauge group can be taken as the

Poincaré group, and the Lie algebra generators are momentum Pm = −i∂m and spin

angular momentum generator Mab. These are taken to satisfy the following commutation

relations,

[ Pm , Pn ] = 0 , [ Mab , Pm ] = 0 , [ Mab , ∂c ] = ηca∂b − ηcb∂a , (2.1)

[ Mab ,Mcd ] = ηcaMbd − ηcbMad − ηdaMbc + ηdbMac , (2.2)

and it might appear that the definition Pm = −i∂m together with the second and third

equations among (2.1) are in contradiction. The resolution to this conundrum is to note

∂a ≡ δam ∂m , (2.3)

and the factor of δa
m actually corresponds to the vacuum value of the inverse frame field

ea
m whose first index transforms under the action of Mab and whose second index is inert

under the action of the spin angular momentum generator. To distinguish between these

two types of quantities, we use the “early” latin letters, a, b, etc. to denote indices that

transform under the action of Mab. Similarly, we use the “late” latin letters, m, n, etc. to

denote indices that do not transform under the action of Mab.

The covariant derivative with respect to this gauge group is

∇a ≡ eam∂m +
1

2
ωac

dMd
c , (2.4)

where ea
m is related to the metric through its inverse em

a via gmn = em
aηaben

b. The

commutator of ∇a generates field strengths torsions Tabc and curvatures Rabcd

[∇a , ∇b ] = Tab
c∇c +

1

2
Rabc

dMd
c . (2.5)

Scalar gravitation can be defined by restricting the form of the inverse frame field to

ea
m = ψ δa

m , (2.6)

where ψ is a finite scalar field. By definition, this defines a class of geometries that is

conformally flat in the context of strictly Riemannian spaces. To see this we begin by

setting Tabc = 0, which implies

∇a = ψ [ ∂a − (∂b lnψ)Ma
b ] . (2.7)

and allows the full Riemann curvature tensor to be solely expressed in terms of the ψ field as

R
cd

ab = −ψ(∂[a∂
[cψ)δ

d]
b] + (∂eψ)(∂eψ)δ

c
[aδ

d
b] , (2.8)

– 5 –
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similarly for the Ricci curvature we find

R c
a = R

cb
ab = −(D − 2)ψ(∂a∂

cψ)− ψ(�ψ)δ c
a + (D − 1)(∂eψ)(∂eψ)δ c

a , (2.9)

and finally for the curvature scalar by R = δ
a
c R

c
a ,

R = −2(D − 1)ψ(�ψ) +D(D − 1)(∂eψ)(∂eψ) . (2.10)

The Weyl tensor Ca bc d is defined by the equation

Ca bc d = Ra b
c d −

[
1

D − 2

]
R[a

[cδb]
d] +

[
1

(D − 2)(D − 1)

]
δ
c

[aδ
d
b] R , (2.11)

and when the results in (2.8)–(2.10) are used, this is found to vanish.

We define e ≡ det(ea
m) = ψD and the Einstein-Hilbert action takes the form

SEH =
3

κ2

∫
dDx e−1R(ψ) =

3

κ2

∫
dDxψ−D

[
− 2(D − 1)ψ(�ψ) +D(D − 1)(∂eψ)(∂eψ)

]
=

3

κ2

∫
dDx

[
− 2(D − 1)ψ1−D(�ψ) +D(D − 1)ψ−D(∂eψ)(∂eψ)

]
= − 3

κ2
(D − 1)

∫
dDx

{
(D − 2)

[
ψ−D(∂eψ)(∂eψ)

]
+ 2∂e

[
ψ1−D(∂eψ)

]}
. (2.12)

As the full off-shell description of 10D and 11D supergravities are yet unknown, we

work with a toy model-scalar supergravity in the higher dimensions, which we expect gives

part of the complete solutions. In the subsequent sections, we replace ψ by 1 + Ψ, where

Ψ is an infinitesimal superfield, and study the corresponding linearized supergravity.

3 Nordström supergravity in 4D, N = 1 supergeometry

As a preparatory step for our eventual goals, it is important that we re-visit four dimen-

sional N = 1 linearized supergravity as there are important lessons to be gained from ask-

ing questions solely in this domain prior to making the leap to eleven and ten dimensions.

The formulation of linearized 4D, N = 1 supergravity in term of the usual supergravity

pre-potential Ha was identified long ago [30]. It is perhaps of importance to note that su-

pergravity pre-potentials bare some resemblance to other better known concepts important

for the mathematical description of theories describing ordinary gravitation.

One of the most computationally enabling formulations of the dynamics of ordinary

gravitation is based on the Arnowitt-Deser-Meisner (ADM) formulation [31] wherein the

quadratic form involving the metric is expressed in the form

dxm gmn dx
n =

(
−N2+N iδ

i jN j

)
dt⊗dt+N i

(
dt⊗dxi + dxi⊗dt

)
+gi j dx

idxj , (3.1)

– 6 –
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in terms of the “lapse” function N , “shift” vector N i, and induced 3-metric gi j . For the

equation above to be valid, we can write dxm =
(
c dt, dx1, dx2, dx3

)
and

gmn =



1
c2

[−N2 +N iδ
i jN j ] 1

c N1
1
c N2

1
c N3

1
c N1 g1 1 g1 2 g13

1
c N2 g2 1 g2 2 g2 3

1
c N3 g3 1 g3 2 g3 3


. (3.2)

The introduction of frame fields can be accomplished by observing that the quadratic form

in (3.1) may also be written as

dxm gmn dx
n ≡ dxm ema ηab enb dxn , (3.3)

by “factorizing” the metric into the product of two frame fields em
a(x) and en

b(x) multi-

plied by the constant Minkowski metric, ηab, of flat spacetime. Thus, there exist relations

between the ADM variables and the frame fields [32, 33].

The point of the above discussion is to note that the inverse frame fields ea
m may be

regarded as functions of the ADM variables, i.e.

ea
m = ea

m
(
N, N i, gi j

)
, (3.4)

and that for numerical relativity calculations, the latter are far more useful than the frame

fields em
a, or even the metric gmn itself. As we will see later, it is the form of 4D, N = 1

supergravity often called the “Breitenlohner auxiliary field set” that is relevant to our work.

For this formulation, it was first shown in the work of [29] the super-frame superfields EA
M

are expressed in terms of a more fundamental set of superfields, i.e. the prepotentials Hm

and Ψ (with the “conformal compensator” explicitly dependent upon a complex linear

superfield). In an “echo” of the utility of the ADM variables, the prepotentials are far

more useful when component calculations, or quantum calculations are undertaken, with

the latter able to utilize the technology of super Feynman graphs.

As in the discussion of section 7.5 in [34], we write (with X being the superfield

linearization of Ψ)

Eα = Dα+XDα+i
1

2
(DαH

b)∂b ,

E.
α = D.

α+XD.
α−i

1

2
(D.

αH
b)∂b ,

(3.5)

Ea = ∂a+i

[
1

2
D

2
D(αH

γ) .
α−(D.

αX)δα
γ

]
Dγ+i

[
−1

2
D2D(

.
αHα

.
γ)−(DαX)δ.α

.
γ

]
D.
γ

+
[
− 1

2
( [Dα , D.

α]Hb)+(X+X)δa
b
]
∂b .

(3.6)

for the linearized superframe superfields. Similar to the ADM formulation of ordinary

gravity, the superframe is expressed in terms of two independent superfields, Ha, and X.

– 7 –
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The remaining structures needed to specify the supergravity supercovariant derivatives are

the spin-connections which here take the forms

Φαβγ = −Cα(βDγ)X ,

Φ
α

.
β

.
γ

=
1

2
D2D

(
.
β |
Hα| .γ) ,

Φ.
αβγ = −1

2
D

2
D(βHγ)

.
α ,

Φaβγ = i
1

2
DαD

2
D(βHγ)

.
α + iCα(β|D.

αD|γ)X .

(3.7)

The superfield X introduced above is a general scalar superfield. This implies that the

linearized formulation described above is reducible because X is reducible. There are two

widely familiar choices that lead to irreducibility. One choice is implemented by picking X

to depend on Ha, and a chiral superfield φ (i.e. D.
αφ = 0). This is the path that leads to the

minimal off-shell formulation of 4D, N = 1 supergravity. For this choice, the commutator

algebra of the superspace supergravity covariant derivatives takes the forms

[∇α,∇β} = −2RMαβ , [∇α,∇.
α} = i∇a ,

[∇α,∇b} = −i Cαβ
[
R∇.

β
−Gγ .

β
∇γ
]
− i (∇.

β
R)Mαβ

+ i Cαβ

[
W .

β
.
γ

.
δM.

δ

.
γ − (∇δG

γ
.
β
)Mδ

γ
]
,

[∇a,∇b} =

{[
C.
α

.
β
Wαβ

γ +
1

2
Cαβ(∇(

.
αG

γ .
β)

)− 1

2
C.
α

.
β

(∇(αR )δ γ
β)

]
∇γ

+ i
1

2
CαβG

γ
(
.
α |∇γ| .β)

−
[
C.
α

.
β

(
∇αWβδγ +

1

2
Cδ(αCβ)γ (∇2

R+ 2RR)

)
− 1

2
Cαβ (∇(

.
α |∇γGδ| .β)

)

]
Mγδ

}
+ h.c. .

(3.8)

The other widely known choice “the Breitenlohner auxiliary field set” is implemented

by picking X to depend on Ha, and a complex linear superfield Σ (i.e. D2Σ = 0). This is

the path that leads to the non-minimal off-shell formulation of 4D, N = 1 supergravity. For

this choice, the commutator algebra of the superspace supergravity covariant derivatives

takes the forms

[∇α , ∇β}=
1

2
T(α∇β)−2RMαβ ,

[∇α , ∇.
β
}= i∇

α
.
β
,

[∇α , ∇b}=
1

2
Tβ∇

α
.
β
−iCαβ

[
R+

1

4
(∇γTγ)

]
∇.
β

+i

[
CαβG

γ .
β
− 1

2
Cαβ

((
∇γ+

1

2
T γ
)
T .
β

)
+

1

2
(∇.

β
Tβ )δα

γ

]
∇γ

−i
[
Cαβ (∇γG

δ
.
β
)Mγ

δ+
(

(∇.
β
−T .

β
)R
)
Mαβ

]
+iCαβ

[
W .

β
.
γ

.
δM.

δ

.
γ+

1

6

(
∇δ
(
∇δ+

1

2
Tδ

)
T .
γ

)
M.

β

.
γ+

1

3
RT .

γM.
β

.
γ

]
.

(3.9)

– 8 –



J
H
E
P
0
7
(
2
0
1
9
)
0
6
3

The final commutator [∇a , ∇b}, derived from equation (3.9), is explicitly found to be

[∇a,∇b}=

{
i
1

2
(∇βT .

β
)∇a−i

1

2
(∇.

αTβ)∇
α

.
β
−iC.

α
.
β

[
Gβ

.
γ+

1

2

((
∇

.
γ
+

1

2
T

.
γ
)
Tβ

)]
∇α .

γ

+
1

2

[
(∇.

α∇.
β
Tβ)− 1

2
T .
β

(∇.
αTβ)

]
∇α

−C.
α

.
β

[
(∇αR)+

1

4
(∇α∇

.
γ
T .
γ)+

1

3
RTα−

1

12

(
∇

.
γ

(∇.
γ−T .

γ)Tα
)]
∇β

+C.
α

.
β
Wβα

γ∇γ+Cαβ

[
(∇.

αG
γ .
β
)− 1

2
T .
β
Gγ .

α

]
∇γ+

1

2
Cαβ

[
1

2
(∇γT .

α)T .
β

−
(
∇.
α

(
∇γ+

1

2
T γ
)
T .
β

)
+

1

2

((
∇.
α+

1

2
T .
α

)
T .
β

)
T γ
]
∇γ

+
[
−(∇.

α∇.
β
R)+

1

2
(∇.

αR)T .
β

+R
(
∇.
α+

1

2
T .
α

)
T .
β

]
Mαβ

+2C.
α

.
β
R

[
R+

1

4
(∇

.
γ
T .
γ)

]
Mαβ

− 1

6
C.
α

.
β

[
RTβ Tγ+

1

2
Tβ (∇

.
δ∇.

δ
Tγ)+

1

4
Tβ Tγ (∇

.
δ
T .
δ
)

]
Mα

γ

+
1

6
C.
α

.
β

[
2(∇αR)Tγ+2R (∇αTγ)+

(
∇α∇

.
δ
(
∇.
δ
+

1

2
T .
δ

)
Tγ

)
+

1

2
(∇

.
δ
T .
δ
)(∇αTγ)

]
Mβ

γ

−Cαβ
[
(∇.

α∇
γG

δ
.
β
)− 1

2
T .
β

(∇γGδ .
α)
]
Mγ

δ+C.
α

.
β

[
(∇αWβδ

γ)− 1

2
TβWαδ

γ
]
Mγ

δ

}
+h.c. . (3.10)

Under either choice, one can use the definitions of the superframe superfields in (3.5)–

(3.7) together with the set of equations of either (3.8) or (3.9) and (3.10) to find the

dependence of Wαβγ , Ga, and R (for the minimal theory) on Ha, and φ, or the dependence

of Wαβγ , Ga, R, and Tα on Ha, and Σ (for the non-minimal theory). These are the standard

and well discussed theories of off-shell 4D, N = 1 supergravity, i.e. the consistency of the

Bianchi identities associated with (3.8) or (3.9) and (3.10) for the algebra of the superspace

supergravity covariant derivatives do not require on-shell conditions to be imposed on the

component fields contained within the superfields.

The process of imposing the Einstein Field Equations in the non-supersymmetrical

case in the absence of matter amounts to the condition

Ra b −
1

2
ηabR = 0 , (3.11)

excluding the cosmological constant.2 The equivalent condition in the case of superspace

supergravity arises by setting Ga, and R (for the minimal theory) to zero or by setting Ga,

and Tα (for the non-minimal theory) to zero. The condition Tα = 0 also forces R = 0 in

the non-minimal theory. Under these conditions, the algebra of superspace supergravity

2The reason the cosmological constant can be ignored in our considerations is because unlike in four

dimensions, there exists no evidence currently available in the literature that it is possible to construct

spaces of constant curvature in ten or eleven dimensions with their respective superspaces.
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covariant derivatives takes the universal form

[∇α,∇β} = 0 , [∇α,∇.
α} = i∇a ,

[∇α,∇b} = i Cαβ [ W .
β

.
γ

.
δM.

δ

.
γ ] ,

[∇a , ∇b} = C.
α

.
β
Wβα

γ ∇γ + C.
α

.
β

(∇αWβγ
δ)Mδ

γ + h.c. .

(3.12)

At this point, we can take a largely unexplored path as it is possible to consider the

limit of these equations wherein Ha = 0. This is the route to the 4D, N = 1 superspace

version of scalar supergravitation theory à la Nordström in the eleven and ten dimensions

that are the targets of our study.

The curious reader may wonder from where does the condition Ha = 0 arise? On page

335, of [34] there appears the following text.

Nonsupersymmetric deSitter covariant derivatives can be obtained from grav-

itational covariant derivatives by eliminating all field components except the

(density) compensating field (i.e., the determinant of the metric or vierbein).

This follows from the fact that in deSitter space the Weyl tensor vanishes, which

says that there is no conformal (spin 2) part to the metric: it is conformally flat.

From the discussion given in section 2, we saw that Nordström geometries in all dimensions

are necessarily such as to describe Weyl tensors that vanish and are hence conformally flat.

Also in the work of [34] it is explained that the conformal part of the metric arises solely

from Ha. Since the Nordström limit is a conformally flat bosonic space, it must corresponds

to setting Ha = 0. Thus, to our knowledge the passage above from “Superspace” marked

the first indication of this. Of course, other authors such as in the work of [35] later

reaffirmed this point about the structure of superspace of supergravity.

In the limit of our interest, we find

Eα = Dα +XDα , E.
α = D.

α +XD.
α ,

Ea = ∂a − i
[
(D.

αX)δα
γ
]
Dγ − i

[
(DαX)δ.α

.
γ
]
D.
γ +

[
(X +X)δa

b
]
∂b ,

Φαβγ = −Cα(βDγ)X , Φ
α

.
β

.
γ

= 0 , Φ.
αβγ = 0 , Φaβγ = iCα(β|D.

αD|γ)X .

(3.13)

In response to this restriction, the forms of the algebras in (3.8), (3.9) and (3.10)

also change. In particular, the superfield Wαβγ (and consequently Wαβγδ) is identically

zero. The latter condition is consistent with the component level description of scalar

gravitation in the previous section as the Weyl tensor of (2.11) is the leading component

field that occurs in Wαβγδ and occurs at first order in the θ-expansion of Wαβγ . The third

result in (3.13) also contains two useful bits of information:

(a). The final term of the equation informs us that the leading term in the θ-expansion

of X +X corresponds to the linearization of ψ seen in equation (2.6).

(b). The second term of the equation informs us that the leading term in the θ-expansion

of (D.
αX)δα

γ corresponds to the spin-1/2 remnant of the gravitino!

Another point to discuss is the dependence of the field strength superfields Ga, and R

(for the minimal theory) and Ga, R, and Tα (for the non-minimal theory) on the superfield

– 10 –
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X. Direct calculation shows that the reality of Ga in both cases implies that it only

depends on the difference i(X − X). The superfield Tα is found to depend on the first

spinor derivative (i.e. Dα) of X. Finally, the superfield R is found to depend on the second

spinorial derivative of an expression linear in X and X.

We have argued previously [36], the minimal supergravity theory does not extend from

four dimensions to eleven dimensions since there is no concept of chirality in the eleven

dimensional superspace. This implies that only features seen in the non-minimal theory

should be expected to occur in the subsequent sections of this work. As we shall see,

this is indeed the case. The commutator algebra for the superspace supergravity covariant

derivatives responds to the condition Ha = 0, by the elimination of all terms proportional

to Wαβγ and Wαβγδ. Thus, we find 4D, N = 1 Nordström supergravity that descends

from ten or eleven dimensions and only contains the generators associated with 4D, N = 1

simple supegravity is described by

[∇α , ∇β}=
1

2
T(α∇β)−2RMαβ ,

[∇α , ∇.
β
}= i∇

α
.
β
,

[∇α , ∇b}=
1

2
Tβ∇

α
.
β
−iCαβ

[
R+

1

4
(∇γTγ)

]
∇.
β

+i
[
CαβG

γ .
β
− 1

2
Cαβ

((
∇γ+

1

2
T γ
)
T .
β

)
+

1

2
(∇.

β
Tβ )δα

γ
]
∇γ

−i
[
Cαβ (∇γG

δ
.
β
)Mγ

δ+
(

(∇.
β
−T .

β
)R
)
Mαβ

]
+iCαβ

[
1

6

(
∇δ
(
∇δ+

1

2
Tδ

)
T .
γ

)
M.

β

.
γ+

1

3
RT .

γM.
β

.
γ
]
,

[∇a , ∇b}=

{
i
1

2
(∇βT .

β
)∇a−i

1

2
(∇.

αTβ)∇
α

.
β
−iC.

α
.
β

[
Gβ

.
γ+

1

2

((
∇

.
γ
+

1

2
T

.
γ
)
Tβ

)]
∇α .

γ

+
1

2

[
(∇.

α∇.
β
Tβ)− 1

2
T .
β

(∇.
αTβ)

]
∇α

−C.
α

.
β

[
(∇αR)+

1

4
(∇α∇

.
γ
T .
γ)+

1

3
RTα−

1

12

(
∇

.
γ

(∇.
γ−T .

γ)Tα
)]
∇β

+Cαβ

[
(∇.

αG
γ .
β
)− 1

2
T .
β
Gγ .

α

]
∇γ+

1

2
Cαβ

[
1

2
(∇γT .

α)T .
β

−
(
∇.
α

(
∇γ+

1

2
T γ
)
T .
β

)
+

1

2

((
∇.
α+

1

2
T .
α

)
T .
β

)
T γ
]
∇γ

+
[
−(∇.

α∇.
β
R)+

1

2
(∇.

αR)T .
β

+R (∇.
α+

1

2
T .
α)T .

β

]
Mαβ

+2C.
α

.
β
R

[
R+

1

4
(∇

.
γ
T .
γ)

]
Mαβ

− 1

6
C.
α

.
β

[
RTβ Tγ+

1

2
Tβ (∇

.
δ∇.

δ
Tγ)+

1

4
Tβ Tγ (∇

.
δ
T .
δ
)

]
Mα

γ

+
1

6
C.
α

.
β

[
2(∇αR)Tγ+2R (∇αTγ)+

(
∇α∇

.
δ
(
∇.
δ
+

1

2
T .
δ

)
Tγ

)
+

1

2
(∇

.
δ
T .
δ
)(∇αTγ)

]
Mβ

γ

−Cαβ
[
(∇.

α∇
γG

δ
.
β
)− 1

2
T .
β

(∇γGδ .
α)
]
Mγ

δ

}
+h.c. . (3.14)
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To our knowledge, the results in (3.14) mark the first time that a superspace description

using non-minimal supergravity (one irreducible version of the Breitenlohner formulation)

of 4D, N = 1 Nordström supergravity has appeared in the literature. As we consider higher

dimensional theories, we set the cosmological constant to zero and the original non-minimal

theory is sufficient for our purposes.

To summarize, the limit of off-shell 4D, N = 1 superfield supergravity where we only

retain the conformal compensator provides a superspace extension of the Nordström su-

pergravitation theory that is discussed in section 3. We will make a working assumption

that such an approach is universally applicable to all superspaces. In particular, in the

subsequent sections we will apply this assumption to superspaces whose bosonic subspaces

possess either eleven or ten dimensions.

4 Linearized Nordström supergravity in 11D, N = 1 supergeometry

We begin our discussion by reviewing the work of [8, 9] where it was shown that the entire

structure of the torsions, curvatures, and 4-form field strengths could be written in terms

of a single superfield denoted by Wabcd. Using the conventions of [36], we can write

Tαβ
c = i(γc)αβ , Fαβcd =

1

2
(γcd)αβ , Fabcδ = 0 ,

Fαβγδ = Fαβγd = 0 , Fcdef = Wcdef ,

Tαβ
γ = 0 , Tαb

c = 0 ,

Tαb
γ = i

1

144
(γb

cdef + 8δb
cγdef )α

γWcdef ,

Rαβcd =
1

3
(γef )αβWcdef +

1

72
(γcd

efgh)αβWefgh .

(4.1)

In addition to the torsion and curvature supertensors, the formulation above includes the

4-form supertensor, FABCD. It should be noted that these equations in (4.1) are the eleven

dimensional analog of the equations in (3.12). In other words, the supergeometry in (4.1) is

an “on-shell” supergeometry. We must find a supergeometry consistent with the Nordström

theory as the analog of (3.14).

We now wish to construct the linearized torsion and curvature supertensors with the

property that when all fermions are set to zero, the theory smoothly maps to the lineariza-

tion of the non-supersymmetrical theory described in section 2.

For this purpose we introduce eleven dimensional supergravity covariant derivatives

linear in the infinitesimal conformal compensator Ψ given by

∇α = Dα +
1

2
ΨDα + l0(DβΨ)(γde) β

αMde , (4.2)

∇a = ∂a + Ψ∂a + il1(γa)
αβ(DαΨ)Dβ + l2(∂cΨ)M c

a ,

+ il3(γ de
a )αβ(DαDβΨ)Mde , (4.3)

where the “bare” superderivative operators Dα satisfy

{Dα,Dβ} = i(γa)αβ∂a , (4.4)
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and the torsion tensors and Riemann curvature tensors can be obtained via

[∇α,∇β} = Tαβ
c∇c + Tαβ

γ∇γ +
1

2
Rαβd

eMe
d ,

[∇α,∇b} = Tαb
c∇c + Tαb

γ∇γ +
1

2
Rαbd

eMe
d ,

[∇a,∇b} = Tab
c∇c + Tab

γ∇γ +
1

2
Rabd

eMe
d .

(4.5)

The commutation relations of the operators with the 11D Lorentz generators satisfy

[Mab,Dα} =
1

2
(γab)

β
α Dβ , (4.6)[

Mab, [Mcd,Dα}
}

+
[
Mcd, [Dα,Mab}

}
+
[
Dα, [Mab,Mcd}

}
= 0 , (4.7)

in addition to the relations seen in (2.1) and (2.2).

By imposing the constraints

T
c

ab = 0 , T
c

αβ = i(γc)αβ , (4.8)

we obtain the following parameterization results

l0 =
1

10
, l1 =

1

4
, l2 = −1 , l3 = 0 . (4.9)

In turn these lead to a set of results that express the torsion and curvature tensors solely

in terms of Ψ and its derivatives. We give these in the following.

For the components of the torsion we find the results seen in (4.10)–(4.15).

T
c

αβ = i(γc)αβ , (4.10)

T γ
αβ =

3

40
(γ[2])αβ(γ[2])

γδ(DδΨ) , (4.11)

T
c

αb =
3

4
δ
c
b (DαΨ) +

9

20
(γb

c) β
α (DβΨ) , (4.12)

T γ
αb = i

1

128

[
− (γb)

γ
α C

δε +
1

2
(γ[2]) γ

α (γb[2])
δε − 1

3!
(γb[3])

γ
α (γ[3])δε +

1

3!
(γ[3]) γ

α (γb[3])
δε

− 1

4!
(γb[4])

γ
α (γ[4])δε

]
(DδDεΨ) +

1

8
δ γ
α (∂bΨ) +

3

8
(γb

c) γ
α (∂cΨ) , (4.13)

T
c

ab = 0 , (4.14)

T γ
ab = −i1

4
(γ[a)

γδ(∂b]DδΨ) . (4.15)

For the components of the curvature we find the results seen in (4.16)–(4.18).

R
de

αβ =
1

80

[
(γde)αβC

γδ + (γ[1])αβ(γ[1]de)γδ − 1

2
(γ[2])αβ(γ[2]de)γδ − 1

3!
(γde[3])αβ(γ[3])

γδ

+
1

5!4!
εde[5][4](γ[5])αβ(γ[4])

γδ

]
(DγDδΨ) , (4.16)

R
de

αb = −(∂[dDαΨ)δ
e]
b +

1

5
(γde) δ

α (∂bDδΨ) , (4.17)

R
de

ab = −(∂[a∂
[dΨ)δ

e]
b] . (4.18)
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In reaching (4.10)–(4.18), we used the Fierz identities (A.24)–(A.27) listed in appendix A.

It is the last equation that ensures that we have reached our goal. Namely, the choice

of constraints in (4.9) has led to a linearized super Riemann curvature tensor expressed

solely in terms of an infinitesimal superfield Ψ that has the exact form of the first term

in the non-supersymmetrical Riemann curvature tensor given in (2.8). Recall that the

supersymmetrical theory here is linearized, so to make a proper comparison to the bosonic

theory, that should also be linearized. When this is done, there is a matching of the terms.

We should note the work in [36] also constructs a fully non-linear 11D supergeometry

in terms of a finite scalar compensator. However, its linearization is different from the one

obtained here. In the next three sections, we will obtain new and never before presented

results of this nature for the 10D, N = 2A, 10D, N = 2B, and 10D, N = 1 supergeometries

that possess the purely bosonic linearized results as in the linearization of (2.8). The Fierz

identities used for simplifying the torsions and curvatures in ten dimensions are listed in

appendix B.

5 Linearized Nordström supergravity in 10D, N = 1 supergeometry

We begin this discussion by pointing out the on-shell description of 10D, N = 1 superspace

supergravity. A set of torsion and curvature supertensors can be written in the form

Tαβ
c = i (σc)αβ , Tαβ

γ = −1

2

√
1

2

[
δ(α

γ δβ)
ε + (σa)αβ(σa)

γ ε
]
χε , Tαb

c = 0 ,

Tαb
γ = − 1

24
(σb σ

cde)α
γ

[
eΦHcde − i

1

8
(χσcde χ)

]
− 1

48
(σcde σb)α

γ

[
eΦHcde − i

1

16
(χσcde χ)

]
,

Rαβde = −i 1

4
(σc)αβ

[
3e−ΦHcde − i

5

16
(χσcde χ)

]
− i 1

24
(σabcde)αβ

[
e−ΦHabc − i

3

16
(χσabc χ)

]
,

Rαcde = −i 1

2

[
(σc)αγ Tde

γ − (σd)αγ Tec
γ − (σe)αγ Tcd

γ
]
, (5.1)

as was noted in the work of [37, 38]. In these expression Habc refers to the supercovariantized

field strength of a two-form Bab. The results in (5.1) are the 10D, N = 1 analogs of the

results in (3.12) for the 4D, N = 1 superspace geometry. That is the component fields

embedded in this supergeometry must obey a set of mass-shell conditions. To release these

conditions, one must find the 10D, N = 1 analogs of the equations in (3.9) and (3.10).

However, as our goal once more is to find a supergeometry consistent with the Nordström

theory, we seek the analogs of (3.14).

The covariant derivatives linear in the conformal compensator Ψ are given by

∇α = Dα + l0ΨDα + l1(σab) β
α (DβΨ)Mab , (5.2)

∇a = ∂a + l2Ψ∂a + il3(σa)
αβ(DαΨ)Dβ + l4(∂cΨ)M c

a + il5(σ de
a )γδ(DγDδΨ)Mde , (5.3)
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and similar to the case of the eleven dimensional theory, here we have

{Dα,Dβ} = i(σa)αβ∂a . (5.4)

The commutation relations of Poincare generators in 10D

[Mab,Dα} =
1

2
(σab)

β
α Dβ , (5.5)

is similar to the eleven dimensional case. Also the equation in (4.7) is valid in all ten

dimensional theories. There will be some slight modifications for the dotted and barred

spinor indices in type IIA and IIB supergravity, respectively.

By adoption of the constraints

T
c

ab = 0 , T
c

αβ = i(σc)αβ , (5.6)

we obtain the following parameterization results

l0 =
1

2
, l1 =

1

10
, l2 = 1 , l3 = −2

5
, l4 = −1 , l5 = 0 . (5.7)

As the consequence of this choice of parameters, we find the torsion supertensors given

in (5.8)–(5.13).

T
c

αβ = i(σc)αβ , (5.8)

T γ
αβ = 0 , (5.9)

T
c

αb =
3

5

[
δ
c
b δ

δ
α + (σ

c
b ) δ

α

]
(DδΨ) , (5.10)

T γ
αb = i

1

80

[
−(σ[2]) γ

α (σb[2])
βδ +

1

3
(σb[3])

γ
α (σ[3])βδ

]
(DβDδΨ)

− 3

10
δ γ
α (∂bΨ) +

3

10
(σ

c
b ) γ

α (∂cΨ) , (5.11)

T
c

ab = 0 , (5.12)

T γ
ab = i

2

5
(σ[a)

γδ(∂b]DδΨ) . (5.13)

For the components of the curvatures, we find the results seen in (5.14)–(5.16).

R
de

αβ =−i6
5

(σ[d)αβ(∂e]Ψ)− 1

40

[
1

3!
(σde[3])αβ(σ[3])

γδ+(σa)αβ(σ de
a )γδ

]
(DγDδΨ) , (5.14)

R
de

αb =−(Dα∂
[dΨ)δ

e]
b +

1

5
(σde) γ

α (∂bDγΨ) , (5.15)

R
de

ab =−(∂[a∂
[dΨ)δ

e]
b] . (5.16)

It has long been suggested [39] that a superfield with the structure of Gabc should

appear in the off-shell structure of 10D, N = 1 supergeometry and that it was related by

a superdifferential operator to an underlying unconstrained prepotential Vabc analogous to

Hm that appears in 4D, N = 1 supergravity. However, there are reasons to believe [37, 38]

that Vabc must be related to an even more fundamental spinorial prepotential Ψab
α. In

the equations of (5.11) and (5.14) the superfield Gabc ≡ (σabc)
γδ(DγDδΨ) has precisely the

structure suggested in the work by Howe, Nicolai, and Van Proeyen.
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6 Linearized Nordström supergravity in 10D, N = 2A supergeometry

We repeat the discussions as seen in the previous two sections with a beginning of the on-

shell description of 10D, N = 2A superspace supergravity. A set of torsion and curvature

supertensors can be written in the form

T
α

.
β

c = T.
α

.
β

γ = T
α

.
β

γ = T.
αβ

.
γ = Tαβ

.
γ = 0 ,

Tαb
c = T.

α b
c = Tab

c = 0 ,

Tαβ
c = i(σc)αβ , T.

α
.
β

c = i(σc).
α

.
β
,

Tαβ
γ =

[
δ(α

γδβ)
δ + (σa)αβ(σa)

γδ
]
χδ ,

T.
α

.
β

.
γ =

[
δ(

.
α

.
γδ.
β)

.
δ + (σa).

α
.
β
(σa)

.
γ
.
δ
]
χ.
δ
,

Tαb
γ = −1

8
(σde)α

γHbde , Cα .
αC

γ
.
γT.

γ b

.
α = −1

8
(σde)α

γGbde ,

Cγ .
γTαb

.
γ =

1

16
(σb)αδ

[
(σ[2])γ

δK[2] −
1

12
(σ[4])γ

δD[4]

]
,

Cα
.
αT.

α b
γ = − 1

16
(σb)

αδ

[
(σ[2])δ

γK[2] −
1

12
(σ[4])δ

γD[4]

]
,

(6.1)

as was noted in the work of [40]. In these expressions Habc refers to the supercovariantized

field strengths of a two-form Bab gauge field, and

Kab = e−ΦFab − χα(σab)β
αχβ ,

D[4] = 2e−ΦF̃[4] + χα(σ[4])β
αχβ .

(6.2)

with Fab and F̃[4] denoting supercovariantized field strengths for a gauge 1-form and a gauge

3-form respectively. The results in (6.1) are the 10D, N = 2A analogs of the results in

(3.12) for the 4D, N = 1 superspace geometry. Those are the component fields embedded

in this supergeometry must obey a set of mass-shell conditions. To release these conditions,

one must find the 10D, N = 2A analogs of the equations in (3.9) and (3.10). Again the

goal must be to find a supergeometry consistent with the Nordström theory, we seek the

analogs of (3.14). In analogy with the 3-form gauge field sector of 11D, N = 1 supergravity,

the gauge fields components are:

F
α

.
β

= C
α

.
β
eΦ , Fαβ = F.

α
.
β

= 0 ,

Fcα = ieΦ(σc)αβχ
β , Fc .

α = iCα .
αe

Φ(σc)
αβχβ ,

Gαβγ = Gaβ .
γ = Gabγ = Gab .γ = 0 ,

Gcαβ = i(σc)αβ , G
c
.
α

.
β

= −i(σc).
α

.
β
,

F̃αβγd = F̃αβcd = F̃.
α

.
β cd

= 0 ,

F̃
α

.
β cd

= eΦ(σcd)α
βC

β
.
β
,

F̃αbcd = −ieΦ(σbcd)αβχ
β , F̃.

α bcd = iCα .
αe

Φ(σbcd)
αβχβ .

(6.3)
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Φ denotes a dilaton superfield, and χα is its partner dilatino. All of the equations in

(6.1)–(6.3) describe the on-shell 10D, N = 2A theory, i.e. these are the analogs of (3.12).

The covariant derivatives linear in the conformal compensator Ψ are given by

∇α = Dα +
1

2
ΨDα + l0(σab) β

α (DβΨ)Mab (6.4)

∇.
α = D.

α +
1

2
ΨD.

α + l0(σab)
.
β
.
α

(D.
β
Ψ)Mab (6.5)

∇a = ∂a + l1Ψ∂a + il2(σa)
δγ(DδΨ)Dγ + il3(σa)

.
δ
.
γ(D.

δ
Ψ)D.

γ + l4(∂cΨ)M c
a

+ il5(σ cd
a )γδ(DγDδΨ)Mcd + il6(σ cd

a )
.
γ
.
δ(D.

γD.
δ
Ψ)Mcd (6.6)

where the Type IIA supersymmetry algebra

{Dα,Dβ} = i(σa)αβ∂a , {D.
α,D.

β
} = i(σa).

α
.
β
∂a , {Dα,D.

β
} = 0 (6.7)

is satisfied by the bare derivative operators.

By adopting the constraints

T
c

ab = 0 , T
c

αβ = i(σc)αβ , T
c

.
α

.
β

= i(σc).
α

.
β
, (6.8)

we obtain the following paramaterization values

l0 =
1

10
, l1 = 1 , l2 = l3 = −1

5
, l4 = −1 , l5 = l6 = 0 . (6.9)

As the consequence of this choice of parameters, we find the torsion supertensors given

in (6.10)–(6.27).

T
c

αβ = i(σc)αβ , (6.10)

T γ
αβ =

1

5
(σa)αβ(σa)

γδ(DδΨ) , (6.11)

T
.
γ

αβ = −1

5
(σa)αβ(σa)

.
γ
.
δ(D.

δ
Ψ) , (6.12)

T
c

.
α

.
β

= i(σc).
α

.
β
, (6.13)

T γ
.
α

.
β

= −1

5
(σa).

α
.
β
(σa)

γδ(DδΨ) , (6.14)

T
.
γ

.
α

.
β

=
1

5
(σa).

α
.
β
(σa)

.
γ
.
δ(D.

δ
Ψ) , (6.15)

T
c

α
.
β

= 0 , (6.16)

T γ

α
.
β

=
1

2

[
δ γ
α (D.

β
Ψ) +

1

10
(σab) γ

α (σab)
.
δ.
β

(D.
δ
Ψ)

]
, (6.17)

T
.
γ

α
.
β

=
1

2

[
δ

.
γ
.
β

(DαΨ) +
1

10
(σab)

.
γ
.
β

(σab)
δ
α (DδΨ)

]
, (6.18)

T
c

αb =
4

5
δ
c
b (DαΨ) +

2

5
(σ

c
b ) δ

α (DδΨ) , (6.19)

T γ
αb = i

1

80

[
−1

2
(σ[2]) γ

α (σb[2])
βδ +

1

3!
(σb[3])

γ
α (σ[3])βδ

]
(DβDδΨ)

− 2

5
δ γ
α (∂bΨ) +

2

5
(σ

c
b ) γ

α (∂cΨ) , (6.20)
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T
.
γ

αb = −i 1

80

[
(σb)

.
γ
α C

β
.
δ − (σc)

.
γ
α (σbc)

β
.
δ − 1

3!
(σ[3])

.
γ
α (σb[3])

β
.
δ +

1

2
(σb[2])

.
γ
α (σ[2])β

.
δ

+
1

4!
(σb[4])

.
γ
α (σ[4])β

.
δ

]
(DβD.

δ
Ψ) , (6.21)

T
c

.
α b

=
4

5
δ
c
b (D.

αΨ) +
2

5
(σ

c
b )

.
δ.
α

(D.
δ
Ψ) , (6.22)

T γ
.
α b

= −i 1

80

[
(σb)

γ
.
α
Cδ

.
β + (σc) γ

.
α

(σbc)
δ
.
β − 1

3!
(σ[3]) γ

.
α

(σb[3])
δ
.
β − 1

2
(σb[2])

γ
.
α

(σ[2])δ
.
β

+
1

4!
(σb[4])

γ
.
α

(σ[4])δ
.
β

]
(DδD.

β
Ψ) , (6.23)

T
.
γ

.
α b

= i
1

80

[
−1

2
(σ[2])

.
γ
.
α

(σb[2])
.
β
.
δ +

1

3!
(σb[3])

.
γ
.
α

(σ[3])
.
β
.
δ

]
(D.

β
D.
δ
Ψ)

− 2

5
δ

.
γ
.
α

(∂bΨ) +
2

5
(σ

c
b )

.
γ
.
α

(∂cΨ) , (6.24)

T
c

ab = 0 , (6.25)

T γ
ab = i

1

5
(σ[a)

γδ(∂b]DδΨ) , (6.26)

T
.
γ

ab = i
1

5
(σ[a)

.
γ
.
δ(∂b]D.

δ
Ψ) . (6.27)

For the components of the curvatures, we find the results seen in (6.28)–(6.33).

R
de

αβ =−i6
5

(σ[d)αβ(∂e]Ψ)− 1

40

[
1

3!
(σde[3])αβ(σ[3])

γδ+(σa)αβ(σ de
a )γδ

]
(DγDδΨ) , (6.28)

R
de

.
α

.
β

=−i6
5

(σ[d).
α

.
β
(∂e]Ψ)− 1

40

[
1

3!
(σde[3]).

α
.
β
(σ[3])

.
γ
.
δ+(σa).

α
.
β
(σ de
a )

.
γ
.
δ

]
(D.

γD.
δ
Ψ) , (6.29)

R
de

α
.
β

=
1

40

[
−C

α
.
β
(σde)γ

.
δ+(σde)

α
.
β
Cγ

.
δ− 1

2
(σ[2])α

.
β
(σde[2])γ

.
δ

+
1

2
(σde[2])

α
.
β
(σ[2])

γ
.
δ+

1

4!4!
εde[4][4̄](σ[4])α

.
β
(σ[4̄])

γ
.
δ

]
(DγD.

δ
Ψ) , (6.30)

R
de

αb =−(Dα∂
[dΨ)δ

e]
b +

1

5
(σde) γ

α (∂bDγΨ) , (6.31)

R
de

.
αb

=−(D.
α∂

[dΨ)δ
e]
b +

1

5
(σde)

.
γ
.
α

(∂bD.
γΨ) , (6.32)

R
de

ab =−(∂[a∂
[dΨ)δ

e]
b] . (6.33)

7 Linearized Nordström supergravity in 10D, N = 2B supergeometry

Now for a final time we replicate the discussions as seen in the previous three sections with

a beginning of the on-shell description of 10D, N = 2B superspace supergravity here. A

set of torsion and curvature supertensors can be written in the form

Tαβ̄
c = i(σc)αβ , Tαβ

c = Tᾱβ̄
c = 0 , Tab

c = 0 ,

Tαβ
γ = Tᾱβ̄

γ = Tαβ̄
γ̄ =

[
δ(α

γδβ)
δ + (σa)αβ(σa)

γδ
]
Λδ ,

Tαβ
γ̄ = Tᾱβ

γ = Tᾱβ̄
γ̄ =

[
δ(α

γδβ)
δ + (σa)αβ(σa)

γδ
]
Λδ ,

(7.1)
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Tαb
γ̄ =

1

24
(σb)αδ(σ

[3])δγ
[
e−2Φ(1 +W )G[3] − e−2Φ(1−W )G[3] − i(σ[3])

ελ(ΛεΛλ − ΛεΛλ)
]

+
1

96
(σ[3])αδ(σb)

δγ(G[3] +G[3]) ,

Tᾱb
γ =

1

24
(σb)αδ(σ

[3])δγ
[
e−2Φ(1 +W )G[3] − e−2Φ(1−W )G[3] + i(σ[3])

ελ(ΛεΛλ − ΛεΛλ)
]

+
1

96
(σ[3])αδ(σb)

δγ(G[3] +G[3]) ,

Tαb
γ = −Tᾱbγ̄ =

1

4
(σb)αδ(σ

d)δγ
[
e−2Φ∇d(W −W ) + i

7

4
(σd)

ελΛεΛλ

]
+ i

1

48
(σ[4])α

γ

[
1

8
(σb

[4])ελΛεΛλ −
5

3
e−2ΦF̃b

[4]

]
, (7.2)

Rαβcd = i
1

12
(σcd

[3])αβ

{
e−2Φ(1 +W )G[3] − e−2Φ(1−W )G[3] − i(σ[3])

ελ
[
ΛεΛλ − ΛεΛλ

]
− 1

4
(G[3] +G[3])

}
− i1

2
(σe)αβ

{
e−2Φ(1 +W )Gcde − e−2Φ(1−W )Gcde − i(σcde)ελ

[
ΛεΛλ − ΛεΛλ

]
+

1

4
(Gcde +Gcde)

}
, (7.3)

Rᾱβ̄cd = i
1

12
(σcd

[3])αβ

{
e−2Φ(1 +W )G[3] − e−2Φ(1−W )G[3] + i(σ[3])

ελ
[
ΛεΛλ − ΛεΛλ

]
− 1

4
(G[3] +G[3])

}
− i1

2
(σe)αβ

{
e−2Φ(1 +W )Gcde − e−2Φ(1−W )Gcde + i(σcde)

ελ
[
ΛεΛλ − ΛεΛλ

]
+

1

4
(Gcde +Gcde)

}
. (7.4)

as was noted in the portion of the work in [40] devoted to type IIB supergravity. We will

end our discussion here. As the astute reader can note the expressions are of increasing

complication. But the central message of the expressions in (7.1)–(7.4) is that the on-

shell description of the 10D, N = 2B theory exists in perfect analogy with the on-shell

description of 4D, N = 1 superspace given by the equations in (3.12).

Now for the covariant derivative operators linear in the conformal compensator Ψ and

necessary for a Nordström theory may be given by

∇α = Dα +
1

2
ΨDα + l0(σab) β

α (DβΨ)Mab (7.5)

∇ᾱ = Dα +
1

2
ΨDα + l0(σab) β

α (DβΨ)Mab (7.6)

∇a = ∂a + l1Ψ∂a + l2Ψ∂a + il3(σa)
αβ(DαΨ)Dβ + il4(σa)

αβ(DαΨ)Dβ

+ il5(σa)
αβ(DαΨ)Dβ + il6(σa)

αβ(DαΨ)Dβ

+ il7(σ de
a )αβ(DαDβΨ)Mde + il8(σ de

a )αβ(DαDβΨ)Mde

+ l9(∂cΨ)M c
a + l10(∂cΨ)M c

a (7.7)
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with the Type IIB supersymmetry algebra

{Dα,Dβ} = 0 , {Dα,Dβ} = 0 , {Dα,Dβ} = i(σa)αβ∂a . (7.8)

By adopting the constraints

T
c

ab = 0 , T
c

αβ̄
= i(σc)αβ , (7.9)

we have the following parameterization results

l1 = l2 =
1

2
, l3 = l4 = − 1

32
, l5 = l6 = − 27

160
,

l7 = l8 = 0 , l9 = l10 = −1

2
. (7.10)

As the consequence of this choice of parameters, we find the torsion supertensors given

in (7.11)–(7.28).

T
c

αβ = 0 , (7.11)

T γ
αβ =

2

5
(σc)αβ(σc)

γδ(DδΨ) , (7.12)

T γ̄
αβ = 0 , (7.13)

T
c

ᾱβ̄
= 0 , (7.14)

T γ

ᾱβ̄
= 0 , (7.15)

T γ̄

ᾱβ̄
=

2

5
(σc)αβ(σc)

γδ(DδΨ) , (7.16)

T
c

αβ̄
= i(σc)αβ , (7.17)

T γ

αβ̄
= − 1

320

[
(σ[3])αβ(σ[3])

γδ +
1

24
(σ[5])αβ(σ[5])

γδ

]
(DδΨ)

+
1

192

[
−(σ[3])αβ(σ[3])

γδ +
1

40
(σ[5])αβ(σ[5])

γδ

]
(DδΨ) , (7.18)

T γ̄

αβ̄
= − 1

320

[
(σ[3])αβ(σ[3])

γδ +
1

24
(σ[5])αβ(σ[5])

γδ

]
(DδΨ)

+
1

192

[
−(σ[3])αβ(σ[3])

γδ +
1

40
(σ[5])αβ(σ[5])

γδ

]
(DδΨ) , (7.19)

T
c

αb =

[
53

160
δ
c
b δ

γ
α +

59

160
(σ

c
b ) γ

α

]
(DγΨ) +

[
15

32
δ
c
b δ

γ
α +

1

32
(σ

c
b ) γ

α

]
(DγΨ) , (7.20)

T γ
αb = −31

64
δ γ
α (∂bΨ) +

27

320
δ γ
α (∂bΨ) +

15

64
(σ

c
b ) γ

α (∂cΨ) +
53

320
(σ

c
b ) γ

α (∂cΨ)

− i 1

512

[
1

2
(σ[2]) γ

α (σb[2])
βδ − 1

3!
(σb[3])

γ
α (σ[3])βδ

]
(DβDδΨ)

− i 27

2560

[
1

2
(σ[2]) γ

α (σb[2])
βδ − 1

3!
(σb[3])

γ
α (σ[3])βδ

]
(DβDδΨ) , (7.21)

T γ̄
αb = −i 1

512

[
1

2
(σ[2]) γ

α (σb[2])
βδ − 1

3!
(σb[3])

γ
α (σ[3])βδ

]
(DβDδΨ)

− i 27

2560

[
1

2
(σ[2]) γ

α (σb[2])
βδ − 1

3!
(σb[3])

γ
α (σ[3])βδ

]
(DβDδΨ) , (7.22)
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T
c

ᾱb =

[
15

32
δ
c
b δ

γ
α +

1

32
(σ

c
b ) γ

α

]
(DγΨ) +

[
53

160
δ
c
b δ

γ
α +

59

160
(σ

c
b ) γ

α

]
(DγΨ) , (7.23)

T γ
ᾱb = −i 1

512

[
1

2
(σ[2]) γ

α (σb[2])
βδ − 1

3!
(σb[3])

γ
α (σ[3])βδ

]
(DβDδΨ)

− i 27

2560

[
1

2
(σ[2]) γ

α (σb[2])
βδ − 1

3!
(σb[3])

γ
α (σ[3])βδ

]
(DβDδΨ) , (7.24)

T γ̄
ᾱb = −31

64
δ γ
α (∂bΨ) +

27

320
δ γ
α (∂bΨ) +

15

64
(σ

c
b ) γ

α (∂cΨ) +
53

320
(σ

c
b ) γ

α (∂cΨ)

− i 1

512

[
1

2
(σ[2]) γ

α (σb[2])
βδ − 1

3!
(σb[3])

γ
α (σ[3])βδ

]
(DβDδΨ)

− i 27

2560

[
1

2
(σ[2]) γ

α (σb[2])
βδ − 1

3!
(σb[3])

γ
α (σ[3])βδ

]
(DβDδΨ) , (7.25)

T
c

ab = 0 , (7.26)

T γ
ab = i

1

32
(σ[a)

γδ(∂b]DδΨ) + i
27

160
(σ[a)

γδ(∂b]DδΨ) , (7.27)

T γ̄
ab = i

1

32
(σ[a)

γδ(∂b]DδΨ) + i
27

160
(σ[a)

γδ(∂b]DδΨ) . (7.28)

For the components of the curvatures, we find the results seen in (7.29)–(7.34).

R
de

αβ =
1

40

[
1

3!
(σde[3])αβ(σ[3])

γδ − (σa)αβ(σ de
a )γδ

]
(DγDδΨ) , (7.29)

R
de

ᾱβ̄
=

1

40

[
1

3!
(σde[3])αβ(σ[3])

γδ − (σa)αβ(σ de
a )γδ

]
(DγDδΨ) , (7.30)

R
de

αβ̄
= −i3

5
(σ[d)αβ(∂e](Ψ + Ψ))− i 1

10
(σdef )αβ(∂f (Ψ + Ψ))

− 1

80

[
(σa)αβ(σ de

a )γδ − 1

2
(σ[2][d)αβ(σ

e]
[2])

γδ − 1

3!
(σde[3])αβ(σ[3])

γδ

]
(DγDδΨ)

− 1

80

[
(σa)αβ(σ de

a )γδ − 1

2
(σ[2][d)αβ(σ

e]
[2])

γδ − 1

3!
(σde[3])αβ(σ[3])

γδ

]
(DγDδΨ) ,

(7.31)

R
de

αb = −1

2
(Dα∂

[d(Ψ + Ψ))δ
e]
b +

1

5
(σde) γ

α (∂bDγΨ) , (7.32)

R
de

ᾱb = −1

2
(Dα∂

[d(Ψ + Ψ))δ
e]
b +

1

5
(σde) γ

α (∂bDγΨ) , (7.33)

R
de

ab = −1

2
(∂[a∂

[d(Ψ + Ψ))δ
e]
b] . (7.34)

8 Higher dimensional component considerations

In the following four subsections, we will appropriately adapt these results to the cases of

eleven and ten dimensional formulations appropriate for Nordström supergravity in those

contexts. There are four steps:

(a). define the Nordström SG linearized superspace supercovariant derivatives in terms

of a scalar prepotential leading to component fields,
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(b). express the geometrical tensors of each respective superspace in terms of the compo-

nent fields presented in the previous part,

(c). express the “composition rules” of the parameters of general coordinates, local

Lorentz, and local SUSY transformations, and

(d). write the component level SUSY transformation laws

that we undertake in each of the four cases of 11D, N = 1, 10D, N = 1, 10D, N = 2A,

and 10D, N = 2B theories.

8.1 Adaptation to 11D, N = 1 component/superspace results: step 1

In the case of the 11D N(ordström)-SG covariant derivatives we define

∇α = Dα +
1

2
ΨDα +

1

10
(γde)α

β(DβΨ)Mde , (8.1)

∇a = ∂a + Ψ∂a + i
1

4
(γa)

αβ(DαΨ)Dβ − (∂cΨ)Ma
c , (8.2)

and “split” the spatial 11D N-SG covariant derivative into two parts

∇a| = Da + ψa
γ∇γ | . (8.3)

On taking the θ → 0 limit the latter terms allows an identification with the gravitino and

the leading term in this limit yields a component-level linearized gravitationally covariant

derivative operator given by

Da =ea + φa
ιMι = ∂a + Ψ∂a + φa

ιMι . (8.4)

By comparison of the l.h.s. to the r.h.s. of (8.4), we see that a linearized frame field ea
m =

( 1 + Ψ)δa
m emerges to describe a scalar graviton. Finally, comparison of the coefficient

of the Lorentz generator Mι as it appears in the latter two forms of (8.4) informs us the

spin connection is given by

φc
de = −1

2
δc

[d(∂e]Ψ) . (8.5)

Comparing the result in (8.2) with the one in (8.3) a component gravitino is identified via

ψa
γ = i

1

4
(γa)

γδ(DδΨ) . (8.6)

However, as this expression contains an explicit γ-matrix we see that it really defines the

non-conformal spin-1
2 part of the gravitino to be

ψβ ≡ (γa)βγψa
γ . (8.7)

This is to be expected. As a Nordström type theory only contains a scalar graviton, it

follows only the “γ-trace” of the gravitino can occur. So then we have

DβΨ = i
4

11
(γa)βγψa

γ ≡ i 4

11
ψβ , (8.8)

in the θ → 0 limit.
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In order to complete the specification of the geometrical superfields also requires ex-

plicit definitions of the bosonic terms to second order in D-derivatives. So we define

bosonic fields:

K = Cγδ(DγDδΨ) , K[3] = (γ[3])
γδ(DγDδΨ) , K[4] = (γ[4])

γδ(DγDδΨ) , (8.9)

or in other words,

1

2
D[γDδ]Ψ =

1

32

{
CγδK −

1

3!
(γ[3])γδK[3] +

1

4!
(γ[4])γδK[4]

}
. (8.10)

We emphasize that the component fields (the K’s) are defined by the θ → 0 limit of these

equations. The results in (8.9) and (8.10) follow as results from a Fierz identity

δ[γ
αδδ]

β =
1

16

{
CγδC

αβ − 1

3!
(γ[3])γδ(γ[3])

αβ +
1

4!
(γ[4])γδ(γ[4])

αβ

}
, (8.11)

valid for 11D spinors.

8.2 Adaptation to 11D, N = 1 component/superspace results: step 2

Torsions:

T
c

αβ = i(γc)αβ , (8.12)

T γ
αβ = i

3

110
(γ[2])αβ(γ[2])

γδψδ , (8.13)

T
c

αb = i
3

11

[
δ
c
b δ

β
α +

3

5
(γ

c
b ) β

α

]
ψβ , (8.14)

T γ
αb = i

1

128

[
− (γb)

γ
α K +

1

2
(γ[2]) γ

α Kb[2] −
1

3!
(γb[3])

γ
α K

[3] +
1

3!
(γ[3]) γ

α Kb[3]

− 1

4!
(γb[4])

γ
α K

[4]

]
+

1

8

[
δ
c
b δ

γ
α + 3(γ

c
b ) γ

α

]
(∂cΨ) , (8.15)

T
c

ab = 0 , (8.16)

T γ
ab =

1

11
(γ[a)

γδ(∂b]ψδ) . (8.17)

Curvatures:

R
de

αβ =
1

80

[
(γde)αβK + (γ[1])αβK

[1]de − 1

3!
(γde[3])αβK[3] −

1

2
(γ[2])αβK

[2]de

+
1

5!4!
εde[5][4](γ[5])αβK[4]

]
, (8.18)

R
de

αb = i
4

11

[
δ

[d
b (∂e]ψα) +

1

5
(γde) δ

α (∂bψδ)

]
, (8.19)

R
de

ab = −(∂[a∂
[dΨ)δ

e]
b] . (8.20)
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8.3 Adaptation to 11D, N = 1 component/superspace results: step 3

Parameter Composition Rules:

ξm = −iε1αε2β(γc)αβδc
m(1 + Ψ) , (8.21)

λde = − 1

80
ε1
αε2

β

[
(γde)αβK + (γ[1])αβK

[1]de − 1

3!
(γde[3])αβK[3] −

1

2
(γ[2])αβK

[2]de

+
1

5!4!
εde[5][4](γ[5])αβK[4]

]
+ i

1

2
ε1
αε2

β(γ[d)αβ(∂e]Ψ) ,

(8.22)

εδ = i
1

11
εα1 ε

β
2

[
(γ[1])αβ(γ[1])

δε − 3

10
(γ[2])αβ(γ[2])

δε

]
ψε . (8.23)

8.4 Adaptation to 11D, N = 1 component/superspace results: step 4

SUSY transformation laws:

δQea
m = −i 4

11
εβ
[
δa
dδβ

γ +
1

5
(γa

d)β
γ

]
δd
mψγ , (8.24)

δQψa
δ = (1 + Ψ)∂aε

δ − εδ(∂cΨ)Ma
c

− i 1

128
εβ
[
− (γa)

δ
β K +

1

2
(γ[2]) δ

β Ka[2] −
1

3!
(γa[3])

δ
β K

[3] +
1

3!
(γ[3]) δ

β Ka[3]

− 1

4!
(γa[4])

δ
β K

[4]

]
− 1

8
εβ
[
δa
cδ δ
β + 3(γa

c) δ
β

]
(∂cΨ) ,

(8.25)

δQφa
de = −i 4

11
εβ
[
δa

[d(∂e]ψβ) +
1

5
(γde)β

δ(∂aψδ)

]
. (8.26)

In the remaining subsections of the section, the steps described for the case of the 11D,

N = 1 theory above will be repeated, essentially line by line, in each of the cases for 10D,

N = 1, 10D, N = 2A, and 10D, N = 2B superspaces. This will imply a certain repetitive

nature to the respective presentation. There will only be slight variations in explicit details.

We are able to minimize this very slightly by noting the result in (8.4) applies universally

in all three cases. So we will not explicitly rewrite it nor its resultant implications several

more times.

8.5 Adaptation to 10D, N = 1 component/superspace results: step 1

In the case of 10D N = 1 N-SG covariant derivatives we define

∇α = Dα +
1

2
ΨDα +

1

10
(σab) β

α (DβΨ)Mab , (8.27)

∇a = ∂a + Ψ∂a − i
2

5
(σa)

αβ(DαΨ)Dβ − (∂cΨ)Ma
c , (8.28)

and “split” the spatial 10D N = 1 N-SG covariant derivative into two parts

∇a| = Da + ψa
γ∇γ | . (8.29)

Comparing the result (8.28) in with the one in (8.29) a component gravitino is identified via

ψa
γ = −i2

5
(σa)

γδ(DδΨ) . (8.30)
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However, as this expression contains an explicit σ-matrix we see that it defines the non-

conformal spin-1
2 part of the gravitino to be

ψβ ≡ (σa)βγψa
γ , (8.31)

and it follows only the “σ-trace” of the gravitino can occur. So then we have

DβΨ = i
1

4
(σa)βγψa

γ ≡ i1
4
ψβ , (8.32)

in the θ → 0 limit.

The complete specification of the geometrical superfields also requires explicit defini-

tions of the bosonic terms to second order in D-derivatives. We take advantage of the 10D

Fierz identity

δ[γ
αδδ]

β =
1

48
(σ[3])γδ(γ[3])

αβ , (8.33)

valid for 10D spinors, so we may define a bosonic field:

G[3] = (σ[3])
γδ(DγDδΨ) , (8.34)

or in other words,
1

2
D[γDδ]Ψ =

1

16× 3!
(σ[3])γδG[3] . (8.35)

We emphasize that the component field (the G) is defined by the θ → 0 limit of these

equations.

8.6 Adaptation to 10D, N = 1 component/superspace results: step 2

Torsions:

T
c

αβ = i(σc)αβ , (8.36)

T γ
αβ = 0 , (8.37)

T
c

αb = i
3

20

[
δ
c
b δ

δ
α + (σ

c
b ) δ

α

]
ψδ , (8.38)

T γ
αb = i

1

80

[
−(σ[2]) γ

α Gb[2] +
1

3
(σb[3])

γ
α G

[3]

]
− 3

10

[
δ
c
b δ

γ
α − (σ

c
b ) γ

α

]
(∂cΨ) , (8.39)

T
c

ab = 0 , (8.40)

T γ
ab = − 1

10
(σ[a)

γδ(∂b]ψδ) . (8.41)

Curvatures:

R
de

αβ = −i6
5

(σ[d)αβ(∂e]Ψ)− 1

40

[
1

3!
(σde[3])αβG[3] + (σ[1])αβG

[1]de

]
, (8.42)

R
de

αb = i
1

4

[
δ

[d
b (∂e]ψα) +

1

5
(σde) γ

α (∂bψγ)

]
, (8.43)

R
de

ab = −(∂[a∂
[dΨ)δ

e]
b] . (8.44)
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8.7 Adaptation to 10D, N = 1 component/superspace results: step 3

Parameter Composition Rules:

ξm = −iε1αε2β(σc)αβδc
m(1 + Ψ) , (8.45)

λde =
1

40
ε1
αε2

β

[
1

3!
(σde[3])αβG[3] + (σ[1])αβG

[1]de

]
+ i

17

10
ε1
αε2

β(σ[d)αβ(∂e]Ψ) , (8.46)

εδ = −i 1

10
ε1
αε2

β(σc)αβ(σc)
δεψε . (8.47)

8.8 Adaptation to 10D, N = 1 component/superspace results: step 4

SUSY transformation laws:

δQea
m = −i1

4
εβ
[
δa
dδβ

γ +
1

5
(σa

d)β
γ

]
δd
mψγ , (8.48)

δQψa
δ = (1 + Ψ)∂aε

δ − εδ(∂cΨ)Ma
c

− i 1

80
εβ
[
−(σ[2]) δ

β Ga[2] +
1

3
(σa[3])

δ
β G

[3]

]
+

3

10
εβ
[
δ c
a δ

δ
β − (σ c

a ) δ
β

]
(∂cΨ) ,

(8.49)

δQφa
de = −i1

4
εβ
[
δ [d
a (∂e]ψβ) +

1

5
(σde) γ

β (∂aψγ)

]
. (8.50)

8.9 Adaptation to 10D, N = 2A component/superspace results: step 1

In the case of 10D N = 2A N-SG covariant derivatives we define

∇α = Dα +
1

2
ΨDα +

1

10
(σab) β

α (DβΨ)Mab , (8.51)

∇α̇ = Dα̇ +
1

2
ΨDα̇ +

1

10
(σab) β̇

α̇ (Dβ̇Ψ)Mab , (8.52)

∇a = ∂a + Ψ∂a − i
1

5
(σa)

δγ(DδΨ)Dγ − i
1

5
(σa)

δ̇γ̇(Dδ̇Ψ)Dγ̇ − (∂cΨ)M c
a , (8.53)

and “split” the spatial 10D N = 2A N-SG covariant derivative into three parts

∇a| = Da + ψa
γ∇γ |+ ψa

γ̇∇γ̇ | . (8.54)

On taking the θ → 0 limit the latter terms allow an identification with the component

gravitinos are identified via

ψa
γ =− i1

5
(σa)

γδ(DδΨ) , ψa
γ̇ = −i1

5
(σa)

γ̇δ̇(Dδ̇Ψ) . (8.55)

However, as this expression contains an explicit σ-matrix we see that it really defines the

non-conformal spin-1
2 part of the gravitino to be

ψβ ≡(σa)βγψa
γ , ψβ̇ ≡ (σa)β̇γ̇ψa

γ̇ . (8.56)

It follows only the “σ-trace” of the gravitino can occur. So then we have

DβΨ =i
1

2
(σa)βγψa

γ ≡ i1
2
ψβ , Dβ̇Ψ = i

1

2
(σa)β̇γ̇ψa

γ̇ ≡ i1
2
ψβ̇ , (8.57)

in the θ → 0 limit.
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In order to complete the specification of the geometrical superfields also requires ex-

plicit definitions of the bosonic terms to second order in D-derivatives. So we define bosonic

fields:

G[3] = (σ[3])
γδ(DγDδΨ) , H[3] = (σ[3])

γ̇δ̇(Dγ̇Dδ̇Ψ) , (8.58)

N = Cγδ̇(DγDδ̇Ψ) , N[2] = (σ[2])
γδ̇(DγDδ̇Ψ) , N[4] = (σ[4])

γδ̇(DγDδ̇Ψ) , (8.59)

or in other words,

1

2
D[γDδ]Ψ =

1

16× 3!
(σ[3])γδG[3] ,

1

2
D[γ̇Dδ̇]Ψ =

1

16× 3!
(σ[3])γ̇δ̇H[3] , (8.60)

and

DγDδ̇Ψ =
1

16

{
Cγδ̇N +

1

2!
(σ[2])γδ̇N[2] +

1

4!
(σ[4])γδ̇N[4]

}
. (8.61)

We emphasize that the component fields (the G’s, H’s and N ’s) are defined by the θ → 0

limit of these equations.

8.10 Adaptation to 10D, N = 2A component/superspace results: step 2

Torsions:

T
c

αβ = i(σc)αβ , (8.62)

T γ
αβ = i

1

10
(σa)αβ(σa)

γδψδ , (8.63)

T γ̇
αβ = −i 1

10
(σa)αβ(σa)

γ̇δ̇ψδ̇ , (8.64)

T
c

α̇β̇
= i(σc)α̇β̇ , (8.65)

T γ

α̇β̇
= −i 1

10
(σa)α̇β̇(σa)

γδψδ , (8.66)

T γ̇

α̇β̇
= i

1

10
(σa)α̇β̇(σa)

γ̇δ̇ψδ̇ , (8.67)

T
c

αβ̇
= 0 , (8.68)

T γ

αβ̇
= i

1

4

[
δ γ
α δ

δ̇
β̇

+
1

10
(σab) γ

α (σab)
δ̇
β̇

]
ψδ̇ , (8.69)

T γ̇

αβ̇
= i

1

4

[
δ γ̇

β̇
δ δ
α +

1

10
(σab) γ̇

β̇
(σab)

δ
α

]
ψδ , (8.70)

T
c

αb = i
1

5

[
2δ

c
b δ

δ
α + (σ

c
b ) δ

α

]
ψδ , (8.71)

T γ
αb = i

1

80

[
−1

2
(σ[2]) γ

α Gb[2] +
1

3!
(σb[3])

γ
α G

[3]

]
− 2

5

[
δ
c
b δ

γ
α − (σ

c
b ) γ

α

]
(∂cΨ) , (8.72)

T γ̇
αb = −i 1

80

[
(σb)

γ̇
α N − (σ[1]) γ̇

α Nb[1] +
1

2
(σb[2])

γ̇
α N

[2] − 1

3!
(σ[3]) γ̇

α Nb[3]

+
1

4!
(σb[4])

γ̇
α N

[4]

]
, (8.73)

T
c

α̇b = i
1

5

[
2δ

c
b δ

δ̇
α̇ + (σ

c
b ) δ̇

α̇

]
ψδ̇ , (8.74)
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T γ
α̇b = −i 1

80

[
(σb)

γ
α̇ N + (σ[1]) γ

α̇ Nb[1] −
1

2
(σb[2])

γ
α̇ N

[2] − 1

3!
(σ[3]) γ

α̇ Nb[3]

+
1

4!
(σb[4])

γ
α̇ N

[4]

]
, (8.75)

T γ̇
α̇b = i

1

80

[
−1

2
(σ[2]) γ̇

α̇ Hb[2] +
1

3!
(σb[3])

γ̇
α̇ H

[3]

]
− 2

5

[
δ
c
b δ

γ̇
α̇ − (σ

c
b ) γ̇

α̇

]
(∂cΨ) , (8.76)

T
c

ab = 0 , (8.77)

T γ
ab = − 1

10
(σ[a)

γδ(∂b]ψδ) , (8.78)

T γ̇
ab = − 1

10
(σ[a)

γ̇δ̇(∂b]ψδ̇) . (8.79)

Curvatures:

R
de

αβ = −i6
5

(σ[d)αβ(∂e]Ψ)− 1

40

[
1

3!
(σde[3])αβG[3] + (σ[1])αβG

[1]de

]
, (8.80)

R
de

α̇β̇
= −i6

5
(σ[d)α̇β̇(∂e]Ψ)− 1

40

[
1

3!
(σde[3])α̇β̇H[3] + (σ[1])α̇β̇H

[1]de

]
, (8.81)

R
de

αβ̇
=

1

40

[
(σde)αβ̇N − Cαβ̇N

de +
1

2
(σde[2])αβ̇N[2]

− 1

2
(σ[2])αβ̇N

de[2] +
1

4!4!
εde[4][4](σ[4])αβ̇N[4]

]
, (8.82)

R
de

αb = i
1

2

[
δ

[d
b (∂e]ψα) +

1

5
(σde) γ

α (∂bψγ)

]
, (8.83)

R
de

α̇b = i
1

2

[
δ

[d
b (∂e]ψα̇) +

1

5
(σde) γ̇

α̇ (∂bψγ̇)

]
, (8.84)

R
de

ab = −(∂[a∂
[dΨ)δ

e]
b] . (8.85)

8.11 Adaptation to 10D, N = 2A component/superspace results: step 3

Parameter Composition Rules:

ξm = −i
[
ε1
αε2

β(σc)αβ + ε1
α̇ε2

β̇(σc)α̇β̇
]
δc
m(1 + Ψ) , (8.86)

λde = − 1

40
(ε1

αε2
β̇ + ε1

β̇ε2
α)

[
(σde)αβ̇N − Cαβ̇N

de +
1

2
(σde[2])αβ̇N[2]

− 1

2
(σ[2])αβ̇N

de[2] +
1

4!4!
εde[4][4](σ[4])αβ̇N[4]

]
+ ε1

αε2
β

[
i
17

10
(σ[d)αβ(∂e]Ψ) +

1

40

[
1

3!
(σde[3])αβG[3] + (σ[1])αβG

[1]de

]]
+ ε1

α̇ε2
β̇

[
i
17

10
(σ[d)α̇β̇(∂e]Ψ) +

1

40

[
1

3!
(σde[3])α̇β̇H[3] + (σ[1])α̇β̇H

[1]de

]]
,

(8.87)

εδ = −i1
4

(ε1
αε2

β̇ + ε1
β̇ε2

α)

[
δ δ
α δ

ε̇
β̇

+
1

10
(σ[2]) δ

α (σ[2])
ε̇
β̇

]
ψε̇

− i1
5
ε1
αε2

β(σc)αβ(σc)
δεψε .

(8.88)
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8.12 Adaptation to 10D, N = 2A component/superspace results: step 4

SUSY transformation laws:

δQea
m =−i1

2
εβ
[
δa
dδβ

γ+
1

5
(σa

d)β
γ

]
δd
mψγ−i

1

2
εβ̇
[
δa
dδβ̇

γ̇+
1

5
(σa

d)β̇
γ̇

]
δd
mψγ̇ , (8.89)

δQψa
δ = (1+Ψ)∂aε

δ−εδ(∂cΨ)Ma
c

−i 1

80
εβ
[
−1

2
(σ[2])β

δGa[2]+
1

3!
(σa[3])β

δG[3]

]
+

2

5
εβ
[
δa
cδβ

δ−(σa
c)β

δ
]
(∂cΨ)

+i
1

80
εβ̇
[
(σa)β̇

δN+(σ[1])β̇
δNa[1]−

1

2
(σa[2])β̇

δN [2]− 1

3!
(σ[3])β̇

δNa[3]

+
1

4!
(σa[4])β̇

δN [4]

]
,

(8.90)

δQφa
de =−i1

2
εβ
[
δ [d
a (∂e]ψβ)+

1

5
(σde) γ

β (∂aψγ)

]
−i1

2
εβ̇
[
δ [d
a (∂e]ψβ̇)+

1

5
(σde) γ̇

β̇
(∂aψγ̇)

]
.

(8.91)

8.13 Adaptation to 10D, N = 2B component/superspace results: step 1

In the case of 10D N = 2B N-SG covariant derivatives we define

∇α = Dα +
1

2
ΨDα +

1

10
(σab)α

β(DβΨ)Mab , (8.92)

∇α = Dα +
1

2
ΨDα +

1

10
(σab)α

β(DβΨ)Mab , (8.93)

∇a = ∂a +
1

2
Ψ∂a +

1

2
Ψ∂a − i

1

32
(σa)

αβ(DαΨ)Dβ − i
1

32
(σa)

αβ(DαΨ)Dβ

− i 27

160
(σa)

αβ(DαΨ)Dβ − i
27

160
(σa)

αβ(DαΨ)Dβ

− 1

2
(∂cΨ)Ma

c − 1

2
(∂cΨ)Ma

c ,

(8.94)

and “split” the spatial 10D N = 2B N-SG covariant derivative into three parts

∇a| = Da + ψa
γ∇γ |+ ψa

γ∇γ | . (8.95)

On taking the θ → 0 limit the latter terms allows an identification with the gravitino and

the leading term in this limit yields a component-level linearized gravitationally covariant

derivative operator given by

Da = ea + φa
ιMι = ∂a +

1

2
(Ψ + Ψ)∂a + φa

ιMι . (8.96)

Comparison of the l.h.s. to the r.h.s. of (8.96), we see that a linearized frame field ea
m

= ( 1 + 1
2(Ψ + Ψ) )δa

m emerges to describe a scalar graviton. Finally, comparison of the

coefficient of the Lorentz generator Mι as it appears in the latter two forms of (8.96)

informs us the spin connection is given by

φc
de = −1

4
δc

[d
(
∂e](Ψ + Ψ)

)
. (8.97)
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Comparing the result (8.94) in with the one in (8.95) the component gravitinos are

identified via

ψa
γ = −i 1

160
(σa)

γδ
(
Dδ(5Ψ + 27Ψ)

)
, (8.98)

ψa
γ = −i 1

160
(σa)

γδ
(
Dδ(5Ψ + 27Ψ)

)
, (8.99)

which are equivalent to

Dα(5Ψ + 27Ψ) = i16(σa)αγψa
γ , Dα(5Ψ + 27Ψ) = i16(σa)αγψ

γ
a . (8.100)

However, as this expression contains an explicit σ-matrix we see that it really defines the

non-conformal spin-1
2 part of the gravitino to be

ψβ ≡(σa)βγψa
γ , ψβ ≡ −(σa)βγψa

γ . (8.101)

Since the results in (8.100) are under-constrained, we are allowed to introduce a fermionic

auxiliary field λα and its complex conjugate λα. So then we have

DαΨ = i
1

2
(σa)αγψa

γ − 27λα ≡ i
1

2
ψα − 27λα , (8.102)

DαΨ = i
1

2
(σa)αγψa

γ + 5λα ≡ i
1

2
ψα + 5λα , (8.103)

DαΨ = i
1

2
(σa)αγψa

γ − 27λα ≡ −i
1

2
ψα − 27λα , (8.104)

DαΨ = i
1

2
(σa)αγψa

γ + 5λα ≡ −i
1

2
ψα + 5λα , (8.105)

in the θ → 0 limit. Also observe that

Dα(Ψ−Ψ) =32λα , Dα(Ψ−Ψ) = 32λα . (8.106)

In order to complete the specification of the geometrical superfields also requires ex-

plicit definitions of the bosonic terms to second order in D-derivatives. So we define bosonic

fields:

U[3] = (σ[3])
γδ(DγDδΨ) , U [3] = −(σ[3])

γδ(DγDδΨ) , (8.107)

X[3] = (σ[3])
γδ(DγDδΨ) , X [3] = −(σ[3])

γδ(DγDδΨ) , (8.108)

Y[3] = (σ[3])
γδ(DγDδΨ) Y [3] = −(σ[3])

γδ(DγDδΨ)

= (σ[3])
γδ(DγDδΨ) , = −(σ[3])

γδ(DγDδΨ) . (8.109)

Ue emphasize that the component fields (the U ’s, X’s and Y ’s) are defined by the θ → 0

limit of these equations.
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8.14 Adaptation to 10D, N = 2B component/superspace results: step 2

Torsions:

T
c

αβ = 0 , (8.110)

T γ
αβ =−i1

5
(σc)αβ(σc)

γδψδ+2(σc)αβ(σc)
γδλδ , (8.111)

T γ̄
αβ = 0 , (8.112)

T
c

ᾱβ̄
= 0 , (8.113)

T γ

ᾱβ̄
= 0 , (8.114)

T γ̄

ᾱβ̄
= i

1

5
(σc)αβ(σc)

γδψδ+2(σc)αβ(σc)
γδλδ , (8.115)

T
c

αβ̄
= i(σc)αβ , (8.116)

T γ

αβ̄
=−i 1

240
(σ[3])αβ(σ[3])

γδψδ+
1

8

[
(σ[3])αβ(σ[3])

γδ− 1

30
(σ[5])αβ(σ[5])

γδ

]
λδ , (8.117)

T γ̄

αβ̄
= i

1

240
(σ[3])αβ(σ[3])

γδψδ+
1

8

[
(σ[3])αβ(σ[3])

γδ− 1

30
(σ[5])αβ(σ[5])

γδ

]
λδ , (8.118)

T
c

αb =−i1
5

[
2δ

c
b δ

γ
α +(σ

c
b ) γ

α

]
ψγ+

[
−11δ

c
b δ

γ
α +(σ

c
b ) γ

α

]
λγ , (8.119)

T γ
αb =

1

64

[
−31δ

c
b δ

γ
α +15(σ

c
b ) γ

α

]
(∂cΨ)+

1

320

[
27δ

c
b δ

γ
α +53(σ

c
b ) γ

α

]
(∂cΨ)

−i 1

2560

[
1

2
(σ[2]) γ

α

(
5Yb[2]−27Y b[2]

)
− 1

3!
(σb[3])

γ
α

(
5Y [3]−27Y

[3]
)]

, (8.120)

T γ̄
αb =−i 1

2560

[
1

2
(σ[2]) γ

α

(
−5Xb[2]+27Ub[2]

)
− 1

3!
(σb[3])

γ
α

(
−5X

[3]
+27U [3]

)]
, (8.121)

T
c

ᾱb = i
1

5

[
2δ

c
b δ

γ
α +(σ

c
b ) γ

α

]
ψγ+

[
−11δ

c
b δ

γ
α +(σ

c
b ) γ

α

]
λγ , (8.122)

T γ
ᾱb =−i 1

2560

[
1

2
(σ[2]) γ

α

(
5Xb[2]−27U b[2]

)
− 1

3!
(σb[3])

γ
α

(
5X [3]−27U

[3]
)]

, (8.123)

T γ̄
ᾱb =

1

64

[
−31δ

c
b δ

γ
α +15(σ

c
b ) γ

α

]
(∂cΨ)+

1

320

[
27δ

c
b δ

γ
α +53(σ

c
b ) γ

α

]
(∂cΨ)

−i 1

2560

[
1

2
(σ[2]) γ

α

(
−5Y b[2]+27Yb[2]

)
− 1

3!
(σb[3])

γ
α

(
−5Y

[3]
+27Y [3]

)]
, (8.124)

T
c

ab = 0 , (8.125)

T γ
ab =− 1

10
(σ[a)

γδ(∂b]ψδ) , (8.126)

T γ̄
ab =

1

10
(σ[a)

γδ(∂b]ψδ) . (8.127)
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Curvatures:

R
de

αβ =
1

40

[
1

3!
(σde[3])αβU[3] − (σ[1])αβU

[1]de

]
, (8.128)

R
de

ᾱβ̄
= − 1

40

[
1

3!
(σde[3])αβU [3] − (σ[1])αβU

[1]de
]
, (8.129)

R
de

αβ̄
= −i3

5
(σ[d)αβ(∂e](Ψ + Ψ))− i 1

10
(σdef )αβ(∂f (Ψ + Ψ))

− 1

80

[
(σ[1])αβ

(
Y [1]de − Y [1]de

)
− 1

2
(σ[2][d)αβ

(
Y
e]

[2] − Y
e]

[2]

)
(8.130)

− 1

3!
(σde[3])αβ

(
Y[3] − Y [3]

)]
, (8.131)

R
de

αb = −i1
2

[
δ

[d
b (∂e]ψα) +

1

5
(σde) γ

α (∂bψγ)

]
− 11δ

[d
b (∂e]λα) + (σde) γ

α (∂bλγ) , (8.132)

R
de

ᾱb = i
1

2

[
δ

[d
b (∂e]ψα) +

1

5
(σde) γ

α (∂bψγ)

]
− 11δ

[d
b (∂e]λα) + (σde) γ

α (∂bλγ) , (8.133)

R
de

ab = −1

2

(
∂[a∂

[d(Ψ + Ψ)
)
δ
e]
b] . (8.134)

8.15 Adaptation to 10D, N = 2B component/superspace results: step 3

Parameter Composition Rules:

ξm = −i(ε1αε2β + ε1
βε2

α)(σc)αβδc
m

(
1 +

1

2
(Ψ + Ψ)

)
, (8.135)

λde = −(ε1
αε2

β + ε1
βε2

α)

[
− i17

20
(σ[d)αβ(∂e](Ψ + Ψ))− i 1

10
(σdef )αβ(∂f (Ψ + Ψ))

− 1

80

[
(σ[1])αβ

(
Y [1]de − Y [1]de

)
− 1

2
(σ[2][d)αβ

(
Y
e]

[2] − Y
e]

[2]

)
− 1

3!
(σde[3])αβ

(
Y[3] − Y [3]

)] ]
− 1

40
ε1
αε2

β

[
1

3!
(σde[3])αβU[3] − (σ[1])αβU

[1]de

]
+

1

40
ε1
αε2

β

[
1

3!
(σde[3])αβU [3] − (σ[1])αβU

[1]de
]
, (8.136)

εδ = −(ε1
αε2

β + ε1
βε2

α)

[
i

1

10

[
(σ[1])αβ(σ[1])

δε − 1

24
(σ[3])αβ(σ[3])

δε

]
ψε

+
1

8

[
(σ[3])αβ(σ[3])

δε − 1

30
(σ[5])αβ(σ[5])

δε

]
λε

]
− ε1αε2β

[
−i1

5
(σ[1])αβ(σ[1])

δεψε + 2(σ[1])αβ(σ[1])
δελε

]
.

(8.137)
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8.16 Adaptation to 10D, N = 2B component/superspace results: step 4

δQea
m =−εβ

[
−i1

2

[
δa
dδβ

γ+
1

5
(σa

d)β
γ

]
ψγ+

[
−11δa

dδβ
γ+(σa

d)β
γ
]
λγ

]
δd
m

−εβ
[
i
1

2

[
δa
dδβ

γ+
1

5
(σa

d)β
γ

]
ψγ+

[
−11δa

dδβ
γ+(σa

d)β
γ
]
λγ

]
δd
m ,

(8.138)

δQψa
δ =

(
1+

1

2
(Ψ+Ψ)

)
∂aε

δ− 1

2
εδ(∂c(Ψ+Ψ))Ma

c

− 1

64
εβ
[
−31δ c

a δ
δ
β +15(σ c

a ) δ
β

]
(∂cΨ)− 1

320
εβ
[
27δ c

a δ
δ
β +53(σ c

a ) δ
β

]
(∂cΨ)

+i
1

2560
εβ
[

1

2
(σ[2]) δ

β

(
5Ya[2]−27Y a[2]

)
− 1

3!
(σa[3])

δ
β

(
5Y [3]−27Y

[3]
)]

+i
1

2560
εβ
[

1

2
(σ[2]) δ

β

(
5Xa[2]−27Ua[2]

)
− 1

3!
(σa[3])

δ
β

(
5X [3]−27U

[3]
)]
,

(8.139)

δQφa
de = i

1

2
εβ
[
δ [d
a (∂e]ψβ)+

1

5
(σde) γ

β (∂aψγ)

]
−εβ

[
−11δ [d

a (∂e]λβ)+(σde) γ
β (∂aλγ)

]
−i1

2
εβ
[
δ [d
a (∂e]ψβ)+

1

5
(σde) γ

β (∂aψγ)

]
−εβ

[
−11δ [d

a (∂e]λβ)+(σde) γ
β (∂aλγ)

]
.

(8.140)

9 10D, N = 2B chiral compensator considerations

In the limits where all supergravity fields are set to zero, four sets of superalgebras emerge.

These take the forms:

(a). 11D, N = 1,

{Dα , Dβ} = i (γa)αβ ∂a ,
[

Dα , ∂b
]

= 0 ,
[
∂a , ∂b

]
= 0 (9.1)

(b). 10D, N = 1,

{Dα , Dβ} = i (σa)αβ ∂a ,
[

Dα , ∂b
]

= 0 ,
[
∂a , ∂b

]
= 0 (9.2)

(c). 10D, N = 2A,

{Dα , Dβ} = i (σa)αβ ∂a ,
{

Dα̇ , Dβ̇

}
= i (σa)α̇β̇ ∂a ,

{
Dα , Dβ̇

}
= 0 ,[

Dα , ∂b
]

= 0 ,
[

Dα̇ , ∂b
]

= 0 ,
[
∂a , ∂b

]
= 0 ,

(9.3)

(d). 10D, N = 2B,

{Dα , Dβ} = 0 ,
{

Dα , Dβ

}
= 0 ,

{
Dα , Dβ

}
= i (σa)αβ ∂a ,[

Dα , ∂b
]

= 0 ,
[

Dα , ∂b
]

= 0 ,
[
∂a , ∂b

]
= 0 ,

(9.4)
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We next introduce a complex superfield denoted by Ωd into each of these d-dimensional

superspaces and seek to probe the implications of imposing a first order differential equation

on this superfield that utilizes any of the spinorial derivatives above.

For either the 11D, N = 1 or 10D, N = 1 superspaces we have

Dβ Ωd = 0 → DαDβ Ωd = 0 → {Dα , Dβ}Ωd = 0 → ∂c Ωd = 0 , (9.5)

and by analogy for the 10D, N = 2A superspace we find

Dβ Ωd = 0 → DαDβ Ωd = 0 → {Dα , Dβ}Ωd = 0 → ∂c Ωd = 0 , (9.6)

Dβ̇ Ωd = 0 → Dα̇Dβ̇ Ωd = 0 → {Dα̇ , Dβ̇}Ωd = 0 → ∂c Ωd = 0 . (9.7)

Thus, from (9.5) to (9.7) we find the superfield Ωd in each of these d-dimensional super-

spaces must be a constant. However, upon repeating these considerations for the 10D, N
= 2B superspace we find

Dβ Ωd = 0 → DαDβ Ωd = 0 → {Dα , Dβ}Ωd = 0 → 0 = 0 ,

Dβ Ωd = 0 → DαDβ Ωd = 0 → {Dα , Dβ}Ωd = 0 → 0 = 0 ,
(9.8)

which shows that the superfield Ωd in this case can be a non-trivial representation of the

translation operator.

The differential equation

Dβ Ωd = 0 , (9.9)

in the context of four dimensions implies that Ωd is a “chiral superfield.” On the other

hand the differential equation

Dβ Ωd = 0 , (9.10)

in the context of four dimensions implies that Ωd is a “anti-chiral superfield.” While it is not

possible to simultaneously impose both conditions because a chiral superfield is the complex

conjugate of an anti-chiral one, either one or the other can be imposed. This also means

that neither the chiral nor the anti-chiral condition can be applied to a real superfield.

Let us return to the results shown in (8.104) and (8.105)

DαΨ = i
1

2
(σa)αγψa

γ + 5λα ≡ −i
1

2
ψα + 5λα ,

DαΨ = i
1

2
(σa)αγψa

γ − 27λα ≡ −i
1

2
ψα − 27λα ,

(9.11)

since the remaining equations can be obtained by complex conjugation. In all the other

cases we have explored, there is no spinor field such as λα. Taking the difference of the two

equations that appear in (9.11), we may obtain

i
1

32
Dα

(
Ψ−Ψ

)
= i λα . (9.12)

However, the quantity i (Ψ − Ψ) is a real superfield. The requirement that λα = 0 is

equivalent to the imposition of an anti-chirality condition on a real superfield and this

condition possesses no non-trivial solution.
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The inability to introduce such a chiral superfield distinguishes the type 2B theory

from the other higher dimensional constructions we have considered. At first order in the

θ-expansion of Ψ both the spin-1/2 portion of the gravitino ψa
γ and a separate spin-1/2

auxiliary spinor λα must exist.

10 Conclusion

This work gives a proposal for descriptions of Nordstrom supergravity in eleven and ten

dimensions, as well as the component level descriptions that follow from the superfield

equations we have presented. Our work is based on the assumption that in each of the

cases of 11D, N = 1, 10D, N = 1, 10D, N = 2A and 10D, N = 2B, a single scalar superfield

is required to provide such a description as this was the case for both ordinary gravitation

as well as 4D, N = 1 supergravity. We remark that our work is but a foundation as in

future extensions of this work we plan to continue this exploration.

Having obtained the results for the theories in ten and eleven dimensional superspaces,

we can compare those results with the ones seen in section 3. Looking back at (3.8), with

a bit of effort, one can show that the condition Ha = 0 causes only modification in the

form of the equations. Namely the terms Wαβγ will vanish under this restriction. It is thus

pointedly seen all the basic superfields (i.e. R and Ga) in the algebra of the superspace

supergravity covariant derivatives are bosonic. This is to be compared to the results shown

in (3.14) where a fermionic superfield Tα appears. In all of the higher dimensional theories

such superfields appear ubiquitously.

In the works of [36, 41] on the basis of the study of solutions to the 11D superspace

Bianchi identities up to engineering dimension one, forms for the superspace torsions and

curvature supertensors were proposed. Upon comparing particularly the results in the

first of these references to the result derived in the current work as seen in (4.10)–(4.18),

apparent concurrence is found. In the work of [41], we have the definition

∇αJβ = CαβS + (γa)αβva +
1

2
(γ[2])αβt[2] +

1

3!
(γ[3])αβU[3] +

1

4!
(γ[4])αβV[4] +

1

5!
(γ[5])αβZ[5] .

(10.1)

In this former work, we must set the 11D “on-shell” superfield W abcd to zero to make

comparisons. When this is done, then by a change of notation where

ψα → Jα , K → S , Ka → va , K [2] → t[2] ,

K [3] → U [3] , K [4] → V [4] , K [5] → Z [5] ,
(10.2)

we then look at (10.1) in contrast to the form of (4.10) to (4.18) in this work. We find in

the Nordström limit,

va = ∂aΨ , t[2] = 0 , Z [5] = 0 , (10.3)

and thus there is significant overlap. In particular, the results in (10.3) tell us something

interesting about the Jα tensor. We can decompose it into two parts

Jα = J (T )
α + DαΨ (10.4)
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which is equivalent to the usual decomposition of a gauge field into is transverse and

longitudinal parts. Upon setting the J
(T )
α = 0, one recovers the Nordström theory.

There is a further feature noted in the work of [36] that also is indicated as a direction

to include in this new pathway of exploration for 11D superspace supergravity.

While the notation of superconformal symmetry is not presently understood in a num-

ber of approaches to the study of 11D supergravity, the superspace approach in [36] is

indicative of a specific further modification. In particular, by the introduction of a scaling

transformation of the supervielbein, it was found that a modification of the spinor-spinor-

vector component of the supertorsion that is given by the expression

Tαβ
c = i(γc)αβ + i(γ[2])αβ X [2]

c + i(γ[5])αβ X̂ [5]
c (10.5)

is consistent with the superspace scale transformations if and only if the “X -tensor” and

“X̂ -tensor” satisfy the conditions,

X acc = 0 , ε[8]abcX abc = 0 , X̂ [4]c
c = 0 , ε[5]abcdef X̂ abcdef = 0 . (10.6)

A detailed and careful study of the 11D superspace supergravity Bianchi identities with

the modifications in the current work as well as the works of [36, 41] is indicated to assess

the form of any equations of motion that emerges in the presence of retaining the on-shell

field strength.

In the future we will also address the very important quest of whether there exists a

superspace action for the Nordström supergravity theories in higher dimensions. It is clear

that in order for this to be the case, it is necessary that the scalar superfield should satisfy

some superdifferential constraints. The expectation is suggested by the structure of the

4D, N = 1 theory. We remind the reader that the irreducible theories require that the

superfield X is subject to some differential constraints. So it is natural to expect this to

extend into the higher dimensional theories.

Our approach also raises an interesting question about Superstring Theories, M-

Theory, and F-Theory. Do these theories also possess consistent truncation limits that

include Nordström supergravity theories in their low energy limits? If the answer is affirma-

tive, such limits might provide laboratories in which to investigate these more complicated

mathematical structures.

“Every boy in the streets of Göttingen understands more about four dimensional

geometry than Einstein. Yet, in spite of that, Einstein did the work and not

the mathematicians.”

– David Hilbert

Note added in proof. This current paper is a combination of the previous results shown

in the works of [42, 43] available on-line. In the previous work of [43], there was made a

conjecture that a possible avenue to reduce the number of component fields could be pos-

sible assuming the condition
[
∆(165) bcd∆(330)

abcd V
(11)
]
6= = 0, for a scalar superfield V (11)

can be satisfied. In a future presentation a proof this assumption is not viable will be given.

Dedication. SJG wishes to dedicate this work to the memory of Shota Ivan Vashakidze,

a valued friend and collaborator in the exploration of ten dimensional superspace geometry.
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A 11D Clifford algebra representation

In this section we briefly summerize the convention that we adopted for 11D gamma ma-

trices. Our 32× 32 gamma matrices are defined by the Clifford algebra:

{γa, γb} = 2ηab I , (A.1)

where I denotes the 32×32 identity matrix and the inverse metric ηab follows the “most

plus” signature:

ηab = diag(−1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1) . (A.2)

It is known that D-dimensional space-time Dirac spinor has 2
D−1
2 components when D is

odd, and 2D/2 components when D is even. Hence in 11D, the spinor indices of the gamma

matrices, denoted by α, β and so forth, run from 1 to 32.

One can raise and lower the spinor indices via the “spinor metric”, Cαβ , which satisfies:

Cαβ = −Cβα , CαβC
γβ = δ γ

α . (A.3)

The gamma matrices with multiple vector indices are defined through the equations:

γaγb = γab + ηab (A.4)

γbγa = −γab + ηab (A.5)

γaγbc = γabc + ηa[bγc] (A.6)

γbcγa = γabc − ηa[bγc] (A.7)

γaγbcd = γabcd +
1

2
ηa[bγcd] (A.8)

γbcdγa = −γabcd +
1

2
ηa[bγcd] (A.9)

γaγbcde = γabcde +
1

3!
ηa[bγcde] (A.10)

γbcdeγa = γabcde − 1

3!
ηa[bγcde] (A.11)

γaγbcdef =
1

5!
εabcdef [5]γ[5] +

1

4!
ηa[bγcdef ] (A.12)

γbcdefγa = − 1

5!
εabcdef [5]γ[5] +

1

4!
ηa[bγcdef ] (A.13)
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The symmetric relations of the gamma matrices are given by:

(γa)αβ = (γa)βα (A.14)

(γab)αβ = (γab)βα (A.15)

(γabc)αβ = −(γabc)βα (A.16)

(γabcd)αβ = −(γabcd)βα (A.17)

(γabcde)αβ = (γabcde)βα (A.18)

From the definitions, one can easily work out the following trace identities:

(γa)α
β(γb)β

α = 32δ b
a (A.19)

(γab)α
β(γcd)β

α = −32δ
c

[aδ
d
b] (A.20)

(γabc)α
β(γdef )β

α = −32δ
d

[a δ
e
b δ

f

c] (A.21)

(γabcd)α
β(γefgh)β

α = 32δ
e

[a δ
f

b δ
g
c δ

h
d] (A.22)

(γabcde)α
β(γfghij)β

α = 32δ
f

[a δ
g

b δ
h
c δ

i
d δ

j

e] (A.23)

as well as the following Fierz identities:

δ δ
(αδ

γ
β) =

1

16

{
−(γc)αβ(γc)

δγ+
1

2
(γ[2])αβ(γ[2])

δγ− 1

5!
(γ[5])αβ(γ[5])

δγ

}
(A.24)

(γ[2]) δ
(α(γ[2])

γ
β) =

1

16

{
−70(γc)αβ(γc)

δγ+19(γ[2])αβ(γ[2])
δγ− 1

12
(γ[5])αβ(γ[5])

δγ

}
(A.25)

δ [δ
α (γb)

ε]γ =
1

16

{
−(γb)

γ
α C

δε+
1

2
(γ[2]) γ

α (γb[2])
δε− 1

3!
(γb[3])

γ
α (γ[3])δε

+
1

3!
(γ[3]) γ

α (γb[3])
δε− 1

4!
(γb[4])

γ
α (γ[4])δε

} (A.26)

(γde) γ
(α δ

δ
β) =

1

16

{
(γ[1])αβ(γ[1]de)γδ−(γ[d)αβ(γe])γδ

− 1

2
(γ[2])αβ(γ[2]de)γδ−(γ[1][d)αβ(γe][1])

γδ+(γde)αβC
γδ (A.27)

+
1

5!4!
εde[5][4](γ[5])αβ(γ[4])

γδ− 1

4!
(γ[4][d)αβ(γe][4])

γδ− 1

3!
(γde[3])αβ(γ[3])

γδ

}
Finally, we list the explicit representations of 11D gamma matrices in terms of tensor

products of Pauli matrices.

Spinor metric:

Cαβ = −iσ2 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ I2 (A.28)

Gamma matrices:

(γ0)α
β = iσ2 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ I2 (A.29)

(γ1)α
β = σ1 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 (A.30)

(γ2)α
β = σ1 ⊗ σ2 ⊗ σ2 ⊗ I2 ⊗ σ1 (A.31)

– 38 –



J
H
E
P
0
7
(
2
0
1
9
)
0
6
3

(γ3)α
β = σ1 ⊗ σ2 ⊗ σ2 ⊗ I2 ⊗ σ3 (A.32)

(γ4)α
β = σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ I2 (A.33)

(γ5)α
β = σ1 ⊗ σ2 ⊗ σ3 ⊗ σ2 ⊗ I2 (A.34)

(γ6)α
β = σ1 ⊗ σ2 ⊗ I2 ⊗ σ1 ⊗ σ2 (A.35)

(γ7)α
β = σ1 ⊗ σ2 ⊗ I2 ⊗ σ3 ⊗ σ2 (A.36)

(γ8)α
β = σ1 ⊗ σ1 ⊗ I2 ⊗ I2 ⊗ I2 (A.37)

(γ9)α
β = σ1 ⊗ σ3 ⊗ I2 ⊗ I2 ⊗ I2 (A.38)

(γ10)α
β = σ3 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ I2 (A.39)

B 10D Clifford algebra representation

In this section we briefly summerize the convention that we adopted for 10D sigma matrices.

The Clifford algebra is

(σa)αβ(σb)βγ + (σb)αβ(σa)βγ = 2ηabδα
γ , (B.1)

where the inverse metric ηab is:

ηab = diag(−1,+1,+1,+1,+1,+1,+1,+1,+1,+1) . (B.2)

In 10D, the Dirac spinor has 2D/2 = 32 components. We use undotted Greek index

to denote 16 component left-handed Majorana spinor, and dotted index to denote right-

handed ones,

(ψα)∗ = ψα , (ψ
.
α)∗ = ψ

.
α (B.3)

where α = 1, . . . , 16 and
.
α = 1, . . . , 16. We raise and lower the spinor indices by spinor

metric C
α

.
β

as follows:

ψ.
β

= ψαC
α

.
β
, ψα = ψ

.
βC

α
.
β
,

Cα .
γC

α
.
β = δ.γ

.
β , C

γ
.
β
Cα

.
β = δγ

α .
(B.4)

The sigma matrices are bispinors. There are three types of them: purely left-handed:

(σa)αβ , (σabc)αβ , (σabcde)αβ ; (B.5)

purely right-handed (related to purely left-handed by the following):

(σa)αβ = Cα
.
αCβ

.
β(σa).

α
.
β
, (σabc)αβ = Cα

.
αCβ

.
β(σabc).

α
.
β
, (σabcde)αβ = Cα

.
αCβ

.
β(σabcde).

α
.
β

;

(B.6)

and mixed bispinors:

C
α

.
β
, (σab)

α
.
β
, (σabcd)

α
.
β
, (B.7)

which have relations

δα
β = Cβ

.
βC

α
.
β
, (σab)α

β = Cβ
.
β(σab)

α
.
β
, (σabcd)α

β = Cβ
.
β(σabcd)

α
.
β
. (B.8)

– 39 –



J
H
E
P
0
7
(
2
0
1
9
)
0
6
3

Definition of σ-matrices with more Lorentz indices:

(σa)αβ(σb)βγ = (σab)α
γ + ηabδα

γ (B.9)

(σb)αβ(σa)βγ = −(σab)α
γ + ηabδα

γ (B.10)

(σa)αβ(σbc)β
γ = (σabc)αγ + ηa[b(σc])αγ (B.11)

(σbc)α
β(σa)βγ = (σabc)αγ − ηa[b(σc])αγ (B.12)

(σa)αβ(σbcd)βγ = (σabcd)α
γ +

1

2
ηa[b(σcd])α

γ (B.13)

(σbcd)αβ(σa)βγ = −(σabcd)α
γ +

1

2
ηa[b(σcd])α

γ (B.14)

(σa)αβ(σbcde)β
γ = (σabcde)αγ +

1

3!
ηa[b(σcde])αγ (B.15)

(σbcde)α
β(σa)βγ = (σabcde)αγ −

1

3!
ηa[b(σcde])αγ (B.16)

(σa)αβ(σbcdef )βγ =
1

4!
εabcdef [4](σ[4])α

γ +
1

4!
ηa[b(σcdef ])α

γ (B.17)

(σbcdef )αβ(σa)βγ = − 1

4!
εabcdef [4](σ[4])α

γ +
1

4!
ηa[b(σcdef ])α

γ (B.18)

and

(σa).
α

.
β
(σb)

.
β

.
γ = (σab).

α

.
γ + ηabδ.α

.
γ (B.19)

(σb).
α

.
β
(σa)

.
β

.
γ = −(σab).

α

.
γ + ηabδ.α

.
γ (B.20)

(σa)
.
α

.
β(σbc).

β

.
γ = (σabc)

.
α

.
γ + ηa[b(σc])

.
α

.
γ (B.21)

(σbc).
α

.
β(σa).

β
.
γ

= (σabc).
α

.
γ − η

a[b(σc]).
α

.
γ (B.22)

(σa).
α

.
β
(σbcd)

.
β

.
γ = (σabcd).

α

.
γ +

1

2
ηa[b(σcd]).

α

.
γ (B.23)

(σbcd).
α

.
β
(σa)

.
β

.
γ = −(σabcd).

α

.
γ +

1

2
ηa[b(σcd]).

α

.
γ (B.24)

(σa)
.
α

.
β(σbcde).

β

.
γ = (σabcde)

.
α

.
γ +

1

3!
ηa[b(σcde])

.
α

.
γ (B.25)

(σbcde).
α

.
β(σa).

β
.
γ

= (σabcde).
α

.
γ −

1

3!
ηa[b(σcde]).

α
.
γ (B.26)

(σa).
α

.
β
(σbcdef )

.
β

.
γ = − 1

4!
εabcdef [4](σ[4]).

α

.
γ +

1

4!
ηa[b(σcdef ]).

α

.
γ (B.27)

(σbcdef ).
α

.
β
(σa)

.
β

.
γ =

1

4!
εabcdef [4](σ[4]).

α

.
γ +

1

4!
ηa[b(σcdef ]).

α

.
γ (B.28)

The sigma matrices with five vector indices satisfy the self-dual / anti-self-dual identities:

(σ[5])αβ =
1

5!
ε

[5̄]
[5] (σ[5̄])αβ (B.29)

(σ[5])
αβ = − 1

5!
ε

[5̄]
[5] (σ[5̄])

αβ (B.30)

(σ[5]).
α

.
β

= − 1

5!
ε

[5̄]
[5] (σ[5̄]).

α
.
β

(B.31)

(σ[5])
.
α

.
β =

1

5!
ε

[5̄]
[5] (σ[5̄])

.
α

.
β (B.32)
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The symmetric relations of the gamma matrices are given by:

(σa)αβ = (σa)βα (B.33)

(σabc)αβ = −(σabc)βα (B.34)

(σabcde)αβ = (σabcde)βα (B.35)

From the definition, we can easily work out the trace identities:

(σa)αβ(σb)αβ = 16δ b
a , (B.36)

(σab)
β
α (σcd) α

β = −16δ
c

[aδ
d
b] , (B.37)

(σabc)αβ(σdef )αβ = 16δ
d

[a δ
e
b δ

f

c] , (B.38)

(σabcd)
β
α (σefgh) α

β = 16δ
e

[a δ
f

b δ
g
c δ

h
d] , (B.39)

(σabcde)αβ(σfghij)αβ = 16
[
δ
f

[a δ
g

b δ
h
c δ

i
d δ

j

e] + ε
fghij

abcde

]
, (B.40)

and

(σa).
α

.
β
(σb)

.
α

.
β = 16δ b

a , (B.41)

(σab)
.
β
.
α

(σcd)
.
α.
β

= −16δ
c

[aδ
d
b] , (B.42)

(σabc).
α

.
β
(σdef )

.
α

.
β = 16δ

d
[a δ

e
b δ

f

c] , (B.43)

(σabcd)
.
β
.
α

(σefgh)
.
α.
β

= 16δ
e

[a δ
f

b δ
g
c δ

h
d] , (B.44)

(σabcde).
α

.
β
(σfghij)

.
α

.
β = 16

[
δ
f

[a δ
g

b δ
h
c δ

i
d δ

j

e] − ε
fghij

abcde

]
. (B.45)

From the definition, we can also derive the following 10D sigma matrices identities:

(σa)
δγ(σ[2]) α

γ σ[2])
β
δ = 54(σa)

αβ (B.46)

(σa)
δγ(σ d

c ) α
δ (σce) β

γ = 6(σ de
a )αβ + 7ηde(σa)

αβ − 8δ (d
a (σe))αβ (B.47)

(σ[5])
αβ(σ[2]) δ

α (σ[2])
γ
β = −10(σ[5])

δγ (B.48)

(σ[5])
.
α

.
β(σ[2])

.
δ.
α

(σ[2])
.
γ
.
β

= −10(σ[5])
.
δ
.
γ (B.49)

(σ[5])αβ(σc)αδ(σc)
βγ = 0 (B.50)

as well as the following Fierz identities:

δ δ
α δ

γ
β =

1

16

{
(σc)αβ(σc)

δγ+
1

3!
(σ[3])αβ(σ[3])

δγ+
1

2×5!
(σ[5])αβ(σ[5])

δγ
}

(B.51)

(σ[2]) δ
α (σ[2])

γ
β =

27

8
(σc)αβ(σc)

δγ+
1

16
(σ[3])αβ(σ[3])

δγ− 1

384
(σ[5])αβ(σ[5])

δγ (B.52)

δ β
α (σb)

γδ =
1

16

{
δ γ
α (σb)

βδ+
1

2
(σ[2]) γ

α (σb[2])
βδ−(σb[1])

γ
α (σ[1])βδ

+
1

4!
(σ[4]) γ

α (σb[4])
βδ− 1

3!
(σb[3])

γ
α (σ[3])βδ

} (B.53)

(σde) γ
α δ

δ
β =

1

16

{
−(σ[1])αβ(σ[1]de)γδ+(σ[d)αβ(σe])γδ

− 1

3!
(σ[3])αβ(σ[3]de)γδ+

1

2
(σ[2][d)αβ(σ

e]
[2])

γδ+(σde[1])αβ(σ[1])
γδ

+
1

2×4!
(σ

[d
[4] )αβ(σe][4])γδ+

1

3!
(σde[3])αβ(σ[3])

γδ
} (B.54)
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(σde) γ
(α δ

δ
β) =

1

16

{
−2(σ[1])αβ(σ[1]de)γδ+2(σ[d)αβ(σe])γδ

+
1

4!
(σ

[d
[4] )αβ(σe][4])γδ+

1

3
(σde[3])αβ(σ[3])

γδ
} (B.55)

(σab)
δ
α (σc)

βγ =
1

16

{
δ β
α (σabc)

γδ+δ β
α ηc[a(σb])

γδ

− 1

2
(σ[2]) β

α (σabc[2])
γδ− 1

2
(σ[2]) β

α ηc[a(σb][2])
γδ

+(σ[1]
c)

β
α (σab[1])

γδ−(σ[1]
[a)

β
α (σb]c[1])

γδ

+(σab)
β
α (σc)

γδ−(σc[a)
β
α (σb])

γδ+ηc[a(σb][1])
β
α (σ[1])γδ

+
1

4!
(σ[4]) β

α ηc[a(σb][4])
γδ− 1

3!
(σ[3]

c)
β
α (σab[3])

γδ

+
1

3!
(σ[3]

[a)
β
α (σb]c[3])

γδ− 1

3!
ηc[a(σb][3])

β
α (σ[3])γδ

− 1

2
(σ[2]

ab)
β
α (σc[2])

γδ+
1

2
(σ[2]

c[a)
β
α (σb][2])

γδ

+
1

4!3!
εabc[4][3](σ

[4]) β
α (σ[3])γδ−(σabc[1])

β
α (σ[1])γδ

}

(B.56)

(σ
c
b ) β

α (σc)
δγ =

1

16

{
−9δ γ

α (σb)
βδ− 5

2
(σ[2]) γ

α (σb[2])
βδ−7(σb[1])

γ
α (σ[1])βδ

− 1

4!
(σ[4]) γ

α (σb[4])
βδ− 1

2
(σb[3])

γ
α (σ[3])βδ

} (B.57)

(σ[a)
αγ(σb]

de)βδ =
1

16

{
−2(σ[1])

αβ(σab
de[1])γδ

+(σ[1])
αβδ[a

[d(σb]
e][1])γδ−2(σ[d)αβ(σe]ab)

γδ

+δ[a
[d(σb])

αβ(σe])γδ−δ[a
[d(σe])αβ(σb])

γδ

+
1

3!
(σ[3])

αβδ[a
[d(σb]

e][3])γδ

+(σ[2][a)
αβ(σb]

de[2])γδ−(σ[2][d)αβ(σe]ab[2])
γδ

− 1

18
εab

de[3][3̄](σ[3])
αβ(σ[3̄])

γδ

−2(σ[1]ab)
αβ(σde[1])γδ+2(σ[1]de)αβ(σab[1])

γδ

+
1

2
δ[a

[d(σb][2])
αβ(σe][2])γδ− 1

2
δ[a

[d(σe][2])αβ(σb][2])
γδ

−δ[a
[d(σb]

e][1])αβ(σ[1])
γδ−2(σab

[d)αβ(σe])γδ

− 1

3
(σ[3]ab)

αβ(σde[3])γδ+
1

3!
(σ[3][a

[d)αβ(σb]
e][3])γδ

− 1

3!
δ[a

[d(σb]
e][3])αβ(σ[3])

γδ−(σ[2]ab
[d)αβ(σe][2])γδ

+2(σab
de[1])αβ(σ[1])

γδ
}

(B.58)

(σ[2]) β
α (σb[2])

δγ =−9

2
δ γ
α (σb)

βδ− 1

2
(σ[2]) γ

α (σb[2])
βδ+

5

2
(σb[1])

γ
α (σ[1])βδ

+
1

48
(σ[4]) γ

α (σb[4])
βδ

(B.59)

(σa[d) γ
α (σa

e]) δ
β =

1

16

{
12(σ[1])αβ(σde[1])γδ+12(σde[1])αβ(σ[1])

γδ

+
2

3
(σ[3])αβ(σde[3])γδ+

2

3
(σde[3])αβ(σ[3])

γδ
} (B.60)
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δα
β(σa)

.
γ
.
δ =

1

16

{
(σa)α

.
γCβ

.
δ−(σ[1])α

.
γ(σa[1])

β
.
δ− 1

3!
(σ[3])α

.
γ(σa[3])

β
.
δ

+
1

2
(σa[2])α

.
γ(σ[2])β

.
δ+

1

4!
(σa[4])α

.
γ(σ[4])β

.
δ
} (B.61)

δ.α

.
β(σa)

γδ =
1

16

{
(σa).

α
γCδ

.
β+(σ[1]).

α
γ(σa[1])

δ
.
β− 1

3!
(σ[3]).

α
γ(σa[3])

δ
.
β

− 1

2
(σa[2]).

α
γ(σ[2])δ

.
β+

1

4!
(σa[4]).

α
γ(σ[4])δ

.
β
} (B.62)

(σde)α
γδ.
β

.
δ =

1

16

{
−C

α
.
β
(σde)γ

.
δ+(σde)

α
.
β
Cγ

.
δ−(σ[1][d)

α
.
β
(σe][1])

γ
.
δ− 1

2
(σ[2])α

.
β
(σde[2])γ

.
δ

+
1

2
(σde[2])

α
.
β
(σ[2])

γ
.
δ− 1

3!
(σ[3][d)

α
.
β
(σe][3])

γ
.
δ+

1

4!4!
εde[4][4̄](σ[4])α

.
β
(σ[4̄])

γ
.
δ
}

(B.63)

(σde).
β

.
δδα

γ =
1

16

{
C
α

.
β
(σde)γ

.
δ−(σde)

α
.
β
Cγ

.
δ−(σ[1][d)

α
.
β
(σe][1])

γ
.
δ+

1

2
(σ[2])α

.
β
(σde[2])γ

.
δ

− 1

2
(σde[2])

α
.
β
(σ[2])

γ
.
δ− 1

3!
(σ[3][d)

α
.
β
(σe][3])

γ
.
δ− 1

4!4!
εde[4][4̄](σ[4])α

.
β
(σ[4̄])

γ
.
δ
}

(B.64)

Finally, we list the explicit (real) representations of the sigma matrices in terms of

tensor products of Pauli matrices:

(σ0)αβ = I2 ⊗ I2 ⊗ I2 ⊗ I2 (B.65)

(σ1)αβ = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 (B.66)

(σ2)αβ = σ2 ⊗ σ2 ⊗ I2 ⊗ σ1 (B.67)

(σ3)αβ = σ2 ⊗ σ2 ⊗ I2 ⊗ σ3 (B.68)

(σ4)αβ = σ2 ⊗ σ1 ⊗ σ2 ⊗ I2 (B.69)

(σ5)αβ = σ2 ⊗ σ3 ⊗ σ2 ⊗ I2 (B.70)

(σ6)αβ = σ2 ⊗ I2 ⊗ σ1 ⊗ σ2 (B.71)

(σ7)αβ = σ2 ⊗ I2 ⊗ σ3 ⊗ σ2 (B.72)

(σ8)αβ = σ1 ⊗ I2 ⊗ I2 ⊗ I2 (B.73)

(σ9)αβ = σ3 ⊗ I2 ⊗ I2 ⊗ I2 (B.74)

and

(σ0)αβ = −I2 ⊗ I2 ⊗ I2 ⊗ I2 (B.75)

(σ1)αβ = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 (B.76)

(σ2)αβ = σ2 ⊗ σ2 ⊗ I2 ⊗ σ1 (B.77)

(σ3)αβ = σ2 ⊗ σ2 ⊗ I2 ⊗ σ3 (B.78)

(σ4)αβ = σ2 ⊗ σ1 ⊗ σ2 ⊗ I2 (B.79)

(σ5)αβ = σ2 ⊗ σ3 ⊗ σ2 ⊗ I2 (B.80)

(σ6)αβ = σ2 ⊗ I2 ⊗ σ1 ⊗ σ2 (B.81)

(σ7)αβ = σ2 ⊗ I2 ⊗ σ3 ⊗ σ2 (B.82)

(σ8)αβ = σ1 ⊗ I2 ⊗ I2 ⊗ I2 (B.83)

(σ9)αβ = σ3 ⊗ I2 ⊗ I2 ⊗ I2 (B.84)
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C Superspace perspective on component results

The technology developed in Superspace [34] allows a presentation of component results

in all superspaces. . . by an appropriate adaptation of notations. In particular, the equa-

tions indicated in section (5.6) in this book can be applied to the cases of eleven and ten

dimensions. This is true even though the sole focus of the book is the case of 4D, N =

1 supersymmetry. The discussion in the book can be easily modified for use in 11D and

10D superspace theories. The relevant equations were designated as (5.6.13), (5.6.16)–

(5.6.18), (5.6.21), (5.6.22)–(5.6.24), (5.6.28), (5.6.33), and (5.6.34). For the convenience of

the reader, we bring these results all together in the text to follow. In the text, these are

all appropriately modified for the cases of 11D, N = 1, 10D, N = 1, 10D, N = 2A, and

10D, N = 2B superspaces, respectively.

C.1 Recollection of 4D, N = 1 component/superspace results

In the context of 4D, N = 1 superspace supergravity, we may distinguish among three

types of symmetries:

(a). space time translations with generator iKGC(ξm), dependent on local parameters

ξm(x),

(b). SUSY transformations with generator iKQ(εα) dependent on local parameters εα(x),

and

(c). tangent space transformations with generator iKTS(λι) dependent on local parame-

ters λι(x).

The tangent space transformations act as “internal angular momentum,” chirality, etc. on

all “flat indices” associated with the superspace quantities.

The commutator algebra of two SUSY transformations generated by iKQ(ε1
α), and

iKQ(ε2
α), respectively takes the form[

iKQ(ε1) , iKQ(ε2)
]

= iKGC(ξm) + iKQ(ε) + iKTS(λι) , (C.1)

where the parameters ξm, εδ, and λι on the r.h.s. of this equation are quadratic in ε1
and ε2, dependent on linear and quadratic terms in the gravitino, and linear terms in the

superspace torsions and curvature supertensors according to:

ξm =−
[
(ε

α
1 ε̄

β̇

2 +ε̄
β̇

1 ε
α

2 )T
c

αβ̇
+ε

α
1 ε

β

2 T
c

αβ +ε̄
α̇

1 ε̄
β̇

2 T
c

α̇β̇

]
e m
c , (C.2)

εδ =−
[
(ε

α
1 ε̄

β̇

2 +ε̄
β̇

1 ε
α

2 )(T
δ

αβ̇
+T

c

αβ̇
ψ δ
c )+ε

α
1 ε

β

2 (T
δ

αβ +T
c

αβ ψ
δ
c )+ε̄

α̇
1 ε̄

β̇

2 (T
δ

α̇β̇
+T

c

α̇β̇
ψ δ
c )

]
,

(C.3)

λι =−
[
(ε

α
1 ε̄

β̇

2 +ε̄
β̇

1 ε
α

2 )(R ι
αβ̇

+T
c

αβ̇
Φ ι
c )+ε

α
1 ε

β

2 (R ι
αβ+T

c
αβ Φ ι

c )+ε̄
α̇

1 ε̄
β̇

2 (R ι
α̇β̇

+T
c

α̇β̇
Φ ι
c )

]
.

(C.4)
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The supersymmetry variations of the inverse frame field e
m
a (x), gravitino ψ

δ
a (x), and

connection fields for the tangent space symmetries φ ι
a (x) take the forms below and are

expressed in terms dependent on linear and quadratic in the gravitino, and linear in the

superspace torsions and curvature supertensors.

δQe
m
a =−

[
εβT

d
βa +ε̄β̇T

d

β̇a
+(ε̄β̇ψ

γ
a +εγψ̄

β̇
a )T

d

β̇γ
+εβψ

γ
a T

d
γβ +ε̄β̇ψ̄

γ̇
a T

d

β̇γ̇

]
e
m
d , (C.5)

δQψ
δ
a = Daε

δ−εβ(T
δ

βa +T
e

βa ψ
δ
e )−ε̄β̇(T

δ

β̇a
+T

e

β̇a
ψ δ
e )−(ε̄β̇ψ

γ
a +εγψ̄

β̇
a )(T

δ

γβ̇
+T

e

γβ̇
ψ δ
e )

−εβψ γ
a (T

δ
βγ +T

e
βγ ψ

δ
e )−ε̄β̇ψ̄ γ̇

a (T
δ

β̇γ̇
+T

e

β̇γ̇
ψ δ
e ) , (C.6)

δQφ
ι
a =−εβ(R ι

βa+T
e

βa φ
ι
e )−ε̄β̇(R ι

β̇a
+T

e

β̇a
φ ι
e )−(ε̄β̇ψ

γ
a +εγψ̄

β̇
a )(R ι

γβ̇
+T

e

γβ̇
φ ι
e )

−εβψ γ
a (R ι

βγ+T
e

βγ φ
ι
e )−ε̄β̇ψ̄ γ̇

a (R ι
β̇γ̇

+T
e

β̇γ̇
φ ι
e ) . (C.7)

The supersymmetry covariantized versions of the torsions, gravitino field strength and

field strengths associated respective with the inverse frame field e
m
a (x), gravitino ψ

δ
a (x),

and connection fields for the tangent space symmetries φ ι
a (x) take the forms below and

are expressed in terms dependent on linear and quadratic in the gravitino, and linear in

the superspace torsions and curvature supertensors.

T
c

ab = t
c

ab + ψ
δ

[aT
c

δb] + ψ̄
δ̇

[aT
c

δ̇b]
+ ψ

δ
[a ψ̄

ε̇
b] T

c
δε̇ + ψ δ

a ψ
ε
b T

c
δε + ψ̄ δ̇

a ψ̄
ε̇
b T

c

δ̇ε̇
, (C.8)

T γ
ab = t γ

ab + ψ
δ

[aT
γ

δb] + ψ̄
δ̇

[aT
γ

δ̇b]
+ ψ

δ
[a ψ̄

ε̇
b] T

γ
δε̇ + ψ δ

a ψ
ε
b T

γ
δε + ψ̄ δ̇

a ψ̄
ε̇
b T

γ

δ̇ε̇
, (C.9)

R ι
ab = r ι

ab + ψ
δ

[aR
ι

δb] + ψ̄
δ̇

[aR
ι

δ̇b]
+ ψ

δ
[a ψ̄

ε̇
b]R

ι
δε̇ + ψ δ

a ψ
ε
b R

ι
δε + ψ̄ δ̇

a ψ̄
ε̇
b R

ι
δ̇ε̇
. (C.10)

In the linearized limit of these theories, not all of the terms in (C.2)–(C.10) appear.

Instead these equations take the forms

ξm = −
[
(ε

α
1 ε̄

β̇

2 + ε̄
β̇

1 ε
α

2 )T
c

αβ̇
+ ε

α
1 ε

β

2 T
c

αβ + ε̄
α̇

1 ε̄
β̇

2 T
c

α̇β̇

]
e m
c , (C.11)

εδ = −
[
(ε

α
1 ε̄

β̇

2 + ε̄
β̇

1 ε
α

2 )(T
δ

αβ̇
) + ε

α
1 ε

β

2 (T
δ

αβ ) + ε̄
α̇

1 ε̄
β̇

2 (T
δ

α̇β̇
)

]
, (C.12)

λι = −
[
(ε

α
1 ε̄

β̇

2 + ε̄
β̇

1 ε
α

2 )(R ι
αβ̇

) + ε
α

1 ε
β

2 (R ι
αβ) + ε̄

α̇
1 ε̄

β̇

2 (R ι
α̇β̇

)

]
, (C.13)

δQψ = −
[
εβT

d
βd + ε̄β̇T

d

β̇d

]
, (C.14)

δQψ
δ
a = Daε

δ − εβ(T
δ

βa )− ε̄β̇(T
δ

β̇a
) , (C.15)

δQφ
ι
a = −εβ(R ι

βa)− ε̄β̇(R ι
β̇a

) , (C.16)

T γ
ab = t γ

ab , (C.17)

T
c

ab = t
c

ab , (C.18)

R ι
ab = r ι

ab . (C.19)

The terms on the r.h.s. of the final three equation correspond to the non-supercovariantized

versions of the respective torsions, gravitino field strengths, and connection field strengths.
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