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1 Introduction

The standard “workhorse” of Salam-Strathdee superspace [1] is the concept of the “super-

field.” Previously, we have argued the superfield concept can be augmented by the newer

network-centric concept of “adinkras”1 [2]. From the time of their introduction in one

dimensional extended superspaces of the Salam-Strathdee type, GR(d, N) algebras2 [3, 4]

— the adjacency matrices for the adinkra graphs — gave an explicit solution to describing

minimal irreducible supermultiplets in one dimensional theories for all values of degree of

extension N . On previous occasions (e.g. [5]), we have pointed out that GR(d, N) ma-

trices are the (G)eneral (R)eal extensions of two-component van der Waerden matrices

used in physics. This work also contained a description of how the GR(d, N) matrices are

embedded in Clifford algebras.

As we have noted before, since GR(d, N) matrices are the adjacency matrices for

adinkras, a direct question adinkras answer is, “Given N supercharges in a one dimensional

system, what is the minimum number dmin of bosons and equal number of fermions required

to realize the N supercharges in a linear manner?” In the works of [3, 4] a function dmin(N)

possessing Bott periodicity and given by

dmin(N) =



2
N−1

2 , N ≡ 1, 7 mod(8)

2
N
2 , N ≡ 2, 4, 6 mod(8)

2
N+1

2 , N ≡ 3, 5 mod(8)

2
N−2

2 , N ≡ 8 mod(8)

(1.1)

(where we excluded the case of N = 0, i.e. no supersymmetry) was proposed as the answer.

Until recently, no derivation of this result that is not related to adinkra-based arguments

was known to us.

However, it has been communicated to us3 that another alternative narrative argument

should lead to this same result. W. Siegel has observed that as the form of the one

1Interested parties can also find the literature for these extensively cited in the works of [6, 7].
2The designators d and N here for GR(d, N) algebras refer to the number of nodes and the number of

colors, respectively, in adinkras.
3In a private conversation with Warran Siegel.
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dimensional N -extended supersymmetry algebra implies for N supersymmetry generators

q, satisfy

{ q , q } ∝ E , (1.2)

this can be regarded as a Clifford algebra. Thus, the quantities q must be representations

of SO(N). Investigating the minimal such irreducible representations, he argues, must

lead to the formula above. To this narrative, we respond the work in [5] (contained in its

equations (13)–(16)) precisely provides a derivation aimed at this.

The question raised in the last paragraph can be extended to the more complicated

domain of higher dimensional “off-shell” theories by asking “Given N supercharges in a

D dimensional system, what is the minimum number dmin of bosons and equal number

of fermions required to realize the N supercharges in a linear manner without the use

of any dynamical assumptions?” Thus, one is led to suspect the existence of a function

d̂min(N , D) in any dimension that gives the answer to the question in general but with the

property

d̂min(N , D = 1) = dmin(NF(D)) , (1.3)

where the function on r.h.s. of the equation is defined in (1.1) and the function F(D)

is shown in a few examples in table 1. The explicit form of d̂min(N , D) has remained

unknown throughout the history of the subject of supersymmetry,4 but Equation (1.3) gives

its boundary condition, i.e. the value when we reduce the dimension to one. The curious

reader may question what is the source of the caveat regarding dynamical assumptions?

The answer is this is necessary to find prepotential formulations in the Salam-Strathdee

superspaces for the theories under study.

When N = 1 and D = 11, one is looking at the low-energy limit of M-Theory [8], the

eleven dimensional supergravity theory [9, 10].

For decades, there has been little understanding created beyond these descriptions

of the on-shell theories5 in ordinary Salam-Strathdee superspace. It is thus accurate to

describe these as “orphaned” problems currently existing in an “abandoned” state. Using

conceptual and computational advances it can be argued there is a reason to expect new

progress. Analytical progress with regards to the M-Theory corrections to the on-shell

theory has been shown in the works of [11–13] and in [14, 15] group representation theory

was also included in the discussions.

Another, apparently very successful avenue, to the study of the low energy effective

action (LEEA) of M-Theory, began with the work of Green and Sethi [16] (it is useful to

examine the list of citations to this work also). The work in [16], at least “thematically”

follows in an old SUSY tradition set in place by Mandelstam’s early investigations of 4D,

N = 4 super Yang-Mills theory. In the works [17–19] a lightcone formulation was used

to establish the perturbative finiteness of the 4D, N = 4 super Yang-Mills theory. The

latest evolution [20] of the work which began in that of [16] is a derivation of an impressive

fourteen orders in spacetime derivatives!

4The author SJG has long referred to this as one of the “SUSY white whale problems.”
5Interested parties can find the literature for these theories extensively cited in the works of [6, 7].
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However, like the work of Mandelstam, the investigations that follow the

“GS-formalism” [16], have a price to pay. The starting point of the Green-Sethi construc-

tion is clearly described in and around equation (2.1) of their reference. The fundamental

Grassmann coordinates form a complex chiral spinor in SO(1,9). Our starting point is a

Majorana spinor in SO(1,10). In particular, this means that, while the Lorentz symme-

try of a SO(1,9) subgroup of SO(1,10) can be realized linearly and manifestly on the G-S

model, the remaining symmetries of the coset SO(1,10)/SO(1,9) (expected to be present)

must be realized in some non-linear manner. Certainly, the existence of dualities suggests

these coset realization are possible, but we believe it would be a valuable addition to the

literature to create a formalism demonstrating a manifest linear realization.

We are not alone in noting these “coset symmetries” of 11D, superspace can occur in

a model of M-Theory. Although the work presented in the recent posting [21] is from a

very different perspective, it requires realization of SO(1,10)/SO(1,3) coset symmetries of

the eleven dimensional spacetime. These authors explicitly state the expectation of “higher

dimensional Lorentz and supersymmetry transformations realized in a non-linear manner.”

This shows others seeking a formalism that explicitly demonstrates of these symmetries.

The difference in our attempt is to realize these in a linear and manifest manner.

Having encountered some unfamiliarity with the relationship between unconstrained

prepotentials and the description of higher order corrections in the LEEA, it is useful to

recall the result shown in the work of [22] which contains the first superspace description

of modifications to the open superstring effective action.6 In this study, the direct relation

between off-shell superspace formulations and higher derivative corrections generated by

superstring theory was shown at lowest order. The result in this old work was derived

precisely by starting from an off-shell superfield connection formulation. Using symmetry

arguments, a unique modification to include the open string correction was found. This re-

sulting understanding of the relationship between off-shell superfields and higher derivative

terms in the open superstring effective action has been verified by numerous later citations.

A special note of attention should be directed to the works of [14, 15] as these provide

studies that are in a sense “orthogonal” to the direction of our works. These works of

Howe et. al. provide a thorough investigation of this class of problems. . . based on the

study of superspace Bianchi identities (referred to as “spinorial cohomology”) associated

with the geometrical sector in the 11D superspace. These are in accord with the previous

analyses of [23–25] with regards to the form of deformations of the superspace torsion

tensor. However, the works in [14, 15] include analysis of the dual 6-form (and 3-form)

sector. Indeed all these works [14, 15, 23–25] may be considered “orthogonal” to our current

efforts as they focus on the Bianchi identities and the objects that appear in them. It is the

aim of this work to provide the first exploration among these superfields aimed at methods

of discovery of candidate prepotential superfields in this domain.

Computational power as well as algorithmic architecture design have advanced tremen-

dously since the 1980’s. Along the lines of new computational paradigms, there now exist

breakthroughs in artificial intelligence, neural networks, and deep learning that emerged in

6We have also included this discussion in the work of [7].
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the intervening period. By using conceptual and computational advances it can be argued,

now is a propitious time to make new progress in many areas.

In the work of [6] a combination of new conceptual and computational tools was de-

ployed to create progress in problems surrounding superspace geometries that describe

supergravity in ten dimensions. Results in the work confirmed the analysis of the spec-

trum [26] of the scalar superfield given by Bergshoeff and de Roo for the component fields

in the SG limits of Type-I closed and heterotic string theories. Moreover, this work [6]

also gave new similar results in the domains of the Type-IIA and Type-IIB SG limits.

Though these problems involve a factor of 65,536 more degrees of freedom than occur in

Type-I closed and heterotic string theories, the modern techniques proved to be up to the

tasks of complete analysis of these systems. As the Type-IIA SG system can be obtained

from a dimensional reduction of the eleven dimensional system, this was a signal that the

supergravity limit of M-Theory should be directly amenable to the same sort of complete

analysis to provide complete transparency about the SO(1,10) Lorentz representations and

explicitly demonstrate manifest linear realization of its spacetime symmetries. It is the

purpose of the present work to create an exordium for this result.

We are now able to abstract the component field content of superfields as well as study

the existence of orbits among component fields under the action of the supercharges without

using traditional θ-expansions for high dimensions.

The layout of this paper is described below.

Chapter two provides a self-contained description of the “off-shell auxiliary field prob-

lem” by beginning at the component level and discussing an ab initio recipe for deriving

supersymmetric representations for arbitrary spacetimes. The distinction between “off-

shell” and “on-shell” formulations is noted. Next a similar high level discussion of how off-

shell supermultiplets, that are equivalent to superfields in the context of Salam-Strathdee

superspace, is presented. The final portion of this chapter introduces the concept of the

adinkra of a superfield or a supermultiplet, using the example of the 10D, N = 1 scalar

superfield, as a network that encodes the Lorentz representations of the field content as

well as the orbits of those field representations under the action of supercharges.

Chapter three follows the route of the traditional θ-expansion as applied to the 11D,

N = 1 scalar superfield. A discussion involving a recursion formula used to move in a

level-by-level manner up the θ-expansion of the superfield is presented and the role of

Duffin-Kemmer-Petiau fields is noted. The recursive procedure is applied up to quartic

order to show the calculational complications that occur in starting with a superfield and

then abstracting the component field content from such a systematic starting point.

The fourth chapter contains the main results of this work and is dedicated to showing

that calculational efficiency can occur in the algorithms for extracting the component field

content from branching rules of su(32) ⊃ so(11) and the concept of Plethysm instead of

the superfield’s θ-expansion. In order to implement the use of branching rules, explicit

projection matrices needed are presented.

These all powerfully combine so as to make the need for any explicit calculation based

on γ-matrices to become totally banished from these considerations. It is the independence

of these methods from γ-matrices that allows for substantial computational efficiencies

– 4 –
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which can be exploited by modern computer based algorithms. All these together become

the “secret sauce” that allows unprecedented access to the component level structures that

heretofore have been hidden within high dimensional Salam-Strathdee superfields.

Finally, by use of the branching rule approach to identifying the complete spectrum

of component fields within the 11D, N = 1 scalar superfield, we find evidence for a new

phenomenon starting at the seventh level. Namely, consistency with the branching rule

demands that at some fixed levels p of the superfield, multiple copies of the same irrep

must appear. We propose the mechanism that must be responsible for this is the fact that

the expansion of the superfield at Level-p must be in terms of certain linearly independent

and SO(1,10) irreducible polynomials
[
θ1 · · · θp

]
IR

instead of simply θ1 · · · θp.
We apply these tools to extract the SO(1,10) representations from all 1,494 bosonic

fields and 1,186 fermionic fields contained in a 11D, N = 1 scalar superfield. To our

knowledge, these observations about the numbers of fields (both bosonic and fermionic)

as opposed to the number of degrees of freedom have not appeared previously in the

literature. We also exploit these techniques to study the structure of orbits (i.e. the “linking

information”) that the supercharges generate between bosons and fermions and vice-versa.

Our techniques permit us to count the number of such orbits. We determine the maximum

number of such orbits is 29,334 such links. We emphasize that to this point no Clifford

algebra based calculations are utilized.

Having obtained this information, we follow the path established by Breitenlohner, to

look for what superfield can minimally contain the conformal 11D graviton and gravitino.

A surprising answer is found.

The fifth chapter is devoted to describing the adinkra of the 11D, N = 1 superfield

giving a level-by-level description of the number of fields contained at each level. This

relates back to the 1,494 bosonic fields and 1,186 fermionic fields found in the previous

chapter. An image of the adinkra up to Level-5 is given. This includes a depiction of the

orbits of the fields under the action of the supercharges. By use of the linking structure of

the adinkra, we determine the maximum number of possible supersymmetry transformation

laws connecting bosonic and fermionic fields in the supermultiplet is 29,334.

We include our conclusions where we discuss possible implications for the superfield

limit of M-Theory and Type-IIA superstring theory. This is followed by six appendices.

Appendix A contains a dictionary between Dynkin Labels and the corresponding represen-

tation dimensionalities as table 7. Appendices B–D contain technical details of manipu-

lations with 11D γ-matrices. These are included for any researcher who wishes to verify

independently the assertions we make about the properties of the γ-matrices that we are

able to bypass. Appendix E contains an extended discussion of the role that two distinct

types of Young Tableaux play in clarifying the manner in which γ-matrices are avoided in

this approach. Understanding these plays a role in the final suggestion of the conclusion

which is that calculational efficiencies are likely possible if the traditional concept of the

Salam-Strathdee superfield is replaced by a newer concept of an “adinkra-field” where the

fermionic Young Tableaux play the role of the θ-coordinates and the Dynkin Labels play

the role of the fields.

The final appendix presents the decomposition results of the 11D, N = 1 scalar super-

field by giving Dynkin labels.
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2 Primers before 11D

The component formulation of supersymmetrical systems has traditionally followed a pat-

tern that we will review next.

2.1 Component primer before 11D

At a general level, one begins with a set of bosonic representations we denote by {R(i)}
and a set of fermionic representations we denote by {R(j)}. The range of the indices on the

two distinct sets need not be the same, i.e. the values taken on by (i) and (j) are generally

different. Next one assumes a set of dynamics codified by specifying a Lagrangian, the

schematic form of which is realized as (where ∂ is the spacetime derivative but written in

an index-free notation),

L =
1

2

[ ∑
(i)

{R(i)}∂ ∂{R(i)}+ i
∑
(j)

{R(j)}∂ {R(j)}
]
, (2.1)

which is followed by introducing a “supercharge” that we (once more schematically) write

as D together with the definitions of its realizations on the bosonic reps {R(i)} and fermionic

reps {R(j)} according to

D {R(i)} =
∑
(j)

c
+(i)

{R(j)}{R
(j)} , D {R(j)} =

∑
(i)

c
−(j)

{R(i)}∂{R
(i)} , (2.2)

in terms of a set of constants c
−(j)

{R(i)} and c
+(i)

{R(j)}. From long experience, it is known that for

judicious choices of the representations {R(i)} and {R(j)}, these constants can be chosen

so that

DL = purely surface terms. (2.3)

For the reader interested in seeing a more explicit discussion of this in examples, the work

in [27] is recommended.

When one appropriately calculates an expression that is second order in the D operator,

a bifurcation occurs with two possible outcomes

D ∨ D ∝

{
i 2 ∂ + ∂L :(a.) on-shell SUSY

i 2 ∂ :(b.) off-shell SUSY
(2.4)

where the term ∂L stands for a set of equations of motion that are derivable from L. To

reconcile the differences between outcomes (a.) and (b.) in (2.4) above, it is most common

to demand that the fields in the system should obey their equations of motion.

2.2 Superfield primer before 11D

The idea of the superfield, or equivalently an “off-shell supermultiplet” is to modify the

starting point in three ways:

(a.) the range of the index (i) describing the bosonic representations {R(i)} is allowed to

increase,

– 6 –
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(b.) the range of the index (j) describing the fermionic representations {R(j)} is allowed

to increase,

(c.) a “height” or “Level” number is introduced for all the bosonic reps {R(i)} and

fermionic reps {R(j)}, each with their enhanced range of indices.

The Level numbers are non-negative integers. It is convenient to partition the Level

numbers into even and odd integers. In the language of superfields, this corresponds to the

monomial of Grassmann coordinates associated with the component field representation in

the “θ-expansion of the superfield.”

As the ranges of the indices the (i) and (j) in this subsection are greater than those

associated with (2.1), this means new bosonic reps and new fermionic reps are under

consideration. The new bosonic reps are called “auxiliary bosonic fields” while the new

fermionic reps are called “auxiliary fermionic fields.” Over the totality of the component

field reps, one must now define the action of D. For the point covered by the following

arguments, we will use the words “superfield” and “adinkra” interchangeably.

For example, if we begin with the “i-th” bosonic representation {R(i)}p at level p in

the adinkra, then the action of the spinor covariant (in an index-free notation) derivative

D must take the form

D {R(i)}p =
∑
(j)

c
+(p)(i)

{R(j)} {R
(j)}p+1 +

∑
(j)

c
−(p)(i)

{R(j)} ∂ {R
(j)}p−1 , (2.5)

where {R(j)}p+1 and {R(j)}p−1 correspond to the “j-th” fermionic representations at the

p+ 1 level and p− 1 level respectively in the adinkra.

In a similar manner, if we begin with the “j-th” fermionic representation {R(j)}p at

level p in the adinkra, then the action of the spinor covariant derivative D must take the

form

D {R(j)}p =
∑
(i)

c
+(p)(j)

{R(i)} {R
(i)}p+1 +

∑
(i)

c
−(p)(j)

{R(i)} ∂ {R
(i)}p−1 , (2.6)

where {R(i)}p+1 and {R(i)}p−1 correspond to the “i-th” bosonic representations at the p+1

level and p− 1 level respectively in the adinkra.

The quantities c
+(p)(i)

{R(j)} , c
−(p)(i)

{R(j)} , c
+(p)(i)

{R(j)} , and c
−(p)(i)

{R(j)} (in (2.5) and (2.6) respectively)

are sets of constants typically proportional to γ-matrices, Minkowski metric, Levi-Civita

tensor, or powers of any of these when one uses traditional Salam-Strathdee superfields.

The overarching point is by starting from the definitions in (2.5) and (2.6) and repeating

the calculation described by (2.4), the constants in two equations that define the realization

of D are fixed by the condition that they only lead to the condition (b.), i.e. describe an

“off-shell” realization of supersymmetry.

2.3 Adinkra primer before 11D

In the work of [6], the complete descriptions of the component field representations required

to describe an off-shell theory of scalar gravitation in 10D, N = 1, N = 2A, and N = 2B

– 7 –
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Figure 1. Adinkra Diagram for 10D, N = 1 Scalar Superfield.

superspaces were presented. In the following, it is expedient for us to concentrate on the

10D, N = 1 case and focus on the adinkra.

This was done in the form of the adinkra shown7 in figure 1.

7The image in figure 1 is correctly rendered using the data that follows from (2.7)–(2.10). This corrects

previous such rendering in the work of [6].

– 8 –



J
H
E
P
0
9
(
2
0
2
0
)
0
8
9

As we will discuss later in the next section, the conventional superfield approach while

adequate for extracting the necessary information about the bosonic reps {R(i)}p and

fermionic reps {R(j)}p, becomes more unwieldy. The adinkra approach offers a way around

this.

The utility of this adinkra graph is that it provides a “roadmap” to the writing of the

explicit form of the action of the supercharge on any particular component field by going

back to equations (2.5) and (2.6). In the adinkra context, we note these imply c
+(p)(i)

{R(j)} ,

c
−(p)(i)

{R(j)} , c
+(p)(j)

{R(i)} , and c
−(p)(j)

{R(i)} are determined by examining properties of the adinkra. In

particular, there are four calculations (implied by (2.5) and (2.6)) to be undertaken and

these are respectively

c
+(p)(i)

{R(j)} = F1

[ (
⊗ {R(i)}p

)
∩ {R(j)}p+1

]
, (2.7)

c
−(p)(i)

{R(j)} = F2

[ (
⊗ {R(j)}p−1

)
∩ {R(i)}p

]
, (2.8)

c
+(p)(j)

{R(i)} = F3

[ (
⊗ {R(j)}p

)
∩ {R(i)}p+1

]
, (2.9)

c
−(p)(j)

{R(i)} = F4

[ (
⊗ {R(i)}p−1

)
∩ {R(j)}p

]
, (2.10)

where F1, F2, F3, and F4, are functions, and corresponds to the spinor representation.

All of these functions have the property that if the intersections indicated as their respective

arguments vanish, then the functions output the value of zero. This is the reason why in

figure 1 there are some nodes in adjacent levels that are unconnected.8 The functions F1,

and F3 yield outputs of the value of one if their respective intersections are non-vanishing.

The functions F2, and F4 yield outputs of

F2 = K2
p (i) (j) , F4 = K4

p (i) (j) , (2.11)

when their respective arguments are non-vanishing.

The quantities K2
p (i) (j) and K4

p (i) (j) are normalization constants determined by the

conventions used to define the SUSY algebra, i.e. enforcing the lower condition seen in (2.4).

The intersection principle can only tell us which links must be absent. However, the appear-

ance of the links in the adinkra does not necessarily imply the corresponding normalization

coefficients have to be non-vanishing. Only detailed calculation can do this for these 14,667

constants appearing in (2.11) for the 11D, N = 1 scalar superfield adinkra.

3 Traditional path to superfield component decompositions

Before applying the same idea to eleven dimensional superspace, as we did in [6], the tra-

ditional method and its problems need to be discussed. If we start from constructing the

irreducible θ−monomials to understand the eleven dimensional scalar superfield decompo-

sition, two uniqueness problems will show up: (1) θ−monomials have multiple expressions

8One example of this can be seen in the adinkra shown in figure 1 where the {770} at Level-4 is not

linked to the {672} at Level-5.
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d D

4 4

8 5

16 10

32 11

Table 1. Relation Between D (Number of Spacetime) Dimensions and d For Some Superspaces.

d 2d nB nF

4 16 8 8

8 256 128 128

16 65, 536 32, 768 32, 768

32 4, 294, 967, 296 2, 147, 483, 648 2, 147, 483, 648

Table 2. Number of Independent Components in Unconstrained Scalar Superfields.

from the cubic level; (2) gamma matrix multiplications have multiple expressions. To illus-

trate the first problem, the quadratic level and cubic level will be discussed in detail in the

following sections. For the second one, all gamma matrix multiplication results are listed in

appendix B. Moreover, constructing irreducible θ−monomials requires a number of Fierz

identities as shown shortly. Compared to the group representation approach embodied by

adinkras, the traditional method is much less efficient.

Each higher dimensional superspace with D bosonic dimensions, for purposes of count-

ing is equivalent to some value of d, which is the number of real components of θ. This is

shown in a few cases below (where d = F(D)).

So for the case of the 11D, N = 1 theory, the real unconstrained scalar superfield

Ψ contains 2,147,483,648 bosonic and 2,147,483,648 fermionic degrees of freedom that are

representations of supersymmetry according to table 2. While superfields easily provide

a methodology for finding collections of components in principle, actually obtaining those

component fields is not as easy as it might first appear. This is especially true in the eleven

dimensional case.

In the rest of this chapter we are going to discuss the complications of applying the

most straightforward θ-expansions in the eleven dimensional superspace. The discussion

is meant to provide an explicit demonstration of the difficulties one encounters in such

a program. For the reader not interested in these details, it is recommended to skip to

chapter four.

A naive expansion of a real scalar superfield V can be expressed as

V(θ, x) = ϕ(0)(x) + θα ϕ(1)
α (x) + Θ(1) ϕ(2)(x) + Θ(2) abc ϕ

(2)
abc(x) + Θ(3) abcd ϕ

(2)
abcd(x)

+ Θ(1) θα ϕ(3)
α (x) + Θ(2) abc θα ϕ

(3)
αabc(x) + Θ(3) abcd θα ϕ

(3)
αabcd(x)

+ Θ(1) Θ(1) ϕ(4)(x) + Θ(1) Θ(2) abc ϕ
(4)
abc(x) + Θ(1) Θ(3) abcd ϕ

(4)
abcd(x)

+ Θ(2) abc Θ(2) def ϕ
(4)
abc def (x) + Θ(2) abc Θ(3) defg ϕ

(4)
abc defg(x)

+ Θ(3) abcd Θ(3) efgh ϕ
(4)
abcd efgh(x) + . . .

(3.1)
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up to the fourth order of the Grassmann coordinates. The number n in the superscripts

of component fields ϕ
(n)
[indices](x) indicates the θ-order. In writing this expression we have

introduced “auxiliary nilpotent coordinates” defined in (3.8) below.

There exists a recursion formula that can be applied at any non-trivial order n in the

θ-expansion to derive the form of the terms at order (n + 1) in the θ-expansion. We can

begin this by looking at the term linear in θ,

V(linear) = θαϕ(1)
α (x) , (3.2)

and next observe the quadratic terms may be generated by a simple replacement in this

expression.

ϕ(1)
α (x)→

[
Cαβ ϕ

(2)(x) + (γabc)αβ ϕ
(2)
abc(x) + (γabcd)αβ ϕ

(2)
abcd(x)

]
θβ ≡ (B)αβθ

β . (3.3)

The quantity (B)αβ is a Duffin-Kemmer-Petiau [28–30] field. Therefore under the action

of this replacement, we find

ϕ(1)
α (x)→ (B)αβθ

β : V(linear)→ V(quadratic) , (3.4)

with V(quadratic) given by

V(quadratic) = Θ(1) ϕ(2)(x) + Θ(2) abc ϕ
(2)
abc(x) + Θ(3) abcd ϕ

(2)
abcd(x). (3.5)

To continue, we take the component fields ϕ(2)(x), ϕ
(2)
abc(x), ϕ

(2)
abcd(x) and make the

simultaneous replacements

ϕ(2)(x)→ θαϕ(3)
α (x) , ϕ

(2)
abc(x)→ θαϕ

(3)
αabc(x) , ϕ

(2)
abcd(x)→ θαϕ

(3)
αabcd(x) (3.6)

which yield the cubic order terms

V(cubic) = Θ(1) θα ϕ(3)
α (x) + Θ(2) abc θα ϕ

(3)
αabc(x) + Θ(3) abcd θα ϕ

(3)
αabcd(x) (3.7)

that appear on the second line of (3.1).

The general rule is that if one starts with the component fields at Level-n, where n

is even, of the scalar superfield, then to obtain the component fields at Level-(n + 1) one

simply replaces the starting component fields by a θ-coordinate whose index is contracted

against a new fermionic fields in a manner that is consistent with Lorentz symmetry.

Also a general rule is that if one starts with the component fields at Level-n, where n is

odd, of the scalar superfield, then to obtain the component fields at Level-(n+1) one simply

replaces the starting component fields by a new DKP field times a θ-coordinate whose

index is contracted against one index on new DKP fields in a manner that is consistent

with Lorentz symmetry.

Although one can carry out this procedure to define the component fields to all orders

in the θ-expansion, it is highly inefficient and redundant. This redundancy occurs due to

the equivalence of many terms obtained as well as the vanishing of many terms both by

the use of Fierz identities. There is also the issue of irreducibility that must be enforced.

We next turn to the issue of irreducibility.
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3.1 Quadratic level

We denote the 32-component Majorana Grassmann coordinate living in 11 dimensional

spacetime by θα. Since Cαβ , (γ[3])αβ and (γ[4])αβ are the antisymmetric elements in the

covering Clifford algebra over 11D, we can define all possible quadratic θ-monomials as

follows.
{1} Θ(1) = Cαβ θ

αθβ ,

{165} Θ(2) abc = (γabc)αβ θ
αθβ ,

{330} Θ(3) abcd = (γabcd)αβ θ
αθβ .

(3.8)

Now if we look at the quadratic θ-terms, we see the total number of bosonic component

fields at this level can be found by simply counting the number of independent quadratic

θ-monomials

{32} ∧ {32} =
{32} × {31}

2
= {496} = {1} ⊕ {165} ⊕ {330} , (3.9)

so all is well as this equation gives the complete decomposition of the product of two

Grassmann coordinates into irreducible representations of the 11D Lorentz group.

3.2 Cubic level

We can construct cubic θ-monomials from all the possible quadratic θ-monomials as listed

in Equation (3.8). Since Cαβ , (γ[3])αβ and (γ[4])αβ are the antisymmetric Clifford algebra

elements in 11D, we can write all the possible cubic monomials starting with no free Lorentz

vector index and going up to four free Lorentz vector indices. All of the possible irreducible

cubic θ-monomials can be written as

{5, 280}
[

Θ(3) abcd θα
]
IR
,

{3, 520}
[

Θ(3) abcd (γd)αβ θ
β
]
IR
,

[
Θ(2) abc θα

]
IR
,

{1, 408}
[

Θ(3) abcd (γcd)αβ θ
β
]
IR
,
[

Θ(2) abc (γc)αβ θ
β
]
IR
,

{320}
[

Θ(3) abcd (γbcd)αβ θ
β
]
IR
,
[

Θ(2) abc (γbc)αβ θ
β
]
IR
,

{32} Θ(3) abcd (γabcd)αβ θ
β , Θ(2) abc (γabc)αβ θ

β , Θ(1) θα.

(3.10)

where the notation
[]
IR

simply means that a single γ-trace of the expression is by definition

equal to zero. We will discuss each representation (except {5, 280}) one by one in the

following subsections. We will explain each dimension from the corresponding irreducibility

condition, and prove that different versions in each representation are actually equivalent.

We will show that the cubic monomials of {320} vanish. We argue that {5, 280} cubic

monomials also vanish in a similar way. Another strong reason for {5, 280} to vanish is

5, 280 > 4, 960 (see equation below). We can then decompose all the cubic θ-monomials by

{32} ∧ {32} ∧ {32} =
{32} × {31} × {30}

3× 2
= {4, 960} = {32}⊕{1, 408}⊕{3, 520} , (3.11)

where the left hand side simply counts the number of independent cubic θ-monomials one

can write, and the rightmost part contains {32}, {1, 408}, and {3, 520} which are irreducible

representations of the 11D Lorentz group as shown in appendix A.
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3.2.1 {32} cubic monomials

We have three versions of expressions of cubic θ-monomials with no free vector index and

one free spinor index as indicated in Equation (3.10), which are

V 1 = Θ(3) abcd (γabcd)αβ θ
β = − 1

3!
(A3)[δεβ]α θ

δθεθβ , (3.12)

V 2 = Θ(2) abc (γabc)αβ θ
β = − 1

3!
(A2)[δεβ]α θ

δθεθβ , (3.13)

V 3 = Θ(1) θα =
1

3!
(A1)[δεβ]α θ

δθεθβ . (3.14)

The degrees of freedom of these monomials are thus 32, and so they are in the spinorial

representation {32}. Here we define these three objects

(A1)[δεβ]α = C[δεCβ]α ,

(A2)[δεβ]α = (γabc)[δε (γabc)β]α ,

(A3)[δεβ]α = (γabcd)[δε (γabcd)β]α.

(3.15)

To find whether V 1, V 2, and V 3 are related, we examine the objects A1, A2 and A3.

Since Cαβ , (γ[3])αβ and (γ[4])αβ form the complete basis for the antisymmetric elements in

11D Clifford algebra with two spinor indices, we can expand the A objects into this basis,

i.e. find the Fierz identities. The Fierz identities in appendix D tell us that the objects A1,

A2 and A3 are related by a system of linear equations (we suppress spinor indices here for

simplicity, as all of them have the same structure),

31A1 =
1

3!
A2 −

1

4!
A3 ,

37A2 = 990A1 −
11

4
A3 ,

13A3 = −3960A1 − 44A2.

(3.16)

This makes sense as A1, A2 and A3 are the only three objects of this spinor index structure

with no free vector indices and at least one Clifford element being antisymmetric. By

solving these linear equations, we get{
A2 = 66A1 ,

A3 = −528A1 ,
(3.17)

which means all three of the expressions of the cubic θ-monomials are equivalent up to a

multiplicative constant

V 1 = −8V 2 = 528V 3. (3.18)

We can therefore take any of the cubic θ-monomial constructed from linear combinations

of V 1, V 2 and V 3 as the fermionic irreducible representation {32} of so(11).
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3.2.2 {320} cubic monomials

For one free vector index, we have two expressions of cubic θ-monomials as suggested in

Equation (3.10). We can write all the terms from the index structures as[
Θ(3) abcd (γbcd)αβ θ

β
]
IR

= k̃0

{
Θ(3) abcd (γbcd)αβ θ

β + k1 Θ(3) bcde (γabcde)αβ θ
β
}
, (3.19)[

Θ(2) abc (γbc)αβ θ
β
]
IR

= l̃0

{
Θ(2) abc (γbc)αβ θ

β + l1 Θ(2) bcd (γ
a
bcd)αβ θ

β
}
. (3.20)

The irreducibility conditions of setting the single γ-traces to zero are

(γa)
γ
α

[
Θ(3) abcd (γbcd)γβ θ

β
]
IR

= 0 , (3.21)

(γa)
γ
α

[
Θ(2) abc (γbc)γβ θ

β
]
IR

= 0. (3.22)

Thus, these cubic monomials with one free vector index have 32 × 11 − 32 = 320 degrees

of freedom and are in the {320} representation. From the irreducibility conditions, we can

fix the relative coefficients to k1 = −1
7 and l1 = −1

8 . Without loss of generality, we omit

the overall coefficients k̃0 and l̃0. Therefore, we can write

V 1 = − 1

3!

(
D1 +

1

7
D2

)a
[δεβ]α

θδθεθβ , (3.23)

V 2 =
1

3!

(
C1 +

1

8
C2

)a
[δεβ]α

θδθεθβ , (3.24)

where we define five objects

(B)
a
[δεβ]α = C[δε(γ

a)β]α ,

(C1)
a
[δεβ]α = (γa[2])[δε(γ[2])β]α ,

(C2)
a
[δεβ]α = (γ[3])[δε(γ

a
[3])β]α ,

(D1)
a
[δεβ]]α = (γa[3])[δε(γ[3])β]α ,

(D2)
a
[δεβ]α = (γ[4])[δε(γ

a
[4])β]α.

(3.25)

When we consider all the objects with one free vector index constructed by two Clifford

algebra basis elements with one of them being antisymmetric, we find the additional object

B as defined above. From our past experience, we know that it has to occur in our Fierz

expansions. The relevant Fierz identities are listed in appendix D. They can be rewritten

into a system of linear equations of objects B, C1, C2, D1, and D2 (vector and spinor indices

suppressed) as

33B = − 1

3!
C2 +

1

2
C1 −

1

4!
D2 +

1

3!
D1 ,

90C1 = 180B − 2C2 −
1

2
D2 + 2D1 ,

5C2 = −90B − 3C1 +
1

4
D2 −D1 ,

5D1 = 90B − C2 + 3C1 −
1

4
D2 ,

17D2 = −2520B + 28C2 − 84C1 − 28D1.

(3.26)
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The solutions are {
D1 = −1

7D2 = 48B ,
C1 = −1

8C2 = 6B.
(3.27)

Therefore, from Equations (3.23) and (3.24), it is very clear that

V 1 = V 2 = 0. (3.28)

This suggests that there exists no cubic θ-monomial in the {320} irreducible representation

of so(11).

Another way of seeing that {320} cubic θ-monomials do not exist is the above con-

structed monomials fail to satisfy the irreducibility condition. From Equation (3.27), we see

that V 1 and V 2 are clearly proportional to B, for example. The irreducibility conditions

in (3.21) and (3.22) thus read

(γa)
γ
α (B)

a
[δεβ]γ = (γa)

γ
α C[δε(γ

a)β]γ = −11C[δεCβ]α = −11(A1)[δεβ]α 6= 0 , (3.29)

as A1 6= 0 numerically (otherwise, the {32} cubic monomials would also vanish). Doing

this with C’s or D’s will give us other linear combinations of A’s, which would not vanish

also as all A’s are proportional to A1.

3.2.3 {1, 408} cubic monomials

There are two versions of expressions of cubic θ-monomials with two antisymmetric vector

indices as listed in Equation (3.10). They can be expanded in the following basis[
Θ(3) abcd (γcd)αβ θ

β
]
IR

= g̃0

{
Θ(3) abcd (γcd)αβ θ

β − 1

7
Θ(3) [a|cde (γ|b]cde)αβ θ

β

−4

7

1

5!4!
ε[5]abcdef Θ

(3)
cdef (γ[5])αβ θ

β

}
,

(3.30)

[
Θ(2) abc (γc)αβ θ

β
]
IR

= h̃0

{
Θ(2) abc (γc)αβ θ

β − 1

8
Θ(2) [a|cd (γ|b]cd)αβ θ

β

− 1

56
Θ(2) cde (γabcde)αβ θ

β

}
,

(3.31)

where the relative coefficients are fixed by the irreducibility conditions

(γb)
γ
α

[
Θ(3) abcd (γcd)γβ θ

β
]
IR

= 0 , (3.32)

(γb)
γ
α

[
Θ(2) abc (γc)γβ θ

β
]
IR

= 0. (3.33)

From the conditions we know that these cubic θ-monomials have 32× 11×10
2 −32×11 = 1, 408

degrees of freedom, and thus they live in the {1, 408} representation. By omitting the

overall coefficients g̃0 and h̃0, we can write the two versions as

V 1 =
1

3!

(
G1 −

1

7
G2 −

4

7
G3

)ab
[δεβ]α

θδθεθβ (3.34)

V 2 =
1

3!

(
F1 +

1

8
F2 −

1

56
F3

)ab
[δεβ]α

θδθεθβ , (3.35)
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where we define seven objects

(E)
ab
[δεβ]α = C[δε(γ

ab)β]α ,

(F1)
ab
[δεβ]α = (γab[1])[δε(γ[1])β]α ,

(F2)
ab
[δεβ]α = (γ[2][a)[δε(γ

b]
[2])β]α ,

(F3)
ab
[δεβ]α = (γ[3])[δε(γ

ab
[3])β]α ,

(G1)
ab
[δεβ]α = (γab[2])[δε(γ[2])β]α ,

(G2)
ab
[δεβ]α = (γ[3][a)[δε(γ

b]
[3])β]α ,

(G3)
ab
[δεβ]α =

1

4!5!
εab[4][5](γ

[4])[δε(γ
[5])β]α.

(3.36)

An additional object E is defined to span the entire basis, which plays a similar role to B in

the {320} representation. The Fierz expansions of all these objects as listed in appendix D

give us the system of linear equations

5G1 = 9E + F2 + 5F1 − G3 ,

2G2 = 63E + F3 − 21F1 − 3G3

50F1 = −18E − F3 + 5F2 − G2 + 5G1 − 2G3 ,

2F2 = 9E + 5F1 + G1 − G3 ,

5F3 = 63E − 21F1 + G2 − 3G3 ,

33E =
1

3!
F3 +

1

2
F2 −F1 − G3 +

1

3!
G2 +

1

2
G1.

(3.37)

By solving these linear equations, we obtain

F2 = 12E + 4F1 ,

F3 = 30E − 6F1 ,

G1 = 6E + 2F1 ,

G2 = 60E − 12F1 ,

G3 = −9E − F1 ,

(3.38)

which means

V 1 =
1

7
(3E + 5F1)

ab
[δεβ]α θ

δθεθβ , (3.39)

V 2 =
3

56
(3E + 5F1)

ab
[δεβ]α θ

δθεθβ . (3.40)

It is of note that here we also have the freedom to choose any other two objects as our

basis. For example, we can choose F1 and F2 instead. Then we will find

V 1 =
1

28
(16F1 + F2)

ab
[δεβ]α θ

δθεθβ , (3.41)

V 2 =
3

224
(16F1 + F2)

ab
[δεβ]α θ

δθεθβ , (3.42)
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V 1 and V 2 are always proportional to each other,

V 1 =
8

3
V 2 , (3.43)

thus they are equivalent and there’s only one {1, 408} irreducible representation sitting in

the cubic sector.

Let’s check the irreducibility condition. If we choose E and F1 as the basis, the condi-

tions in (3.32) and (3.33) translate to

(γb)α
γ (3E + 5F1)

ab
[δεβ]α θ

δθεθβ = 0. (3.44)

After some quick calculations, we can simplify this condition as

− 30C[δε(γ
a)β]α + 5(γa[2])[δε(γ[2])β]α = (−30B + 5C1)

a
[δεβ]α = 0 , (3.45)

which is exactly satisfied by Equation (3.27). If we choose another basis, like F1 and F2,

and simplify the irreducible condition, we will get the relation between objects B and D2

in Equation (3.27).

With the experiences of checking the irreducibility conditions in {320} and {1, 408},
we observe a nested structure. In Equations (3.15), (3.25) and (3.36), we considered all

the objects constructed by two Clifford elements with one of them being antisymmetric

on spinor indices, and with zero, one and two free vector indices for {32}, {320} and

{1, 408} respectively. Applying an irreducibility condition involves doing a single γ-trace,

which contracts one vector index out. Therefore, the irreducibility condition of {320}
in Equation (3.29) can be written in terms of objects in {32}, and different versions of

irreducibility conditions of {1, 408} (such as Equation (3.45)) can be written in terms

of objects in {320}, which in turn give us the relations between the {320} objects in

Equation (3.27).

We can then comment further on why {320} cubic monomials must vanish. We observe

that there is one non-vanishing independent object in {32}, therefore the irreducibility

condition in {320} implies that there are more than one independent objects in {320}.
Meanwhile, there are two independent objects in {1, 408}, and the irreducibility condition

in {1, 408} implies that there is only one independent object in {320}. Thus, we reach

a contradiction. Therefore, sandwiching from {32} and {1, 408} would force the {320}
objects to vanish.

Following this line of logical arguments, the next representation with three free vec-

tor indices, {3, 520}, would have to have three independent objects if not vanishing, and

its irreducibility conditions should reduce to the relations between objects in {1, 408} in

Equation (3.38), as we will see.
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3.2.4 {3, 520} cubic monomials

The two versions of cubic θ-monomials with three totally antisymmetric vector indices in

Equation (3.10) can be expressed as[
Θ(3) abcd (γd)αβ θ

β
]
IR

= m̃0

{
Θ(3) abcd (γd)αβ θ

β − 1

14
Θ(3) [ab|de (γ|c]de)αβ θ

β

− 1

84
Θ(3) [a|def (γ|bc]def )αβ θ

β

+
4

35

1

4!4!
ε[4]abcdefg Θ(3)

defg (γ[4])αβ θ
β

}
,

(3.46)

[
Θ(2) abc θα

]
IR

= ñ0

{
Θ(2) abc θα +

1

16
Θ(2) [ab|d (γ|c]d)αβ θ

β

+
1

112
Θ(2) [a|de (γ|bc]de)αβ θ

β

− 1

56

1

5!3!
ε[5]abcdefΘ(2)

def (γ[5])αβ θ
β

}
,

(3.47)

where the relative coefficients are fixed by the irreducibility conditions

(γc)
γ
α

[
Θ(3) abcd (γd)γβ θ

β
]
IR

= 0 , (3.48)

(γc)
γ
α

[
Θ(2) abc θγ

]
IR

= 0. (3.49)

Let us do the counting. By subtracting the degrees of freedom from the irreducibility

conditions, these cubic θ-monomials have 32 × 11×10×9
3×2 − 32 × 11×10

2 = 3, 520 degrees of

freedom. Hence they sit in the {3, 520} representation. Again, we can omit the overall

coefficients m̃0 and ñ0 and write

V 1 =
1

3!

(
H1 +

1

14
H2 +

1

84
H3 −

4

35
H4

)abc
[δεβ]α

θδθεθβ , (3.50)

V 2 =
1

3!

(
I0 +

1

16
I1 −

1

112
I2 −

1

56
I3

)abc
[δεβ]α

θδθεθβ , (3.51)

where we define nine objects

(J )
abc
[δεβ]α = C[δε(γ

abc)β]α ,

(H1)
abc
[δεβ]α = (γabc[1])[δε(γ[1])β]α ,

(H2)
abc
[δεβ]α = (γ[2][ab)[δε(γ

c]
[2])β]α ,

(H3)
abc
[δεβ]α = (γ[3][a)[δε(γ

bc]
[3])β]α ,

(H4)
abc
[δεβ]α =

1

4!4!
εabc[4][4̄] (γ[4])[δε(γ[4̄])β]α

(I0)
abc
[δεβ]α = (γabc)[δεCβ]α ,

(I1)
abc
[δεβ]α = (γ[1][ab)[δε(γ

c]
[1])β]α ,

(I2)
abc
[δεβ]α = (γ[2][a)[δε(γ

bc]
[2])β]α ,

(I3)
abc
[δεβ]α =

1

3!5!
εabc[3][5] (γ[3])[δε(γ[5])β]α ,

(3.52)
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with an additional J playing the role of B and E in representations {320} and {1, 408}.
Again, relevant Fierz identities are listed in appendix D. We can rewrite them as

33I0 = −J + I3 +
1

4
I2 −

1

2
I1 −H4 +

1

12
H3 +

1

4
H2 +H1 ,

33J = −I3 +
1

4
I2 +

1

2
I1 − I0 −H4 −

1

12
H3 +

1

4
H2 −H1 ,

26H1 = −8J − 2I3 − I2 + 3I1 + 8I0 +
1

6
H3 +H2 ,

38I1 = 48J − 12I3 − 2I2 − 48I0 −
1

3
H3 + 2H1 ,

28H2 = 336J − 24I3 + 4I2 + 28I1 + 336I0 − 48H4 +
2

3
H3 + 168H1 ,

28I2 = 336J + 24I3 − 28I1 + 336I0 − 48H4 −
2

3
H3 + 4H2 − 168H1.

(3.53)

Solving these linear equations gives us

I1 = 4J − 4I0 + 2H1 ,

I2 = 20J + 28I0 − 8H1 ,

I3 = −4J + 4I0 −H1 ,

H2 = 28J + 20I0 + 8H1 ,

H3 = −120J + 120I0 + 12H1 ,

H4 = −5J − 5I0.

(3.54)

Here we choose J , I0 and H1 as our basis, since they are the three simplest objects. Then

V 1 =
4

7
(2J + 6I0 + 3H1)

abc
[δεβ]α θ

δθεθβ , (3.55)

V 2 =
1

14
(2J + 6I0 + 3H1)

abc
[δεβ]α θ

δθεθβ , (3.56)

which means

V 1 = 8V 2 , (3.57)

and that there is precisely one independent {3, 520} representation sitting in the space of

cubic monomials.

Now rewrite the irreducibility conditions in (3.48) and (3.49) to

(γc)α
γ (2J + 6I0 + 3H1)

abc
[δεβ]α θ

δθεθβ = 0. (3.58)

This condition can be simplified as

− 6C[δε(γ
ab)β]α + (γab[2])[δε(γ[2])β]α − 2 (γab[1])[δε(γ[1])β]α = (−6E + G1 − 2F1)

ab
[δεβ]α = 0 ,

(3.59)

which exactly satisfies Equation (3.38), as predicted in the last subsection.

The importance of the observations so far in this chapter is that an expansion to third

order of a real scalar superfield V must be written in terms of complete sets of irreducible
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monomials. So to this order we have

V(θ, x) = ϕ(0)(x) + θα ϕ(1)
α (x) + Θ(1) ϕ(2)(x) + Θ(2) abc ϕ

(2)
abc(x) + Θ(3) abcd ϕ

(2)
abcd(x)

+ Θ(1) θα ϕ(3)
α (x) +

[
Θ(2) abc θα

]
IR
ϕ

(3)
αabc(x) +

[
Θ(3) abcd θα

]
IR
ϕ

(3)
αabcd(x) + . . . .

(3.60)

3.3 Quartic level

At fourth order, a new problem appears in the expression in (3.1). Let us first pick out the

relevant terms,

V(quartic) = Θ(1) Θ(1) ϕ(4)(x) + Θ(1) Θ(2) abc ϕ
(4)
abc(x) + Θ(1) Θ(3) abcd ϕ

(4)
abcd(x)

+ Θ(2) abc Θ(2) def ϕ
(4)
abc def (x) + Θ(2) abc Θ(3) defg ϕ

(4)
abc defg(x)

+ Θ(3) abcd Θ(3) efgh ϕ
(4)
abcd efgh(x) + . . . .

(3.61)

The problem is seen by the following argument. From the antisymmetry of the θ-coordinates,

we know the number of degrees of freedom at this order is given by

{32} ∧ {32} ∧ {32} ∧ {32} =
{32} × {31} × {30} × {29}

4× 3× 2
= {35, 960}. (3.62)

Next, one can count the degrees of freedom of the bosonic component fields at the

fourth order superfield expansion in (3.61). We have

{1} Θ(1) Θ(1) ,

{165} Θ(1) Θ(2) abc ,

{330} Θ(1) Θ(3) abcd ,

{13, 695} Θ(2) abc Θ(2) def ,

{54, 450} Θ(2) abc Θ(3) defg ,

{54, 615} Θ(3) abcd Θ(3) efgh.

(3.63)

The last three numbers comes from

{13, 695} = [ {165} ⊗ {165} ]S =
{165} × {166}

2
,

{54, 450} = {165} ⊗ {330} ,

{54, 615} = [ {330} ⊗ {330} ]S =
{330} × {331}

2
,

(3.64)

where [ ]S means the symmetric part of the product, as Θ(2) and Θ(3) carry two spinor

indices and they commute with themselves. Note that these three numbers are not the

dimensions of any so(11) irrep. They are reducible representations that carry more than

the necessary irreducible components contained in the superfield. This is clear as symmetry

properties are not fully utilized to constrain the degrees of freedom. For example in the

second line, the spinor indices on Θ(2) and Θ(3) could also be swapped, but the tensor
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product among them clearly include the maximal degrees of freedom. Also, in the first and

third lines, one only considered exchanging the positions of the entire Θ(2)’s or Θ(3)’s, but

not the possibilities of exchanging individual Lorentz indices. Moreover,

{1} ⊕ {165} ⊕ {330} ⊕ {13, 695} ⊕ {54, 450} ⊕ {54, 615} = {123, 256}. (3.65)

Clearly, the dimension of {123, 256} far exceeds that of {35, 960}.
Therefore, by following the path in the cubic sector, one immediate thought is to write

down all possible index structures, i.e. first constructing the irreducible quartic monomials

just as was done for the cubic order. That would essentially be breaking down the reducible

representations {13, 695}, {54, 450}, and {54, 615} into sums of so(11) irreducible represen-

tations. In other words, one would allow the component fields ϕ
(4)
abc def (x), ϕ

(4)
abc defg(x), and

ϕ
(4)
abcd efgh(x) to admit linear constraints that identify various irreducible component fields

with each other. Due to the overwhelming excess of irreducible components, one could

hope to ameliorate this situation by finding that some of the bosonic fields are actually

zero. As with the cubic sector, there exist a sufficient number of Fierz identities such that

when these fourth order terms are expanded over an irreducible basis, one finds relations

between the seemingly independent ones in such a way that some terms vanish and the

counting of the remaining field components adds to 35,960. That would be an excessive

amount of tedious calculations.

In later sections, one would see how these terrible decompositions could be turned into

neat group-theory problems that could be solved by efficient algorithms.

The main message of this chapter of our work is that explicit θ-expansion of the eleven

dimensional scalar superfield is considerably more complicated than in lower dimensions.

One must contend with four separate problems:

(a.) there are multiple equivalent ways to express the required θ-monomials,

(b.) some apparently reasonable monomial combinations actually vanish,

(c.) the requirement of irreducibility of the θ-monomial expansion requires carefully con-

structed combinations, and

(d.) the over abundance of bosonic fields encountered from the most obvious θ-expansion.

The resolution of the first two of these problems relies of the derivation of Fierz identities.

With regard to the third problem, the only methodology known to use is brute force

establishment of their existences. The final problem requires a careful choice of constraints.

At all higher orders, up to the sixteenth, in the θ-expansion this problem of deriv-

ing explicit irreducible θ-monomials occurs. Above this order, the form of the required

higher order irreducible θ-monomials can be deduced from the lower order irreducible θ-

monomials. For terms in odd orders, an actual derivation of the irreducible θ-monomials

involves derivations of Fierz identities as we explicitly demonstrated at cubic order. For

terms in even orders, an actual derivation of the irreducible θ-monomials involves deriva-

tions along the lines we implicitly discussed at quartic order. To our knowledge, these
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impediments have not been recognized previously in the literature. A most disappoint-

ing realization would be that all of these need to be sorted out before any discussion of

dynamics using off-shell 11D, N = 1 superfields.

All of these point to the fact that superfields and their accompanying θ-expansions

become increasing unwieldy as a “technological platform” for the study of supermultiplets

in higher dimensions. This is due to the fact that in order to calculate efficiently, polyno-

mials
[
θ1 · · · θp

]
IR at Level-p are required to be explicitly constructed. We will return to

this inefficiency in our conclusions.

For all the reasons enunciated in an illustrative manner throughout this chapter, we

are motivated to search for an approach that is free of these burdensome complications.

4 11D N = 1 scalar superfield decomposition

In 11D,N = 1 superspace, the number of independent Grassmann coordinates is 2(11−1)/2 =

32 with the Majorana condition since we use the Minkowski signature (−,+,+, . . . ,+).

Then the superspace has coordinates (xa, θα), where a = 0, 1, . . . , 10 and α = 1, . . . , 32.

Hence, the θ-expansion of the eleven dimensional scalar superfield begins at Level-0 and

continues to Level-32, where Level-n corresponds to the order O(θn). The unconstrained

real scalar superfield V contains 232−1 = 2, 147, 483, 648 bosonic and 232−1 = 2, 147, 483, 648

fermionic components. Expressed in terms of a θ-expansion of V we have

V(xa, θα) = ϕ(0)(xa) + θα ϕ(1)
α (xa) + θαθβ ϕ

(2)
αβ(xa) + . . . . (4.1)

We can decompose θ-monomials θα1 · · · θαn into a direct sum of irreducible representations

of Lorentz group SO(1,10). With the antisymmetric property of Grassmann coordinates,

we have

V =



Level− 0 {1} ,
Level− 1 {32} ,
Level− 2 {32} ∧ {32} ,
Level− 3 {32} ∧ {32} ∧ {32} ,

...
...

Level− n {32} ∧ . . . ∧ {32}︸ ︷︷ ︸
n times

,

...
...

Level− 32 {1}.

(4.2)

All even levels are bosonic representations, while all odd levels are fermionic representa-

tions. Note that in a 32-dimensional Grassmann space, the Hodge dual of a p-form is a

(32− p)-form. Therefore, Level-(32 − n) is the dual of Level-n for n = 0, . . . , 16, and they

have the same dimensions. By simple use of the values of the function “32 choose n,” these
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dimensions are found to be the ones that follow

V =



Level− 0 1 ,

Level− 1 32 ,

Level− 2 496 ,

Level− 3 4960 ,
...

...

Level− n 32!
n!(32−n)! ,

...
...

Level− 32 1.

(4.3)

Since V is a scalar superfield, the conjecture given in the conclusion of the work of [6]

implies the following statements

32!

n!(32− n)!
=
∑
R

b{R} d{R} , (4.4)

for even values of n and
32!

n!(32− n)!
=
∑
R

b{R} d{R} , (4.5)

for odd values of n apply to it. In these equations, b{R} and b{R} are non negative integers,

n refers to the Level-n in the θ-expansion of the superfield, while finally d{R} and d{R}
refer to the dimensions of bosonic representations {R} and fermionic representations {R}
of the SO(1,10) Lorentz algebra. In appendix A, so(11) irreps with small dimensions are

listed. The data shown in section 4.3 provides the explicit information about the quantities

appearing in (4.4) and (4.5).

4.1 Methodology 1: branching rules for su(32) ⊃ so(11)

In [6] while we have applied branching rules to find component decompositions of scalar

superfields in ten dimensions, we didn’t explain the details of branching rule calculations.

In this section, we will present the explicit algorithmic [31] calculations needed for finding

branching rules, in particular for the case of su(32) ⊃ so(11).

First, a branching rule is a relation between a representation of Lie algebra g and

representations of one of its Lie subalgebras h. For a simple Lie algebra g, its Lie subalgebras

can be classified as regular subalgebras and special subalgebras. Regular subalgebras can

be obtained by deleting dots from extended Dynkin diagrams, while special subalgebras

cannot. Moreover, subalgebras can be classified as maximal subalgebras and non-maximal

subalgebras. The definition of a maximal subalgebra h of g is that there is no any subalgebra

l satisifies h ⊂ l ⊂ g.

Branching rules between g and h are completely determined by the projection matrix

Pg⊃h. Suppose the rank of Lie algebra g is n and the rank of Lie algebra h is m, then the

projection matrix Pg⊃h is a m × n matrix. Given a weight vector wg in g, the projected

weight vector vh in h is

vTh = Pg⊃hw
T
g , (4.6)
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where weight vectors are row vectors. Thus, the algorithm for calculating a branching rule

of an irrep R of g given the projection matrix can be summarized as follows.

1. Write the weight diagram of R;

2. Calculate the projected weight vector in h by Equation (4.6) for every weight vector

in the weight diagram of R and get the projected weight diagram;

3. Find irrep(s) in h corresponding to the projected weight diagram.

As for how to obtain the projection matrix Pg⊃h, the recipe depends on which class of

subalgebra of g does h belong to. If h is a maximal subalgebra of g, one can calculate the

projection matrix by a “reverse” process.

1. Find one branching rule of g ⊃ h and write down the weight diagrams of the reps of

g and h;

2. Find an appropriate correspondence between weight vectors;

3. Calculate the matrix elements by Equation (4.6).

If h is a non-maximal subalgebra of g, you can calculate the projection matrix by matrix

multiplications:

1. Find Lie subalgebras l(a) (a = 1, . . . , l) satisfying h ⊂ l(1) ⊂ · · · ⊂ l(l) ⊂ g where

each g ⊃ l(l), l(l) ⊃ l(l−1), . . . , l(1) ⊃ h is a pair of one Lie algebra and its maximal

subalgebra;

2. The projection matrix is Pg⊃h = Pl(1)⊃hPl(2)⊃l(1) · · ·Pl(l)⊃l(l−1)Pg⊃l(l) .

Since so(11) is a maximal special subalgebra of su(32), we can find the projection

matrix from the weight systems of the irreducible representation {32} in su(32) and so(11),

as we know one su(32) ⊃ so(11) branching rule

{32} → {32} , (4.7)

or more clearly in Dynkin labels,

(1000000000000000000000000000000)→ (00001). (4.8)

The definition of the projection matrix for the branching rules of su(32) ⊃ so(11) is

(vso(11))
T = Psu(32)⊃so(11) (wsu(32))

T . (4.9)

The matrix Psu(32)⊃so(11) is a 5× 31 matrix, as the ranks of so(11) and su(32) are 5 and 31

respectively.
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The weight system of {32} = (1000000000000000000000000000000) in su(32) has 32

weights given by
31 digits︷ ︸︸ ︷

1 0 0 0 · · · 0

−1 1 0 0 · · · 0

0 − 1 1 0 · · · 0

...

0 · · · 0 − 1 1 0

0 · · · 0 0 − 1 1

0 · · · 0 0 0 − 1 ,

(4.10)

while the weight system of {32} = (00001) in so(11) also has 32 weights given by

0 0 0 0 1

0 0 0 1 − 1

0 0 1 − 1 1

0 0 1 0 − 1

0 1 − 1 0 1

0 1 − 1 1 − 1

1 − 1 0 0 1

−1 0 0 0 1

0 1 0 − 1 1

1 − 1 0 1 − 1

−1 0 0 1 − 1

0 1 0 0 − 1

1 − 1 1 − 1 1

−1 0 1 − 1 1

1 − 1 1 0 − 1

1 0 − 1 0 1

−1 0 1 0 − 1

−1 1 − 1 0 1

1 0 − 1 1 − 1

−1 1 − 1 1 − 1

0 − 1 0 0 1

1 0 0 − 1 1

−1 1 0 − 1 1

0 − 1 0 1 − 1

1 0 0 0 − 1
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−1 1 0 0 − 1

0 − 1 1 − 1 1

0 − 1 1 0 − 1

0 0 − 1 0 1

0 0 − 1 1 − 1

0 0 0 − 1 1

0 0 0 0 − 1 . (4.11)

If we put together all the weights in the weight system of {32} in su(32) and so(11)

into two matrices,

Wsu(32) =


wsu(32)

1

wsu(32)
2

...

wsu(32)
32


32×31

, and Vso(11) =


vso(11)

1

vso(11)
2

...

vso(11)
32


32×5

,

(4.12)

where the superscript indices i = 1, . . . , 32 of wsu(32)
i and vso(11)

i label the weights in the

{32} weight system, then

Vso(11)
T = Psu(32)⊃so(11)Wsu(32)

T . (4.13)

If a matrix Am×n has rank m (m ≤ n), then it has right inverse Bn×m such that AB =

Im×m. Now the matrix (Wsu(32)
T )31×32 has rank 31. Hence, there exists a right inverse(

(Wsu(32)
T )−1

)
32×31

, so we can invert the formula

Psu(32)⊃so(11) = Vso(11)
T
(
Wsu(32)

T
)−1

, (4.14)

and find the explicit projection matrix to be

Psu(32)⊃so(11)

=


0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 2 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 2 1 1 2 1 1 2 1 1 0 0 0 1 1 2 1 1 2 1 1 2 1 0 0 0 0

0 0 1 2 1 0 0 0 0 0 0 0 1 2 3 2 3 2 1 0 0 0 0 0 0 0 1 2 1 0 0

0 1 0 0 0 1 1 1 0 1 2 2 1 0 0 0 0 0 1 2 2 1 0 1 1 1 0 0 0 1 0

1 0 1 0 1 0 1 2 3 2 1 0 1 2 1 2 1 2 1 0 1 2 3 2 1 0 1 0 1 0 1

 .
(4.15)

– 26 –



J
H
E
P
0
9
(
2
0
2
0
)
0
8
9

The Highest Weight Partition

(d0 . . . 0) [d, 0, . . . , 0]

(0 . . . 010 . . . 0) (d-th entry is 1) [1, 1, . . . , 1, 0, . . . , 0] (# of 1 = d)

(111 . . . 1) (length = d) [d, d− 1, . . . , 1, 0]

Table 3. Examples of the bijection between the highest weight and the partition

4.2 Methodology 2: plethysms

Generally, branching rules of su(m) ⊃ so(n) where so(n) is the maximal special subalgebra

of su(m) are equivalent to symmetrized tensor powers of the generating irrep with respect

to the partition, which is called Plethysm [32–34]. For example, for su(10) ⊃ so(10), the

generating irrep is the defining representation of so(10) (10000), and for su(16) ⊃ so(10),

the generating irrep is the spinor representation of so(10) (00001). This equivalence is

based on an important fact that there is a bijection between irreducible representations

of su(m) and partitions which are vectors with length m. The bijection is realized by the

following algorithm: the highest weight of an irreducible representation of su(m) w is a

row vector with length (m − 1) and the i−th entry of its corresponding partition is the

summation of j−th entry of w for j ≥ i. Conversely, the i−th entry of w is i−th entry

minus (i+ 1)−th entry of the partition. Table 3 shows several examples.

Therefore, the component decomposition at Level-n for an unconstrained scalar su-

perfield in 11D, N = 1 superspace is the n-th completely antisymmetric tensor power of

the spinor representation of so(11) {32} with Dynkin label (00001). The partition corre-

sponding to n-th completely antisymmetric tensor power is [1, 1, . . . , 1] where the number

of 1 is n.

Plethysm is basically based on the manipulation of the character polynomial. Consider

a Lie group G with rank n and a representation of it R. For any group element g ∈ G, the

representation DR(g) is a square matrix and the character χR(g) is defined as the trace of

the matrix DR(g). Suppose the Lie group G has m generators T1, T2, . . . , Tm and the first

n generators form the Cartan subalgebra. Then the group element g can be expressed as

g = exp{iα1T1 + · · ·+ iαmTm} , (4.16)

and diagonalized as

exp{ia1T1 + · · ·+ ianTn}. (4.17)

Since the character is invariant under the conjugacy class,

χR(g) = Tr
[
exp{ia1DR(T1) + · · ·+ ianDR(Tn)}

]
, (4.18)

where DR(T1) to DR(Tn) are diagonal matrices. Moreover their diagnoal entries form the

weight vectors wi (i = 1, 2, . . . , dim(R)) of representation R: the k-th entry of wi is the i-th

diagonal entry of DR(Tk). Therefore

χR(g) =

dim(R)∑
i=1

eivg ·wi , (4.19)
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where vg = (a1, . . . , an). Then actually we can treat eivg as X and rewrite the character

as the character polynomial

χR(g) =

dim(R)∑
i=1

Xwi . (4.20)

The character polynomials of symmetrized tensor power with respect to the partition

λ of R can be obtained by the character polynomials of R. General algorithm can be found

in [32]. Here we only list the algorithm for completely antisymmetric and completely

symmetric cases [33, 34].

• Completely antisymmetric: the character polynomials of k-th completely antisym-

metric tensor power of R is the summation of all products of k distinct monomials;

• Completely symmetric: the character polynomials of k-th completely antisymmetric

tensor power of R is the summation of all products of k monomials.

For example, the character polynomial of antisymmetric square of R is

Xw1+w2 +Xw1+w3 + · · ·+Xw1+wdim(R) +Xw2+w3 +Xw2+w4

+ · · ·+Xw2+wdim(R) + · · ·+Xwdim(R)−1+wdim(R) .
(4.21)

The character polynomial of symmetric square of R is

X2w1 +Xw1+w2 + · · ·+Xw1+wdim(R) +X2w2 +Xw2+w3 + . . .

+Xw2+wdim(R) + · · ·+X2wdim(R) .
(4.22)

One can quickly check the dimension. The dimension of k-th completely antisymmetric

tensor power of R is dim(R)!
k![dim(R)−k]! , which is also the number of monomials occur in its

character polynomial. The dimension of k-th completely symmetric tensor power of R

is dim(R)×[dim(R)+1]×···×[dim(R)+k−1]
k! , which is also the number of monomials occur in its

character polynomial.

Thus, based on the character polynomial approach, one can obtain the whole weight

system of k-th completely (anti)symmetric tensor power of R directly from the weight

system of R, which is much more efficient than the projection matrix approach.

This chapter describes available software [32–35] and principles for designing algo-

rithms to use for exploring the component field content of Salam-Strathdee superfields.

This is the main result presented in this work. The discussion has been presented at a

high enough level that we believe these apply to superfields in a space of arbitrary di-

mensionality, either lower or higher than eleven. One interesting example, to which this

might be applied, is the a space where the Lorentz group is SO(2,10) as this has long been

conjectured to relate to F-Theory [36].

4.3 Component decomposition results

By using the projection matrix and the Plethysm function with the Susyno Mathematica

application [33], we obtain the explicit Lorentz decomposition results of the 11D, N = 1

scalar superfield as follows. The decomposition results can also be expressed in terms of

Dynkin Labels, which are listed in appendix F.
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• Level-0: {1}

• Level-1: {32}

• Level-2: {1} ⊕ {165} ⊕ {330}

• Level-3: {32} ⊕ {1, 408} ⊕ {3, 520}

• Level-4: {1} ⊕ {165} ⊕ {330} ⊕ {1, 144} ⊕ {4, 290} ⊕ {5, 005} ⊕ {7, 865} ⊕ {17, 160}

• Level-5: {32} ⊕ {1, 408} ⊕ {3, 520} ⊕ {4, 224} ⊕ {10, 240} ⊕ {24, 960} ⊕ {28, 512} ⊕
{36, 960} ⊕ {91, 520}

• Level-6: {1} ⊕ {165} ⊕ {330} ⊕ {1, 144} ⊕ {4, 290} ⊕ {5, 005} ⊕ {7, 128} ⊕ {7, 865} ⊕
{15, 400}⊕ (2){17, 160}⊕ {28, 314}⊕ {33, 033}⊕ {37, 752}⊕ {70, 070}⊕ {78, 650}⊕
{117, 975} ⊕ {175, 175} ⊕ {289, 575}

• Level-7: {32} ⊕ {1, 408} ⊕ {3, 520} ⊕ {4, 224} ⊕ {7, 040} ⊕ {10, 240} ⊕ {24, 960} ⊕
(2){28, 512}⊕{36, 960}⊕{45, 056}⊕{45, 760}⊕(2){91, 520}⊕{134, 784}⊕{137, 280}⊕
{147, 840}⊕{160, 160}⊕{219, 648}⊕{264, 000}⊕{274, 560}⊕{573, 440}⊕{1, 034, 880}

• Level-8: {1} ⊕ {165} ⊕ {330} ⊕ {935} ⊕ {1, 144} ⊕ {4, 290} ⊕ {5, 005} ⊕ {7, 128} ⊕
{7, 293}⊕(2){7, 865}⊕(2){15, 400}⊕(2){17, 160}⊕{22, 275}⊕{23, 595}⊕{23, 595′}⊕
{28, 314} ⊕ {28, 798} ⊕ {33, 033} ⊕ {37, 752} ⊕ {57, 915} ⊕ {58, 344} ⊕ {70, 070} ⊕
{72, 930} ⊕ (2){78, 650} ⊕ {85, 085} ⊕ {112, 200} ⊕ (2){117, 975} ⊕ (2){175, 175} ⊕
{178, 750} ⊕ {188, 760} ⊕ {255, 255} ⊕ {268, 125} ⊕ (2){289, 575} ⊕ {333, 234} ⊕
{382, 239} ⊕ {503, 965} ⊕ {802, 230} ⊕ {868, 725} ⊕ {875, 160} ⊕ {984, 555} ⊕
{1, 274, 130} ⊕ {1, 519, 375}

• Level-9: {32} ⊕ {1, 408} ⊕ {3, 520} ⊕ {4, 224} ⊕ (2){7, 040} ⊕ {10, 240} ⊕ {22, 880} ⊕
{24, 960} ⊕ (3){28, 512} ⊕ {36, 960} ⊕ (2){45, 056} ⊕ (2){45, 760} ⊕ (3){91, 520} ⊕
{128, 128}⊕ (2){134, 784}⊕{137, 280}⊕ (2){147, 840}⊕{157, 696}⊕ (2){160, 160}⊕
{183, 040} ⊕ (3){219, 648} ⊕ {251, 680} ⊕ (2){264, 000} ⊕ {274, 560} ⊕ {292, 864} ⊕
{480, 480} ⊕ {570, 240} ⊕ (2){573, 440} ⊕ {798, 720} ⊕ {896, 896} ⊕ {901, 120} ⊕
(3){1, 034, 880} ⊕ {1, 351, 680} ⊕ {1, 921, 920} ⊕ {1, 936, 000} ⊕ {2, 114, 112} ⊕
{2, 168, 320} ⊕ {2, 288, 000} ⊕ {4, 212, 000}

• Level-10: {1}⊕{165}⊕{330}⊕{935}⊕{1, 144}⊕{4, 290}⊕{5, 005}⊕ (2){7, 128}⊕
{7, 293} ⊕ (2){7, 865} ⊕ (3){15, 400} ⊕ (3){17, 160} ⊕ {22, 275} ⊕ {23, 595} ⊕
{23, 595′}⊕{26, 520}⊕{28, 314}⊕{28, 798}⊕(2){33, 033}⊕(2){37, 752}⊕{57, 915}⊕
(2){58, 344} ⊕ (2){70, 070} ⊕ {72, 930} ⊕ (3){78, 650} ⊕ {81, 510} ⊕ (2){85, 085} ⊕
{112, 200}⊕ (3){117, 975}⊕{137, 445}⊕ (3){175, 175}⊕ (2){178, 750}⊕{181, 545}⊕
{182, 182}⊕ (2){188, 760}⊕{255, 255}⊕{268, 125}⊕ (4){289, 575}⊕ (2){333, 234}⊕
(2){382, 239} ⊕ {386, 750} ⊕ {448, 305} ⊕ (3){503, 965} ⊕ {525, 525} ⊕ {616, 616} ⊕
{650, 650}⊕{715, 715}⊕(2){802, 230}⊕(2){868, 725}⊕(2){875, 160}⊕(2){984, 555}⊕
{1, 002, 001} ⊕ {1, 100, 385} ⊕ (2){1, 274, 130} ⊕ (2){1, 310, 309} ⊕ {1, 412, 840} ⊕
(2){1, 519, 375} ⊕ {1, 673, 672} ⊕ {1, 786, 785} ⊕ {2, 571, 250} ⊕ {3, 128, 697} ⊕
{3, 641, 274} ⊕ {3, 792, 360} ⊕ {4, 506, 040} ⊕ {5, 214, 495} ⊕ {7, 900, 750}
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• Level-11: {32} ⊕ {1, 408} ⊕ {3, 520} ⊕ (2){4, 224} ⊕ (2){7, 040} ⊕ (2){10, 240} ⊕
{22, 880}⊕ (2){24, 960}⊕ (4){28, 512}⊕ (2){36, 960}⊕ (2){45, 056}⊕ (3){45, 760}⊕
(4){91, 520} ⊕ {128, 128} ⊕ (4){134, 784} ⊕ (2){137, 280} ⊕ (3){147, 840} ⊕
(2){157, 696} ⊕ (3){160, 160} ⊕ (2){183, 040} ⊕ (4){219, 648} ⊕ {251, 680} ⊕

(2){264, 000} ⊕ (2){274, 560} ⊕ (2){292, 864} ⊕ {457, 600} ⊕ (3){480, 480} ⊕
(2){570, 240} ⊕ (4){573, 440} ⊕ {672, 672} ⊕ (2){798, 720} ⊕ (2){896, 896} ⊕
(2){901, 120} ⊕ (5){1, 034, 880} ⊕ {1, 140, 480} ⊕ {1, 351, 680} ⊕ {1, 425, 600} ⊕
{1, 757, 184} ⊕ (2){1, 921, 920} ⊕ {1, 936, 000} ⊕ {2, 013, 440} ⊕ {2, 038, 400} ⊕
(3){2, 114, 112} ⊕ (2){2, 168, 320} ⊕ (3){2, 288, 000} ⊕ {2, 358, 720} ⊕ {3, 706, 560} ⊕
(3){4, 212, 000} ⊕ {5, 857, 280} ⊕ {5, 930, 496} ⊕ {6, 040, 320} ⊕ {7, 208, 960} ⊕
{8, 781, 696} ⊕ {9, 123, 840} ⊕ {11, 714, 560}

• Level-12: {1} ⊕ {165} ⊕ {330} ⊕ {935} ⊕ (2){1, 144} ⊕ (2){4, 290} ⊕ (2){5, 005} ⊕
(2){7, 128} ⊕ {7, 150} ⊕ {7, 293} ⊕ (3){7, 865} ⊕ (3){15, 400} ⊕ (4){17, 160} ⊕
(2){22, 275} ⊕ {23, 595} ⊕ {23, 595′} ⊕ {26, 520} ⊕ (2){28, 314} ⊕ (2){28, 798} ⊕
(3){33, 033}⊕ (2){37, 752}⊕ {47, 190}⊕ (2){57, 915}⊕ (2){58, 344}⊕ (2){70, 070}⊕
{72, 930} ⊕ (4){78, 650} ⊕ {81, 510} ⊕ (3){85, 085} ⊕ {91, 960} ⊕ {112, 200} ⊕
(5){117, 975}⊕(2){137, 445}⊕(4){175, 175}⊕(3){178, 750}⊕{181, 545}⊕{182, 182}⊕
(2){188, 760}⊕{235, 950}⊕{251, 680′}⊕ (3){255, 255}⊕{266, 266}⊕ (2){268, 125}⊕
(5){289, 575} ⊕ (3){333, 234} ⊕ (3){382, 239} ⊕ {386, 750} ⊕ (2){448, 305} ⊕
(5){503, 965} ⊕ (2){525, 525} ⊕ {616, 616} ⊕ {650, 650} ⊕ {715, 715} ⊕ {722, 358} ⊕
(4){802, 230}⊕{862, 125}⊕(4){868, 725}⊕(3){875, 160}⊕{948, 090}⊕(3){984, 555}⊕
{1, 002, 001} ⊕ (2){1, 100, 385} ⊕ {1, 115, 400} ⊕ {1, 123, 122} ⊕ {1, 245, 090} ⊕
(3){1, 274, 130}⊕(3){1, 310, 309}⊕{1, 412, 840}⊕(3){1, 519, 375}⊕(3){1, 673, 672}⊕
{1, 718, 496} ⊕ (2){1, 786, 785} ⊕ {2, 147, 145} ⊕ {2, 450, 250} ⊕ {2, 571, 250} ⊕
{2, 743, 125} ⊕ (3){3, 128, 697} ⊕ (2){3, 641, 274} ⊕ (2){3, 792, 360} ⊕ {3, 993, 990} ⊕
(2){4, 506, 040} ⊕ {4, 708, 704} ⊕ (3){5, 214, 495} ⊕ {5, 651, 360} ⊕ {5, 834, 400} ⊕
{6, 276, 270} ⊕ {7, 468, 032} ⊕ {7, 487, 480} ⊕ (2){7, 900, 750} ⊕ {11, 981, 970} ⊕
{14, 889, 875} ⊕ {20, 084, 064}

• Level-13: {32}⊕ (2){1, 408}⊕ (2){3, 520}⊕ (2){4, 224}⊕ (2){7, 040}⊕ (3){10, 240}⊕
{22, 880}⊕ (3){24, 960}⊕ (5){28, 512}⊕ (3){36, 960}⊕ (3){45, 056}⊕ (4){45, 760}⊕
(5){91, 520} ⊕ (2){128, 128} ⊕ (5){134, 784} ⊕ (3){137, 280} ⊕ (4){147, 840} ⊕
(3){157, 696} ⊕ (4){160, 160} ⊕ (3){183, 040} ⊕ (5){219, 648} ⊕ {251, 680} ⊕
(2){264, 000} ⊕ (3){274, 560} ⊕ (2){292, 864} ⊕ {302, 016} ⊕ (2){457, 600} ⊕
(4){480, 480} ⊕ (3){570, 240} ⊕ (6){573, 440} ⊕ (2){672, 672} ⊕ (3){798, 720} ⊕
(4){896, 896} ⊕ (3){901, 120} ⊕ (7){1, 034, 880} ⊕ (2){1, 140, 480} ⊕ {1, 171, 456} ⊕
{1, 351, 680}⊕(2){1, 425, 600}⊕(2){1, 757, 184}⊕(2){1, 921, 920}⊕(2){1, 936, 000}⊕
(2){2, 013, 440} ⊕ (2){2, 038, 400} ⊕ (4){2, 114, 112} ⊕ (3){2, 168, 320} ⊕
(5){2, 288, 000} ⊕ {2, 342, 912} ⊕ (2){2, 358, 720} ⊕ {2, 402, 400} ⊕ (2){3, 706, 560} ⊕
{3, 706, 560′} ⊕ (2){3, 794, 560} ⊕ (5){4, 212, 000} ⊕ {5, 720, 000} ⊕ (2){5, 857, 280} ⊕
{5, 930, 496} ⊕ (2){6, 040, 320} ⊕ {6, 864, 000} ⊕ (2){7, 208, 960} ⊕ (2){8, 781, 696} ⊕
(2){9, 123, 840}⊕{10, 570, 560′}⊕ (2){11, 714, 560}⊕{11, 927, 552}⊕{12, 390, 400}⊕
{13, 246, 464} ⊕ {13, 453, 440} ⊕ {33, 554, 432}
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• Level-14: {1} ⊕ (2){165} ⊕ (2){330} ⊕ {935} ⊕ (2){1, 144} ⊕ {1, 430} ⊕ {3, 003} ⊕
(2){4, 290}⊕ (2){5, 005}⊕ (3){7, 128}⊕{7, 150}⊕{7, 293}⊕ (3){7, 865}⊕{11, 583}⊕
(4){15, 400}⊕ (5){17, 160}⊕ (2){22, 275}⊕ (2){23, 595}⊕{235, 95′}⊕ (2){26, 520}⊕
(2){28, 314}⊕ (2){28, 798}⊕ (3){33, 033}⊕ (3){37, 752}⊕ {47, 190}⊕ (2){57, 915}⊕
(3){58, 344}⊕ (3){70, 070}⊕ {72, 930}⊕ (5){78, 650}⊕ (2){81, 510}⊕ (3){85, 085}⊕
{91, 960} ⊕ {112, 200} ⊕ (6){117, 975} ⊕ (2){137, 445} ⊕ {162, 162} ⊕ (5){175, 175} ⊕
(4){178, 750}⊕(2){181, 545}⊕(2){182, 182}⊕(2){188, 760}⊕{218, 295}⊕{235, 950}⊕
{2516, 80′}⊕(3){255, 255}⊕{266, 266}⊕(2){268, 125}⊕(7){289, 575}⊕(4){333, 234}⊕
(4){382, 239} ⊕ (2){386, 750} ⊕ (2){448, 305} ⊕ {490, 490} ⊕ (6){503, 965} ⊕
(3){525, 525} ⊕ {526, 240} ⊕ {616, 616} ⊕ (2){650, 650} ⊕ {715, 715} ⊕ {722, 358} ⊕
(5){802, 230}⊕{825, 825}⊕{862, 125}⊕(5){868, 725}⊕(3){875, 160}⊕(2){948, 090}⊕
(4){984, 555} ⊕ {1, 002, 001} ⊕ (3){1, 100, 385} ⊕ {1, 115, 400} ⊕ {1, 123, 122} ⊕
{1, 190, 112} ⊕ {1, 191, 190} ⊕ {1, 245, 090} ⊕ (4){1, 274, 130} ⊕ (5){1, 310, 309} ⊕
(2){1, 412, 840} ⊕ (4){1, 519, 375} ⊕ {1, 533, 675} ⊕ (4){1, 673, 672} ⊕ {1, 718, 496} ⊕
(3){1, 786, 785} ⊕ {2, 147, 145} ⊕ {2, 450, 250} ⊕ (2){2, 571, 250} ⊕ (2){2, 743, 125} ⊕
{3, 083, 080} ⊕ (4){3, 128, 697} ⊕ {3, 586, 440} ⊕ (3){3, 641, 274} ⊕ (2){3, 792, 360} ⊕
{3, 993, 990} ⊕ {4, 332, 042} ⊕ (4){4, 506, 040} ⊕ (2){4, 708, 704} ⊕ {4, 781, 920} ⊕
(5){5, 214, 495} ⊕ {52, 144, 95′} ⊕ {5, 651, 360} ⊕ {5, 834, 400} ⊕ (2){6, 276, 270} ⊕
{7, 468, 032} ⊕ (2){7, 487, 480} ⊕ {7, 865, 000} ⊕ (3){7, 900, 750} ⊕ {9, 845, 550} ⊕
{10, 830, 105} ⊕ (2){11, 981, 970} ⊕ {12, 972, 960} ⊕ {14, 889, 875} ⊕ {17, 606, 160} ⊕
{18, 718, 700} ⊕ (2){20, 084, 064} ⊕ {31, 082, 480}

• Level-15: (2){32} ⊕ {320} ⊕ (2){1, 408} ⊕ {1, 760} ⊕ (3){3, 520} ⊕ (2){4, 224} ⊕
{5, 280} ⊕ (3){7, 040} ⊕ (3){10, 240} ⊕ (2){22, 880} ⊕ (3){24, 960} ⊕ (6){28, 512} ⊕
(3){36, 960}⊕ (4){45, 056}⊕ (4){45, 760}⊕{64, 064}⊕ (6){91, 520}⊕ (3){128, 128}⊕
(6){134, 784} ⊕ (3){137, 280} ⊕ (4){147, 840} ⊕ (3){157, 696} ⊕ (5){160, 160} ⊕
{160, 160′} ⊕ (3){183, 040} ⊕ (6){219, 648} ⊕ {251, 680} ⊕ (3){264, 000} ⊕
(3){274, 560} ⊕ (3){292, 864} ⊕ {302, 016} ⊕ {366, 080} ⊕ (2){457, 600} ⊕
(5){480, 480} ⊕ (3){570, 240} ⊕ (7){573, 440} ⊕ (2){672, 672} ⊕ (4){798, 720} ⊕
(5){896, 896} ⊕ (4){901, 120} ⊕ (8){1, 034, 880} ⊕ (3){1, 140, 480} ⊕ {1, 171, 456} ⊕
{1, 208, 064}⊕(2){1, 351, 680}⊕(3){1, 425, 600}⊕(2){1, 757, 184}⊕(2){1, 921, 920}⊕
(3){1, 936, 000} ⊕ (3){2, 013, 440} ⊕ (2){2, 038, 400} ⊕ (5){2, 114, 112} ⊕
(3){2, 168, 320}⊕(6){2, 288, 000}⊕{2, 342, 912}⊕(3){2, 358, 720}⊕(2){2, 402, 400}⊕
{2, 446, 080} ⊕ (3){3, 706, 560} ⊕ (2){3, 706, 560′} ⊕ (3){3, 794, 560} ⊕ {4, 026, 880} ⊕
(6){4, 212, 000}⊕(2){5, 720, 000}⊕(2){5, 857, 280}⊕{5, 930, 496}⊕(3){6, 040, 320}⊕
{6, 307, 840} ⊕ {6, 864, 000} ⊕ (3){7, 208, 960} ⊕ (3){8, 781, 696} ⊕ (3){9, 123, 840} ⊕
{10, 570, 560}⊕{10, 570, 560′}⊕(2){11, 714, 560}⊕{11, 927, 552}⊕(2){12, 390, 400}⊕
(2){13, 246, 464}⊕(2){13, 453, 440}⊕{15, 375, 360}⊕{30, 201, 600}⊕{33, 116, 160}⊕
{33, 554, 432}

• Level-16: (2){1} ⊕ {11} ⊕ {65} ⊕ (2){165} ⊕ {275} ⊕ (2){330} ⊕ {462} ⊕
(2){935} ⊕ (2){1, 144} ⊕ {1, 430} ⊕ {2, 717} ⊕ {3, 003} ⊕ (3){4, 290} ⊕ (2){5, 005} ⊕
{7, 007}⊕ (3){7, 128}⊕ {7, 150}⊕ {7, 293}⊕ (4){7, 865}⊕ {11, 583}⊕ (4){15, 400}⊕
{16, 445}⊕ (5){17, 160}⊕ (3){22, 275}⊕ (3){23, 595}⊕ (2){23, 595′}⊕ (2){26, 520}⊕
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(2){28, 314} ⊕ (2){28, 798} ⊕ (3){33, 033} ⊕ {35, 750} ⊕ (3){37, 752} ⊕ {47, 190} ⊕
(3){57, 915}⊕ (3){58, 344}⊕ (3){70, 070}⊕ {72, 930}⊕ (5){78, 650}⊕ (2){81, 510}⊕
(4){85, 085}⊕{91, 960}⊕ (2){112, 200}⊕ (6){117, 975}⊕ (2){137, 445}⊕{162, 162}⊕
(5){175, 175} ⊕ (5){178, 750} ⊕ (2){181, 545} ⊕ (2){182, 182} ⊕ (3){188, 760} ⊕
{218, 295}⊕{235, 950}⊕{251, 680′}⊕ (4){255, 255}⊕ (2){266, 266}⊕ (3){268, 125}⊕
(7){289, 575} ⊕ (4){333, 234} ⊕ (4){382, 239} ⊕ (2){386, 750} ⊕ (2){448, 305} ⊕
{490, 490} ⊕ (6){503, 965} ⊕ (3){525, 525} ⊕ {526, 240} ⊕ {616, 616} ⊕ {628, 320} ⊕
(2){650, 650}⊕{674, 817}⊕{715, 715}⊕ (2){722, 358}⊕ (6){802, 230}⊕{825, 825}⊕
(2){862, 125} ⊕ (6){868, 725} ⊕ (4){875, 160} ⊕ (2){948, 090} ⊕ (4){984, 555} ⊕
{1, 002, 001} ⊕ (3){1, 100, 385} ⊕ (2){1, 115, 400} ⊕ (2){1, 123, 122} ⊕ {1, 190, 112} ⊕
{1, 191, 190} ⊕ {1, 245, 090} ⊕ (4){1, 274, 130} ⊕ (5){1, 310, 309} ⊕ (2){1, 412, 840} ⊕
(5){1, 519, 375} ⊕ {1, 533, 675} ⊕ (4){1, 673, 672} ⊕ (2){1, 718, 496} ⊕ {1, 758, 120} ⊕
(3){1, 786, 785} ⊕ {2, 147, 145} ⊕ (2){2, 450, 250} ⊕ (2){2, 571, 250} ⊕ {2, 598, 960} ⊕
(3){2, 743, 125} ⊕ {2, 858, 856} ⊕ {3, 056, 625} ⊕ {3, 083, 080} ⊕ (4){3, 128, 697} ⊕
{3, 586, 440} ⊕ (3){3, 641, 274} ⊕ (2){3, 792, 360} ⊕ {3, 993, 990} ⊕ {4, 332, 042} ⊕
(4){4, 506, 040}⊕(2){4, 708, 704}⊕{4, 781, 920}⊕(6){5, 214, 495}⊕(2){5, 214, 495′}⊕
(2){5, 651, 360} ⊕ {5, 834, 400} ⊕ (2){6, 276, 270} ⊕ {7, 468, 032} ⊕ (3){7, 487, 480} ⊕
(2){7, 865, 000} ⊕ (3){7, 900, 750} ⊕ {8, 893, 500} ⊕ {9, 845, 550} ⊕ {10, 696, 400′} ⊕
{10, 830, 105} ⊕ (2){11, 981, 970} ⊕ {12, 972, 960} ⊕ {14, 889, 875} ⊕ {17, 606, 160} ⊕
{18, 718, 700} ⊕ (3){20, 084, 064} ⊕ {30, 604, 288} ⊕ {31, 082, 480}

Level-17 to 32 are the same as Level-15 to 0 respectively since all irreducible representations

in SO(11) are self-conjugate. Moreover, the irreps corresponding to component fields are

the same as the θ−monomials.

This is also consistent with the existence of the spinor metric Cαβ and Cαβ . Consider

a field with a upstairs spinor index χα and assign it with the irrep {32}. We can lower the

spinor index by

χβ = χαCαβ , (4.23)

and the irrep corresponding to χβ is also {32}. That means in 11D, N = 1 case, the

position of the spinor index doesn’t matter in the context of representation theory.

There is an aspect of the results shown over pages 31-34 that a sophisticated reader

may find puzzling. At numbers of levels, there are multiple occurrence of the same repre-

sentation. Thus, one is led to wonder how this can occur? Given the necessity (for the sake

of efficiency) of expanding the superfield over the irreducible polynomials
[
θ1 · · · θp

]
IR at

Level-p, and not just θ1 · · · θp, is a requirement, a mechanism by which this phenomenon

occurs can easily be identified.

At low order it was shown (see (3.10)) that starting from the most general Lorentz

covariant possibilities, multiple expressions could be written. However at those orders,

all such irreducible polynomials
[
θ1 · · · θp

]
IR of the same dimensionality were found to be

proportional to one another among such sets. This was proven by investigations of Fierz

identities.

Starting at Level-7, one sees that two independent {91, 520} representations are re-

quired by the branching rule, etc. to appear. This can be accommodated only if there
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are two linearly independent irreducible polynomials at Level-7, i.e.
[
θ1 · · · θ7

]1, {91,520}
IR and[

θ1 · · · θ7
]2, {91,520}
IR .

4.4 11D, N = 1 theory to 10D, N = 2A theory: so(11) ⊃ so(10)

Since Type IIA theory can be obtained by the projection from 11D, N = 1 theory, we

can reproduce the scalar superfield decomposition results in 10D, N = 2A superspace,

which was listed in section six of [6] by projecting 11D, N = 1 component decomposition

results into 10D. In one specified level, we restrict each irreps of so(11) into so(10) and

consequently obtain a direct sum of several irreps of so(10). The projection matrix of

so(11) ⊃ so(10) is

Pso(11)⊃so(10) =


0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

−1 −2 −2 −2 −1

 . (4.24)

4.5 11D, N = 1 Breitenlohner approach

In 11D, N = 1 superspace, the graviton has (11 × 12)/2 = 66 degrees of freedom and can

be split into the conformal part and non-conformal part

h̃ab = hab + ηabh ,

{66} = {65} ⊕ {1}.
(4.25)

Similarly, the gravitino has 11 × 32 = 352 degrees of freedom and can be split as

ψ̃a
β = ψa

β − 1

11
(γa)

βγψγ ,

{11} ⊗ {32} = {320} ⊕ {32} ,
(4.26)

where the non-conformal “spin- 1
2 part” of the gravitino is defined as ψβ ≡ (γa)βγψ̃a

γ . A

final interesting note to make concerns the three-form gauge field babc which is known to

occur in the on-shell eleven dimensional supergravity theory. Since this bosonic gauge field

is a form, it is already obvious that it is irreducible and it follows as far as representation

goes babc = {165}.
It can be seen that at Level-16 there occurs a boson in the {65} representation. Also

at this same level, there occur two bosons in the {165} representation. Finally, at Level-15,

there occurs one fermion in the {320} representation which implies at Level-17 there occurs

one fermion in the {320} representation. This is consistent with SUSY transformation laws

of the graviton hab in 11D, N = 1 theory. Acting the D-operator on the graviton gives a

term proportional to the gravitino in the on-shell case,

Dαhab ∝ (γ(a)αβψb)
β , (4.27)

while in the off-shell case, there are several auxiliary fields showing up in the r.h.s. besides

the gravitino.
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This tells us the scalar superfield gives one possible embedding for the graviton, two

possible embeddings for the gravitino, along with a number of auxiliary fields. It’s possible

that the scalar superfield itself plays the roles both as prepotential and conformal com-

pensator. This is not a new phenomenon. In 4D, N = 1 supergravity among a number of

off-shell distinct formulations, there exists one where the vector superfield Ha provides the

superconformal supermultiplet as well as the compensator supermultiplet. Momentarily in

our discussion, let us depart the domain of the 11D theory to discuss this particular 4D,

N = 1 supergravity theory.

Among the many forms of irreducible off-shell 4D, N = 1 supergravity, there is the one

first described in the work [37]. This form of the off-shell theory possesses one prepotential:

the conformal prepotential Ha and all the component fields of the theory reside in it.

The component fields associated with this form of supergravity include the 4D graviton,

gravitino, the axial vector auxiliary field, and two auxiliary 3-forms,

hab(x), ψa
β(x), Aa(x), babc(x), babc(x). (4.28)

Although often overlooked, this is one of the original off-shell formulations (the Stelle-West

formulation) known in the literature [38]. In this limit the linearized frame superfields take

the form as shown in9 [7]

Eα = Dα +XDα + i
1

2
(DαH

b)∂b ,

E.
α = D.

α +XD.
α − i

1

2
(D.

αH
b)∂b ,

(4.29)

Ea = ∂a + i
[1

2
D

2
D(αH

γ) .
α − (D.

αX)δα
γ
]
Dγ + i

[
− 1

2
D2D(

.
αHα

.
γ) − (DαX)δ.α

.
γ
]
D.
γ

+
[
− 1

2
( [Dα , D.

α]Hb) + (X +X)δa
b
]
∂b ,

X = −1

6

(
2 D.

αDα + DαD.
α

)
Ha.

(4.30)

As promised all of the SG supermultiplet component fields in this formulation and in this

WZ gauge arise from the θ-expansion of Ha. From (4.30) we extract the conformal part of

the linearized supergraviton and find

hab = −1

2

[ (
[Dα , D.

α]Hb

)
+
(
[Dβ , D .

β
]Ha

) ]
+

1

4
Cαβ C .

α
.
β

(
[Dγ , D.

γ ]Hc
)

= −1

2

[
δα

γ δ .α
.
γ δb

d + δβ
γ δ .

β

.
γ δa

d − 1

2
Cαβ C .

α
.
β
Cγδ C

.
γ
.
δ
] (

[Dγ , D.
γ ]Hd

)
= −1

2

[
δa
c δb

d + δb
c δa

d − 1

2
ηabη

cd
] (

[Dγ , D.
γ ]Hd

)
≡ T γ

.
γ d

a b

(
[Dγ , D.

γ ]Hd

)
,

(4.31)

where the quantity T γ
.
γ d

a b on the final line of (4.31) is defined by the first factor on the

preceding line. Let us rewrite this final equation by first introducing the 4D, N = 1 scalar

9These equations first appeared in the works Superspace [39] and are written in the conventions of that

work.
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superfield v

v(xa, θα) = f(xa) + θα ψα(xa) + θαθβ [Cαβ g(xa) + i(γ5)αβ h(xa) + i(γ5γb)αβ ]vb(x
a)

+ θαθβθγCαβCγδ χ
δ(xa) + θαθβθγθδCαβCγδN(xa)

(4.32)

and this representation can be “tensored” with the {10} and {4} representations of the

SO(1,3) algebra. Doing this we find

[ v ⊗ {10} ] = hab , [ v ⊗ {4} ] = Ha , (4.33)

so that the final line of (4.31) yields

[ v ⊗ {10} ] = T γ
.
γ d

a b

(
[Dγ , D.

γ ] [v ⊗ {4}]
)
. (4.34)

Returning to the case of 11D, one may impose the condition

[V ⊗ {65} ] = T α1···α16
{65}

(
D[α1

· · ·Dα16] V
)
, (4.35)

which has the effect of implying that the graviton candidate at Level-0 in V ⊗ {65} and

the graviton candidate at Level-16 in the V representation are one and the same field. In

this equation, the term T γ1···γ16{65} are a set of quantities chosen so that the equation is

consistent with SO(1,10) Lorentz symmetry. In other words, T γ1···γ16{65} in (4.35) is the

analog of T γ
.
γ d

a b in (4.31). As in the 4D theory, the graviton occurs at second order in the

θ-expansion of Ha, two spinorial derivatives occur in (4.31). For the proposed 11D theory,

the graviton occurs at sixteenth order in the θ-expansion of V, hence sixteen spinorial

derivatives occur in (4.35).

4.6 Using the V gateway

In case the value in the results listed across pages 31 - 34 or equivalently in appendix F are

not apparent, let us here use the symbol V for this listing, also we can use {B}, and {F}
for any bosonic or fermionic representation (respectively) of 11D spacetime symmetry. The

explicit spectrum of component fields in any representation of the 11D Lorentz symmetry

is found from the multiplications of representations V ⊗ {B} or V ⊗ {F}. Thus, V is a

gateway to the explicit component spectrum of all 11D superfields. Below, we apply this

technology to execute other scans for the conformal graviton, etc. .

With the explicit knowledge of V in hand, it is possible to construct scans in many

different ways. The use of this V-gateway allows for rather flexible scans in addition a

simple enumeration of the component field spectrum of the 11D, N = 1 scalar superfield.

Let us work through some examples.

We know that the conformal graviton occurs in the scalar superfield. That led us to

wonder how frequently it appears in other superfields. We have performed a computer-

based search involving tensoring the scalar superfield up to the irrep dimension 260,338.

However, if we demand that the graviton {65}must occur at the middle level (Level-16)

only , the gravitino {320} must appear at the next level (Level-17), and the 3-form {165}

– 35 –



J
H
E
P
0
9
(
2
0
2
0
)
0
8
9

Dynkin Label Irrep (b{65}, b{320}, b{165})

(00000) {1} (1, 1, 2)

(10000) {11} (2, 6, 3)

(70000) {16, 445} (2, 4, 2)

(80000) {35, 750} (2, 2, 1)

Table 4. Summary of bosonic superfields that contain graviton(s) only at Level-16, gravitino(s)

at Level-17 and 3-form(s) at Level-16.

must appear at the same level as the graviton (Level-16), the number of superfields that

satisfy all these conditions drops drastically, from 91 to 4. They are listed in table 4, where

the numbers of graviton(s), gravitino(s) and 3-form(s) that occur at Level-16, Level-17 and

Level-16 (let them be b{65}, b{320} and b{165} respectively) are shown.

The appearance of the conformal graviton representation in the case of the 11D, N = 1

theory is very different than the behavior seen in the case of the 10D, N = 1 theory. In the

latter case, the conformal graviton representation only occurs in some particular cases of

tensoring between either bosonic or spinorial irreps of SO(1,9) and the scalar superfield. In

the former case, the conformal graviton represenation appears in every case where either a

bosonic or a spinorial irrep of SO(1,10) is tensored with the 11D, N = 1 scalar superfield

up to the case of the {255, 255} irrep. The next irrep, {260, 338}, does not contain the

conformal graviton at any level.

Below we describe one final scan, though it will not be undertaken. The work of [23]

noted 11D, N = 1 superspace geometry is consistent10 with superspace scale symmetry if

the constraints

i
1

32
(γa)

αβ Tαβ
b = δa

b , (γa)
αβ Tαβ

γ = 0 ,

Tα [de] −
2

55
(γde)α

γ Tγb
b = 0 , (γa)

αβ Rαβ
de = 0 ,

(γab)
αβ Tαβ

b = 0 , (γ[ab|)
αβ Tαβ |c] = 0 ,

(γabcde)
αβ Tαβ

e = 0 , (γ[a1a2a3a4a5|)
αβ Tαβ |a6] = 0 ,

(4.36)

are imposed on the torsion and curvature superfields. These were derived [23] from

demanding the frame superfield in 11D should depend solely on a conformal compen-

sating superfield and a superconformal semi-prepotential. They imply only three inde-

pendent conformal tensors appear in torsion and curvature superfields: the Weyl ten-

sor Wabcd in the Riemann tensor, and two other tensors X[ab]
c ≡ 1

32 (γab)
αβ Tαβ

c, and

X[abcde]
f ≡ i 1

32 (γabcde)
αβ Tαβ

f . The constraints in (4.36) imply these two tensors re-

spectively correspond to the {429} and {4290} irreps. Interestingly enough, the scalar

superfield has the {4290} irrep but not the {429} irrep at Level-16. This means either

X[ab]
c can be set to zero, or another prepotential must be sought by an additional scan.

10These constraints also appear consistent with the analysis given in the works of [14, 15].
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Level # Component Field Count

0 1

1 1

2 3

3 3

4 8

5 9

6 19

7 23

8 49

9 55

10 99

11 106

12 173

13 171

14 247

15 225

16 296

Table 5. Number of Independent Fields at Each Level.

This discussion illustrates how the full supergeometry is constrained by the off-shell

prepotential superfields. Since the full geometry controls all interactions, and the prepo-

tential controls the supergeometry, the prepotential also controls the interactions.

5 11D, N = 1 Adinkra diagram

In [6], we have developed ten dimensional adinkra diagrams for the first time. In this

chapter, we will apply the same technique to define the 11D, N = 1 adinkra diagram.

Let us first list the number of independent component fields at each level up to Level-16.

As usual, beyond the middle level in a superfield (and thus its adinkra), the number

of fields at Level-n when 17 ≤ n ≤ 32 is equal to the number Level-(32 − n) since 32 is

the top level of the expansion. Table 5 summarizes the number of independent fields in

levels 0-16. We thus find 1,198 bosonic fields in the even levels 0-14 together with the even

levels 18-32, and 296 at the middle level. So the total number of bosonic fields in the 11D,

N = 1 scalar superfield is 1,494 fields. There are 1,186 fermionic fields in the odd levels

1-15 together with the odd levels 17-31. The equality in the number of degrees of freedom

is accomplished by, on average, having fermions appear in representations that are larger

than that of the bosons. So the total number of fields in the 11D N = 1 scalar superfield

is 1,494 bosonic fields and 1,186 fermionic fields.

Now we come to the adinkra itself.
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Figure 2. Adinkra Diagram for 11D, N = 1 (using dimensions).

Based on the component decomposition results shown in section 4.3, we can explicitly

demonstrate the 11D, N = 1 adinkra by the same process as we described in [6]: use

open nodes to denote bosonic component fields and put their corresponding irreps in the

center. For fermionic component fields, use closed nodes. The number of level represents

the height assignment. Black edges connect nodes in the adjacent levels, meaning SUSY

transformations. In order to determine the linkages between the nodes in adjacent levels,

we apply the process described in section 2.3. While in principle it is possible to draw the

adinkra exactly showing all 1,494 bosonic nodes, all 1,186 fermionic nodes, and a maximum

of 29,334 links11 connecting bosons to fermions and vice-versa, for reasons of practicality

we will only draw it up to the quintic level.

The Adinkra diagram for 11D, N = 1 up to level-5 can be represented using dimensions

in figure 2 or Dynkin labels in figure 3.

6 Conclusion

As seen from table 4, the 11D, N = 1 scalar superfield is the simplest bosonic super-

field that contains all the on-shell states of eleven dimensional supergravity and has the

unique attribute of containing a single candidate for the graviton. This raises delightful

possibilitities that we cast into the form of conjectures.

Conjecture # 1:

Let V denote the scalar superfield in a Lorentz superspace of signature

SO(1, 10), the facts that at the middle level of its adinkra both the conformal

11This number might be smaller depending on the number of K-parameters described in the final equa-

tions in the subsection (2.3) that vanish.
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Figure 3. Adinkra Diagram for 11D, N = 1 (using Dynkin labels).

graviton and gauge 3-form (as well the conformal gravitino at one higher level)

show up, imply V is a superfield limit of M-Theory, with V being a supergravity

prepotential superfield or possibly a semi-prepotential superfield.

Conjecture # 2:

Under the branchings of su(32) ⊃ so(10) and su(32) ⊃ so(4) respectively, the

scalar superfield V describes the superfield limit of Type-IIA superstring theory

and the prepotential or semi-prepotential superfield for 4D, N = 8 supergravity.

To our knowledge, there exists no previous suggestions of these possibilities.

However, our calculations, discussions, and explorations also point to something else.

In the section entitled “Traditional Path to Superfield Component Decompositions,”

we showed explicitly at low orders in the θ-expansion the practical difficulty of using the

conventional θ-expansion to access the component field contents of high dimensional su-

perfields. This suggests the possible value of searching for expansions over quantities other

than the Grassmann θ-coordinates of the Salam-Strathdee superspace.

As discussed extensively in appendix E the approach of introducing two classes of

Young Tableaux, one for bosonic representations and one for fermionic representations,

is quite useful in both conceptual and calculational efficiency. As Young Tableaux have

a well understood definition of multiplication, one can build upon this fact. Our bosonic

Young Tableaux correspond to a set of Tableaux that obey the usual multiplication rules of

such objects. On the other hand, only the totally antisymmetric products of the spinorial

Young Tableaux are considered, i.e. single column Tableaux. Furthermore, as shown in
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this appendix, as single column spinorial Tableaux are also equivalent to a sum of bosonic

Young Tableaux, they yield a more efficient method for representing supermultiplets consist

of replacing θ-expansions by products of elements taken from the two classes of Young

Tableaux.

Thus, we are in position to define “adinkra fields” as an alternative to superfields.

These would take the form of conventional superfields, but with the differences that the

θ variables raised to all possible powers would be replaced by products of the irreducible

Tableaux and the Dynkin Labels play the role of the component fields. The Dynkin Labels

implicitly carry the indices on the component field variable coefficients which saturate the

indices represented by the boxes of the Tableaux. There is currently a puzzling feature

of our results that requires more study. Namely, at variously fixed levels there can be

seen to occur multiple numbers of the same irrep. It is our suspicious this is related to

the inequivalence of pathways to reach these multiple occurrences of the same irrep in the

same level. This is a topic for future study.

We wish to end on a note of historical observation. Many years ago, the foundation

for superfield supergravity in four dimensions occurred with two works [40, 41] where the

prepotential for supergravity was proposed. This current work has now set in place, we

hope, a similar period for superfield supergravity in eleven dimensions. Whether this step

will be proven as successful as its precedent can only also be settled by research in the

future.

“True ignorance is not the absence of knowledge,

but the refusal to acquire it.”

Karl Popper

Acknowledgments

We wish to acknowledge discussions with S. Kuzenko, W. Linch, W. Siegel, M. Roček, and
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Level b{1} b{55} b{65} b{165} b{32} b{320}

17 2 5 2 8 0 0

18 0 0 0 0 5 8

Table 6. Summary of important component fields contained in the superfield Ψα.

Added note in proof. Recall the decomposition of the inverse frame and gravitino fields

in 11D, yields

ea
m = {h(ab)+ηabh+h[ab]} ηbm , (6.1)

{121} {65} {1} {55}

where h(ab) is the conformal graviton, h is the trace, and h[ab] is the two-form; and

ψ̃a
α =ψa

α − 1

11
(γa)

αβψβ , (6.2)

{352} {320} {32}

where ψa
α is the conformal gravitino and ψβ ≡ (γa)αβψ̃a

α is the γ-trace. Since on-shell

11D supergravity also contains the three-form with d.o.f. {165}, the prepotential superfield

must contain {1}, {55}, {65}, and {165} at level-n and contain {32} and {320} at level-

(n + 1). As presented in section 4.3, the scalar superfield V contains the {1}, {65}, and

{165} irreps at level-16 and contains the {32} and {320} irreps at level-17, but does not

contain the {55} irrep at level-16, which suggests that V may be a semi-prepotential, i.e.

some spinorial derivatives of the fundamental prepotential.

Next, consider the spinor superfield Ψα satisfying

V = DαΨα. (6.3)

Since the D-operator acting on a superfield always lowers a component field by one level,

in the spinor superfield the {1}, {65}, and {165} irreps must appear at Level-17 and the

{32} and {320} irreps must appear at Level-18. Table 6 summarizes the occurrences of

these important component fields we care about. Note that Ψα satisfies the criterion and

we conject that V is a supergravity semi-prepotential superfield and Ψα is a supergravity

prepotential superfield.
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A SO(11) irreducible representations

In this appendix, we list some of the SO(11) irreducible representations by Dynkin la-

bels and dimensions and thus give a dictionary between the two methods for describing

irreps [31].

Dynkin label Dimension

(10000) 11

(00001) 32

(01000) 55

(20000) 65

(00100) 165

(30000) 275

(10001) 320

(00010) 330

(11000) 429

(00002) 462

(40000) 935

(02000) 1, 144

(01001) 1, 408

(10100) 1, 430

(20001) 1, 760

(21000) 2, 025

(50000) 2, 717

(10010) 3, 003

(00101) 3, 520

(00003) 4, 224

(10002) 4, 290

(01100) 5, 005

(00011) 5, 280

(60000) 7, 007

(30001) 7, 040

(20100) 7, 128

Dynkin label Dimension

(12000) 7, 150

(31000) 7, 293

(00200) 7, 865

(11001) 10, 240

(01010) 11, 583

(03000) 13, 650

(20010) 15, 400

(70000) 16, 445

(01002) 17, 160

(41000) 21, 945

(20002) 22, 275

(40001) 22, 880

(00110) 23, 595

(00020) 23, 595′

(02001) 24, 960

(30100) 26, 520

(00004) 28, 314

(10101) 28, 512

(22000) 28, 798

(11100) 33, 033

(80000) 35, 750

(10003) 36, 960

(00102) 37, 752

(10011) 45, 056

(21001) 45, 760

(00012) 47, 190

Table 7. SO(11) irreducible representations [31].

B 11D gamma matrix multiplication table

In the work of [7], we have given previously the definitions we use for the 11D γ-matrices.

For the convenience of our readers, we review a number of these below and as well present

some new results.
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B.1 Identities with unique expressions

γaγb = γab + δb
aI , (B.1a)

γaγbc = γabc + δ[b
aγc] , (B.1b)

γaγbcd = γabcd +
1

2
δ[b

aγcd] , (B.1c)

γaγbcde = γabcde +
1

3!
δ[b

aγcde] , (B.1d)

γaγbcdef =
1

5!
εabcdef

[5]γ[5] +
1

4!
δ[b

aγcdef ]. (B.1e)

γabγc = γabc − δc[aγb] , (B.2a)

γabγcd = γabcd + δ[c
[aγd]

b] − δc[aδdb] , (B.2b)

γabγcde = γabcde −
1

2
δ[c

[aγde]
b] − δ[c

aδd
bγe] , (B.2c)

γabγcdef =
1

5!
εabcdef

[5]γ[5] +
1

3!
δ[c

[aγdef ]
b] − 1

2
δ[c

aδd
bγef ] , (B.2d)

γabγcdefg =
1

4!
εabcdefg

[4]γ[4] −
1

4!
δ[c

[aγdefg]
b] − 1

3!
δ[c

aδd
bγefg]. (B.2e)

γabcγd = γabcd +
1

2
δd

[aγbc] , (B.3a)

γabcγde = γabcde +
1

2
δ[d

[aγe]
bc] − δd[aδe

bγc] , (B.3b)

γabcγdef =
1

5!
εabcdef

[5]γ[5] +
1

4
δ[d

[aγef ]
bc] +

1

2
δ[d

[aδe
bγf ]

c] − δd[aδe
bδf

c] , (B.3c)

γabcγdefg =
1

4!
εabcdefg

[4]γ[4] +
1

12
δ[d

[aγefg]
bc] − 1

4
δ[d

[aδe
bγfg]

c] − δ[d
aδe

bδf
cγg]. (B.3d)

γabcdγe = γabcde −
1

3!
δe

[aγbcd] , (B.4a)

γabcdγef =
1

5!
εabcdef

[5]γ[5] +
1

3!
δ[e

[aγf ]
bcd] − 1

2
δe

[aδf
bγcd] , (B.4b)

γabcdγefg =
1

4!
εabcdefg

[4]γ[4] −
1

12
δ[e

[aγfg]
bcd] − 1

4
δ[e

[aδf
bγg]

cd] + δe
[aδf

bδg
cγd]. (B.4c)

γabcdeγf =
1

5!
εabcdef

[5]γ[5] +
1

4!
δf

[aγbcde] , (B.5a)

γabcdeγfg =
1

4!
εabcdefg

[4]γ[4] +
1

4!
δ[f

[aγg]
bcde] − 1

3!
δf

[aδg
bγcde]. (B.5b)
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B.2 Identities with multiple expressions

Sometimes, multiplication of our general 11D γ matrices can yield multiple equivalent

expressions. The following cases of this phenomenon are relevant to know about in the

discussion of irreducible monomials.

For γ[3]γ[5], the γ[5]-term has multiple expressions.

γabcγdefgh

=
1

5!4!2!
δ[d

[aεefgh]
bc][5]γ[5] −

1

3!
εabcdefgh

[3]γ[3] +
1

12
δ[d

[aδe
bγfgh]

c] − 1

2
δ[d

aδe
bδf

cγgh]

=
1

4!2!
ε[4]

defgh
[abγc][4] −

1

3!
εabcdefgh

[3]γ[3] +
1

12
δ[d

[aδe
bγfgh]

c] − 1

2
δ[d

aδe
bδf

cγgh]

=
1

4!4!
ε[4]abc

[defgγh][4] −
1

3!
εabcdefgh

[3]γ[3] +
1

12
δ[d

[aδe
bγfgh]

c] − 1

2
δ[d

aδe
bδf

cγgh].

(B.3e)

For γ[4]γ[4̄], the γ[5]-term has multiple expressions.

γabcdγefgh

=
1

5!3!3!
δ[e

[aεfgh]
bcd][5]γ[5]−

1

3!
εabcdefgh

[3]γ[3]−
1

8
δ[e

[aδf
bγgh]

cd]− 1

3!
δ[e

[aδf
bδg

cγh]
d]+δe

[aδf
bδg

cδh
d]

=
1

4!3!
ε[4]abcd

[efgγh][4] −
1

3!
εabcdefgh

[3]γ[3] −
1

8
δ[e

[aδf
bγgh]

cd] − 1

3!
δ[e

[aδf
bδg

cγh]
d] + δe

[aδf
bδg

cδh
d]

= − 1

4!3!
ε[4]

efgh
[abcγd]

[4] −
1

3!
εabcdefgh

[3]γ[3] −
1

8
δ[e

[aδf
bγgh]

cd] − 1

3!
δ[e

[aδf
bδg

cγh]
d] + δe

[aδf
bδg

cδh
d].

(B.4d)

For γ[4]γ[5], the γ[4]-term has multiple expressions.

γabcdγefghi

= − 1

4!4!3!
δ[e

[aεfghi]
bcd][4]γ[4] −

1

2
εabcdefghi

[2]γ[2] −
1

4!
δ[e

[aδf
bγghi]

cd] +
1

12
δ[e

[aδf
bδg

cγhi]
d] + δ[e

aδf
bδg

cδh
dγi]

= − 1

3!3!
ε[3]efghi

[abcγd]
[3] −

1

2
εabcdefghi

[2]γ[2] −
1

4!
δ[e

[aδf
bγghi]

cd] +
1

12
δ[e

[aδf
bδg

cγhi]
d] + δ[e

aδf
bδg

cδh
dγi]

=
1

4!3!
ε[3]abcd[efghγi][3] −

1

2
εabcdefghi

[2]γ[2] −
1

4!
δ[e

[aδf
bγghi]

cd] +
1

12
δ[e

[aδf
bδg

cγhi]
d] + δ[e

aδf
bδg

cδh
dγi].

(B.4e)

For γ[5]γ[3], the γ[5]-term has multiple expressions.

γabcdeγfgh =
1

5!4!2!
δ[f

[aεgh]
bcde][5]γ[5] −

1

3!
εabcdefgh

[3]γ[3] +
1

12
δ[f

[aδg
bγh]

cde] − 1

2
δf

[aδg
bδh

cγde]

=
1

4!2!
ε[4]abcde

[fgγh][4] −
1

3!
εabcdefgh

[3]γ[3] +
1

12
δ[f

[aδg
bγh]

cde] − 1

2
δf

[aδg
bδh

cγde]

=
1

4!4!
ε[4]

fgh
[abcdγe][4] −

1

3!
εabcdefgh

[3]γ[3] +
1

12
δ[f

[aδg
bγh]

cde] − 1

2
δf

[aδg
bδh

cγde].

(B.5c)
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For γ[5]γ[4], the γ[4]-term has multiple expressions.

γabcdeγfghi

=
1

4!4!3!
δ[f

[aεghi]
bcde][4]γ[4] −

1

2
εabcdefghi

[2]γ[2] −
1

4!
δ[f

[aδg
bγhi]

cde] − 1

12
δ[f

[aδg
bδh

cγi]
de] + δf

[aδg
bδh

cδi
dγe]

=
1

3!3!
ε[3]abcde[fghγi][3] −

1

2
εabcdefghi

[2]γ[2] −
1

4!
δ[f

[aδg
bγhi]

cde] − 1

12
δ[f

[aδg
bδh

cγi]
de] + δf

[aδg
bδh

cδi
dγe]

= − 1

4!3!
ε[3]fghi

[abcdγe]
[3] −

1

2
εabcdefghi

[2]γ[2] −
1

4!
δ[f

[aδg
bγhi]

cde] − 1

12
δ[f

[aδg
bδh

cγi]
de] + δf

[aδg
bδh

cδi
dγe].

(B.5d)

For γ[5]γ[5̄], both γ[5]-term and γ[3]-term have multiple expressions. The different γ[5]-

term expressions are:

γ[5]-term coefficient

δ[f
[aδg

bεhij]
cde][5]γ[5]

1
5!3!3!2!

δ[f
[aεghi

bcde][4]γj][4]
1

4!4!3!2!

δ[f
[aεghij]

bcd
[4]γ

e][4] − 1
4!4!3!2!

ε[3]abcde
[fghγij][3] − 1

3!3!2!

ε[3]
fghij

[abcγde][3]
1

3!3!2!

The different γ[3]-term expressions are:

γ[3]-term coefficient

δ[f
[aεghij]

bcde][3]γ[3] − 1
4!4!3!

ε[2]abcde
[fghiγj][2] − 1

4!2!

ε[2]
fghij

[abcdγe][2] − 1
4!2!

Therefore, we have 5×3 = 15 different expressions of γabcdeγfghij with right symmetries
and good coefficients. One example would be

γabcdeγfghij =
1

5!3!3!2!
δ[f

[aδg
bεhij]

cde][5]γ[5]−
1

4!4!3!
δ[f

[aεghij]
bcde][3]γ[3]

+ εabcdefghij
[1]γ[1] −

1

4!
δ[f

[aδg
bδh

cγij]
de] − 1

4!
δ[f

[aδg
bδh

cδi
dγj]

e] + δf
[aδg

bδh
cδi

dδj
e].

(B.5e)

C Additional useful identities for 11D gamma matrices

Over and above previous results [7], the list of identities below are useful for any reader

who wishes to reproduce the results given in section 3 particularly with regards to the

discussion on deriving irreducible θ monomials.

γ[1]γ
[1] = 11 , (C.1)

γ[2]γ
[2] = − 110 , (C.2)

γ[3]γ
[3] = − 990 , (C.3)
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γ[4]γ
[4] = 7920 , (C.4)

γ[5]γ
[5] = 55440 , (C.5)

γa[2]γ[2] = − 90γa , (C.6)

γa[2]γdefγ[2] = − 6γadef − 13δ[d
aγef ] , (C.7)

γa[2]γdefgγ[2] = 6γadefg − δ[d
aγefg] , (C.8)

γ[3]γ
[3]a = − 720γa , (C.9)

γa[3]γ[3] = − 720γa , (C.10)

γ[3]γefgγ
[3]a = 48γaefg + 24δ[e

aγfg] , (C.11)

γa[3]γefgγ[3] = − 48γaefg + 24δ[e
aγfg] , (C.12)

γ[3]γefghγ
[3]a = 48γaefgh − 8δ[e

aγfgh] , (C.13)

γa[3]γefghγ[3] = 48γaefgh + 8δ[e
aγfgh] , (C.14)

γ[4]γ
[4]a = 5040γa , (C.15)

γ[4]γfghγ
[4]a = 336γafgh − 168δ[f

aγgh] , (C.16)

γ[4]γfghiγ
[4]a = 48γafghi + 56δ[f

aγghi] , (C.17)

γ[aγhijγ
b] = − 2γabhij − 2δ[h

aδi
bγj] , (C.18)

γab[2]γhijγ[2] = 8δ[h
[aγb]ij] + 40δ[h

aδi
bγj] , (C.19)

γ[aγijlmγ
b] =

2

5!
εabijlm[5]γ

[5] + δ[i
aδj

bγlm] , (C.20)

γab[2]γijlmγ[2] =
1

15
εabijlm[5]γ

[5] + 8δi
[aδj

bγlm] , (C.21)

γ[3][aγb][3] = − 1008γab , (C.22)

γ[3][aγfghγ
b]

[3] = 96γabfgh − 336δ[f
aδg

bγh] , (C.23)

γ[3][aγfghiγ
b]

[3] =
2

5
εabfghi[5]γ

[5] , (C.24)

γab[1]γhijγ[1] = − 3γabhij +
5

2
δ[h

[aγb]ij] + 7δ[h
aδi

bγj] , (C.25)

γab[1]γijlmγ[1] =
1

5!
εabijlm[5]γ

[5] +
1

2
δ[i

[aγjlm]
b] − 5

2
δ[i
aδj

bγlm] , (C.26)

γ[2][aγb][2] = − 144γab , (C.27)

γ[2][aγhijγ
b]

[2] = 80δ[h
aδi

bγj] , (C.28)

γ[2][aγijlmγ
b]

[2] =
2

15
εabijlm[5]γ

[5] − 16δ[i
aδj

bγlm] , (C.29)

γ[3]γab[3] = − 504γab , (C.30)

γ[3]γijkγ
ab

[3] = − 48γabijk − 168δ[i
aδj

bγk] , (C.31)

γ[3]γjklmγ
ab

[3] =
1

5
εabjklm[5]γ

[5] + 8δ[j
[aγb]klm]. (C.32)
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D Fierz identities for analytical expressions of cubic monomials

In the derivation of the cubic irreducible monomials, we encountered a number of Fierz

identities. In this appendix we list the ones relevant to derive our results.

D.1 For {32} θ-monomials

C[δεCβ]α =
1

32

{
C[εβ Cδ]α +

1

3!
(γ[3])[εβ (γ[3])δ]α −

1

4!
(γ[4])[εβ (γ[4])δ]α

}
, (D.1)

(γ[3])[δε (γ[3])β]α =
1

32

{
990C[εβ Cδ]α − 5(γ[3])[εβ (γ[3])δ]α −

11

4
(γ[4])[εβ (γ[4])δ]α

}
, (D.2)

(γ[4])[δε (γ[4])β]α = −495

2
C[εβ Cδ]α −

11

4
(γ[3])[εβ (γ[3])δ]α +

3

16
(γ[4])[εβ (γ[4])δ]α. (D.3)

D.2 For {320} θ-monomials

C[δε(γ
a)β]α =

1

32

{
−C[εβ(γa)δ]α −

1

3!
(γ[3])[εβ(γ

a
[3])δ]α +

1

2
(γa[2])[εβ(γ[2])δ]α

− 1

4!
(γ[4])[εβ(γ

a
[4])δ]α +

1

3!
(γa[3])[εβ(γ[3])δ]α

}
,

(D.4)

(γa[2])[δε (γ[2])β]α =
1

32

{
90C[εβ(γa)δ]α − (γ[3])[εβ(γ

a
[3])δ]α − 13(γa[2])[εβ(γ[2])δ]α

−1

4
(γ[4])[εβ(γ

a
[4])δ]α + (γa[3])[εβ(γ[3])δ]α

}
,

(D.5)

(γ[3])[δε (γa[3])β]α = −45

2
C[εβ(γa)δ]α −

1

4
(γ[3])[εβ(γ

a
[3])δ]α −

3

4
(γa[2])[εβ(γ[2])δ]α

+
1

16
(γ[4])[εβ(γ

a
[4])δ]α −

1

4
(γa[3])[εβ(γ[3])δ]α ,

(D.6)

(γa[3])[δε (γ[3])β]α =
45

2
C[εβ(γa)δ]α −

1

4
(γ[3])[εβ(γ

a
[3])δ]α +

3

4
(γa[2])[εβ(γ[2])δ]α

− 1

16
(γ[4])[εβ(γ

a
[4])δ]α −

1

4
(γa[3])[εβ(γ[3])δ]α ,

(D.7)

(γ[4])[δε (γa[4])β]α = −315

2
C[εβ(γa)δ]α +

7

4
(γ[3])[εβ(γ

a
[3])δ]α −

21

4
(γa[2])[εβ(γ[2])δ]α

− 1

16
(γ[4])[εβ(γ

a
[4])δ]α −

7

4
(γa[3])[εβ(γ[3])δ]α.

(D.8)

D.3 For {1, 408} θ-monomials

(γab[2])[δε (γ[2])β]α =
9

4
C[εβ(γab)δ]α +

1

4
(γ[2][a)[εβ(γb][2])δ]α +

5

4
(γab[1])[εβ(γ[1])δ]α

− 1

4× 4!5!
εab[4][5](γ

[4])[εβ(γ[5])δ]α −
1

4
(γab[2])[εβ(γ[2])δ]α ,

(D.9)

(γ[3][a)[δε (γb][3])β]α =
63

2
C[εβ(γab)δ]α +

1

2
(γ[3])[εβ(γab[3])δ]α −

21

2
(γab[1])[εβ(γ[1])δ]α

− 1

16× 5!
εab[4][5](γ

[4])[εβ(γ[5])δ]α ,
(D.10)
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(γab[1])[δε (γ[1])β]α = − 9

32
C[εβ(γab)δ]α −

1

64
(γ[3])[εβ(γab[3])δ]α +

5

64
(γ[2][a)[εβ(γb][2])δ]α

+
7

32
(γab[1])[εβ(γ[1])δ]α −

1

64
(γ[3][a)[εβ(γb][3])δ]α +

5

64
(γab[2])[εβ(γ[2])δ]α

− 1

32× 4!5!
εab[4][5](γ

[4])[εβ(γ[5])δ]α ,

(D.11)

(γ[2][a)[δε (γb][2])β]α =
9

2
C[εβ(γab)δ]α +

5

2
(γab[1])[εβ(γ[1])δ]α +

1

2
(γab[2])[εβ(γ[2])δ]α

− 1

2× 4!5!
εab[4][5](γ

[4])[εβ(γ[5])δ]α ,
(D.12)

(γ[3])[δε (γab[3])β]α =
63

4
C[εβ(γab)δ]α −

1

4
(γ[3])[εβ(γab[3])δ]α −

21

4
(γab[1])[εβ(γ[1])δ]α

+
1

4
(γ[3][a)[εβ(γb][3])δ]α −

1

32× 5!
εab[4][5](γ

[4])[εβ(γ[5])δ]α ,
(D.13)

C[δε(γ
ab)β]α =

1

32

{
−C[εβ(γab)δ]α +

1

3!
(γ[3])[εβ(γab[3])δ]α +

1

2
(γ[2][a)[εβ(γb][2])δ]α

− (γab[1])[εβ(γ[1])δ]α +
1

3!
(γ[3][a)[εβ(γb][3])δ]α +

1

2
(γab[2])[εβ(γ[2])δ]α

− 1

4!5!
εab[4][5](γ

[4])[εβ(γ[5])δ]α

}
.

(D.14)

D.4 For {3, 520} θ-monomials

(γabc)[δεCβ]α =
1

32

{
−C[εβ(γabc)δ]α +

1

5!3!
εabc[3][5] (γ[3])[εβ(γ[5])δ]α +

1

4
(γ[2][a)[εβ(γ

bc]
[2])δ]α

− 1

2
(γ[1][ab)[εβ(γ

c]
[1])δ]α − (γabc)[εβCδ]α −

1

4!4!
εabc[4][4̄] (γ[4])[εβ(γ[4̄])δ]α

+
1

12
(γ[3][a)[εβ(γ

bc]
[3])δ]α +

1

4
(γ[2][ab)[εβ(γ

c]
[2])δ]α + (γabc[1])[εβ(γ[1])δ]α

}
,

(D.15)

C[δε(γ
abc)β]α =

1

32

{
−C[εβ(γabc)δ]α −

1

5!3!
εabc[3][5] (γ[3])[εβ(γ[5])δ]α +

1

4
(γ[2][a)[εβ(γ

bc]
[2])δ]α

+
1

2
(γ[1][ab)[εβ(γ

c]
[1])δ]α − (γabc)[εβCδ]α −

1

4!4!
εabc[4][4̄] (γ[4])[εβ(γ[4̄])δ]α

− 1

12
(γ[3][a)[εβ(γ

bc]
[3])δ]α +

1

4
(γ[2][ab)[εβ(γ

c]
[2])δ]α − (γabc[1])[εβ(γ[1])δ]α

}
,

(D.16)

(γabc[1])[δε(γ[1])β]α =
1

32

{
−8C[εβ(γabc)δ]α −

2

5!3!
εabc[3][5] (γ[3])[εβ(γ[5])δ]α − (γ[2][a)[εβ(γ

bc]
[2])δ]α

+ 3 (γ[1][ab)[εβ(γ
c]

[1])δ]α + 8 (γabc)[εβCδ]α +
1

6
(γ[3][a)[εβ(γ

bc]
[3])δ]α

+ (γ[2][ab)[εβ(γ
c]

[2])δ]α + 6 (γabc[1])[εβ(γ[1])δ]α

}
,

(D.17)
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(γ[1][ab)[δε(γ
c]

[1])β]α =
1

32

{
48C[εβ(γabc)δ]α −

12

5!3!
εabc[3][5] (γ[3])[εβ(γ[5])δ]α − 2 (γ[2][a)[εβ(γ

bc]
[2])δ]α

− 6 (γ[1][ab)[εβ(γ
c]

[1])δ]α − 48 (γabc)[εβCδ]α −
1

3
(γ[3][a)[εβ(γ

bc]
[3])δ]α

+ 2 (γ[2][ab)[εβ(γ
c]

[2])δ]α + 36 (γabc[1])[εβ(γ[1])δ]α

}
,

(D.18)

(γ[2][ab)[δε(γ
c]

[2])β]α =
1

32

{
336C[εβ(γabc)δ]α −

4!

5!3!
εabc[3][5] (γ[3])[εβ(γ[5])δ]α + 4 (γ[2][a)[εβ(γ

bc]
[2])δ]α

+ 28 (γ[1][ab)[εβ(γ
c]

[1])δ]α + 336 (γabc)[εβCδ]α −
48

4!4!
εabc[4][4̄] (γ[4])[εβ(γ[4̄])δ]α

+
2

3
(γ[3][a)[εβ(γ

bc]
[3])δ]α + 4 (γ[2][ab)[εβ(γ

c]
[2])δ]α + 168 (γabc[1])[εβ(γ[1])δ]α

}
,

(D.19)

(γ[2][a)[δε(γ
bc]

[2])β]α =
1

32

{
336C[εβ(γabc)δ]α +

4!

5!3!
εabc[3][5] (γ[3])[εβ(γ[5])δ]α + 4 (γ[2][a)[εβ(γ

bc]
[2])δ]α

− 28 (γ[1][ab)[εβ(γ
c]

[1])δ]α + 336 (γabc)[εβCδ]α −
48

4!4!
εabc[4][4̄] (γ[4])[εβ(γ[4̄])δ]α

−2

3
(γ[3][a)[εβ(γ

bc]
[3])δ]α + 4 (γ[2][ab)[εβ(γ

c]
[2])δ]α − 168 (γabc[1])[εβ(γ[1])δ]α

}
.

(D.20)

E Handicraft approach to scalar superfield decomposition in 11D N = 1

In this appendix, we will apply the “Handicraft” approach in a manner similar as was done

in 10D [6] but now to derive the Lorentz descriptions of the component fields that occur

in the eleven dimensional scalar superfield.

First, we introduce the spinorial Young Tableau as an extension of the normal Young

Tableau which is a useful tool in group theory. In order to distinguish the bosonic Young

Tableaux and spinorial Young Tableaux, we apply different colors to the boxes: Young

Tableaux with blue boxes are bosonic and the ones with red boxes are spinorial. Namely,

when calculating the dimension of a representation associated with any Young Tableau,

we put “11” into the box at the uppermost left corner of the tableau if it is bosonic and

“32” if it is spinorial in 11D. We also color the irreps: blue if it’s bosonic and red if it’s

spinorial.

At every level of the θ−expansion, the d.o.f. (degree of freedom) of each component

field or θ−monomial corresponds to one irreducible representation of so(11). The zeroth

level is {1} which is the trivial representation of so(11). The first level is also trivially

irreducible, since {32} is already an irreducible representation corresponding to the spinor

representation. However, in the higher levels, the story is a nontrivial one. In the following

subsections, we will present the step-by-step calculations in quadratic, cubic, and quartic

level. We will also show the results of the quintic level. This method will only give us

unique solutions up to the quintic level.
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E.1 Quadratic level

Starting with the quadratic level first, We can still use Young Tableaux to denote reducible

representations of so(11). The rules of tensor product of two Young Tableaux are still valid.

Thus, we have

⊗ = ⊕ , (E.1)

where the entries in are completely anti-symmetric spinor indices and the entries in

are completely symmetric spinor indices. Therefore the dimensions of these two

reducible representations are 496 and 528 respectively. Moreover, and are all

Young Tableaux that contain two boxes. By using the Mathematica application LieART

(Lie Algebras and Representation Theory) provided by [35], the following result for the

tensor product decomposition in SO(11) is seen:

{32} ⊗ {32} = {1} ⊕ {11} ⊕ {55} ⊕ {165} ⊕ {330} ⊕ {462}. (E.2)

Now we know what are the decompositions of and :

= {1} ⊕ {165} ⊕ {330} , (E.3)

= {11} ⊕ {55} ⊕ {462} , (E.4)

since there is only one way to pick numbers that add up in the r.h.s. of equation (E.2)

such that their sum is 496 (or 528). We have a Python code to do this type of searching.

The Python code is attached in the end of this appendix E.5 and a brief instruction is also

included.

This lowest order example shows us something of interest. If we were to impose as a

definition the rule that is equivalent to the Grassmann coordinate θα, such that only

the totally antisymmetric product is meaningful, then we would immediate retain only the

single column Tableau and its {1}, {165}, and {330} representations.

Note that in section 3 we discuss the quadratic level from the analytical aspect and

all possible quadratic θ-monomials are {1}, {165}, and {330}, which are consistent with

equation (E.3).
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E.2 Cubic level

Using similar logic as in the quadratic level, we construct the following tensor product

decomposition first:

⊗ ⊗ = ⊗ ⊕ ⊗

= ⊕ ⊕ ⊕

=
[
{1} ⊕ {165} ⊕ {330}

]
⊗ {32}

⊕
[
{11} ⊕ {55} ⊕ {462}

]
⊗ {32}

=
[

(3){32} ⊕ (3){320} ⊕ (2){1, 408} ⊕ {3, 520} ⊕ {4, 224} ⊕ {5, 280}
]

⊕
[

(3){32} ⊕ (2){320} ⊕ (2){1, 408} ⊕ (2){3, 520} ⊕ {5, 280}
]

= (6){32} ⊕ (5){320} ⊕ (4){1, 408} ⊕ (3){3, 520} ⊕ {4, 224}
⊕ (2){5, 280}.

(E.5)

From this process we can obtain some important pieces of information:

⊕ = (3){32} ⊕ (3){320} ⊕ (2){1, 408} ⊕ {3, 520}

⊕ {4, 224} ⊕ {5, 280} , (E.6)

⊕ = (3){32} ⊕ (2){320} ⊕ (2){1, 408} ⊕ (2){3, 520} ⊕ {5, 280}. (E.7)

Since we know 32 × 31 × 30/3! = 4, 960, we can use the program discussed in ap-

pendix E.5 with two assumptions and obtain the unique solution for the decomposition of

the completely antisymmetric part:

= {32} ⊕ {1, 408} ⊕ {3, 520}. (E.8)

The two assumptions are:

(a.) assume the cubic level must include the linear level, i.e. {32} must show up in the

solution,

(b.) assume each irrep only appears once.

Note in section 3 we discuss the cubic level from analytical aspect and all possible cubic

θ-monomials are {32}, {1, 408}, and {3, 520}, which are consistent with equation (E.8).
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Next we can solve the linear equations (E.6), (E.7) and obtain the decompositions of

all possible spinorial Young Tableaux (SYT) at the cubic level as following:

= {32} ⊕ {1, 408} ⊕ {3, 520} ,

= {32} ⊕ {320} ⊕ {1, 408} ⊕ {4, 224} ,

= (2){32} ⊕ (2){320} ⊕ {1, 408} ⊕ {3, 520} ⊕ {5, 280} ,

(E.9)

and of course, this is without applying the rule that only the single column SYT contributes

at the end. It is often convenient to not impose this condition until the end of a calculation

at a given level.

From equation (E.9) we see that {320} only shows up in the decompositions of

and which have more than one columns. {5, 280} only shows up in the decomposition

of . Based on the symmetry properties, we can state that the {320} and {5, 280} cubic

monomials should be identically zero, which is consistent with our analytical discussion in

section 3.

If one checks the dimension, it will be found the dimensions calculated by YT rules in

the l.h.s. of the equation (E.9) are exactly the sums of numbers on the r.h.s. . Note that,

the following equations are the only two independent equations we can find that all SYT in

the r.h.s. have three boxes. However, there are three kinds of SYT containing three boxes.

So we have two equations with three undetermined variables. If we want to know all of

the irreducible decompositions of these three SYT, we have to introduce extra information.

This situation is general, as it will be shown that at the quartic level we find the same

problem.

⊗ = ⊕ , (E.10)

⊗ = ⊕ . (E.11)

E.3 Quartic level

As before, we construct the following tensor product decomposition first:

{32} ⊗ {32} ⊗ {32} ⊗ {32} = (6){1} ⊕ (11){11} ⊕ (15){55}
⊕ (5){65} ⊕ (18){165} ⊕ (20){330} ⊕ (9){429}
⊕ (21){462} ⊕ (4){1, 144} ⊕ (12){1, 430}
⊕ (14){3, 003} ⊕ (15){4, 290} ⊕ (7){5, 005}
⊕ (3){7, 865} ⊕ (9){11, 583} ⊕ (10){17, 160}

⊕ (5){23, 595} ⊕ (2){23, 595′} ⊕ {28, 314}
⊕ (6){37, 752} ⊕ (3){47, 190}.

(E.12)
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From Equation (E.12), we want to find which irreducible representations appear anti-

symmetrically. Since we know 32× 31× 30× 29/4! = 35, 960, using the program discussed

in appendix E.5 with two assumptions, we find two possible solutions:

[{32} ⊗ {32} ⊗ {32} ⊗ {32}]A = {1} ⊕ {165} ⊕ {330} ⊕ {1, 144} ⊕ {1, 430}
⊕ {4, 290} ⊕ {5, 005} ⊕ {23, 595} ,

(E.13)

and

[{32} ⊗ {32} ⊗ {32} ⊗ {32}]A = {1} ⊕ {165} ⊕ {330} ⊕ {1, 144} ⊕ {4, 290}
⊕ {5, 005} ⊕ {7, 865} ⊕ {17, 160}.

(E.14)

The two assumptions we made are: (a.) assume {1}, {165}, and {330} must show up

in the solution; (b.) assume each irrep only appears once.

Then, our task is to find which solution is correct, and we can apply the SYT analysis:

⊗ ⊗ ⊗ =
[

⊕ (2) ⊕
]
⊗

=
[

⊕
]

⊕ (2)
[

⊕ ⊕
]

⊕
[

⊕
]
.

(E.15)

Since we are only interested in the decomposition of , calculate the last line in

equation (E.15) first:

⊗ = ⊕

=
[
{32} ⊕ {1, 408} ⊕ {3, 520}

]
⊗ {32}

= {1} ⊕ {11} ⊕ (2){55} ⊕ (3){165} ⊕ (3){330}
⊕ {429} ⊕ (3){462} ⊕ {1, 144} ⊕ (2){1, 430} ⊕ (2){3, 003}
⊕ (2){4, 290} ⊕ (2){5, 005} ⊕ {7, 865} ⊕ (2){11, 583}
⊕ (2){17, 160} ⊕ {23, 595} ⊕ {37, 752}.

(E.16)

However, at this stage there is no clue how to divide the final result in equation (E.16)

into two sets which are corresponding to and respectively.
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Since we understand the quadratic and cubic levels very well, we can derive the fol-

lowing set of linear equations.

⊗ = ⊕ , (E.17)

⊗ = ⊕ ⊕ , (E.18)

⊗ = ⊕ , (E.19)

⊗ = ⊕ ⊕ , (E.20)

⊗ = ⊕ ⊕ , (E.21)

⊗ = ⊕ . (E.22)

The l.h.s. in Equations (E.17)–(E.22) are known.

⊗ = {1} ⊕ (2){11} ⊕ (3){55}
⊕ {65} ⊕ (3){165} ⊕ (3){330}
⊕ (2){429} ⊕ (4){462} ⊕ {1, 144}
⊕ (2){1, 430} ⊕ (2){3, 003} ⊕ (3){4, 290}
⊕ {5, 005} ⊕ {11, 583} ⊕ (2){17, 160}
⊕ {28, 314} ⊕ {37, 752} ⊕ {47, 190} , (E.23)

⊗ = (2){1} ⊕ (4){11} ⊕ (5){55}

⊕ (2){65} ⊕ (6){165} ⊕ (7){330}
⊕ (3){429} ⊕ (7){462} ⊕ {1, 144}
⊕ (4){1, 430} ⊕ (5){3, 003} ⊕ (5){4, 290}
⊕ (2){5, 005} ⊕ {7, 865} ⊕ (3){11, 583}

⊕ (3){17, 160} ⊕ (2){23, 595} ⊕ {23, 595′}
⊕ (2){37, 752} ⊕ (2){47, 190} , (E.24)

⊗ = {1} ⊕ {11} ⊕ (2){55}

⊕ (3){165} ⊕ (3){330} ⊕ {429}
⊕ (3){462} ⊕ {1, 144} ⊕ (2){1, 430}
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⊕ (2){3, 003} ⊕ (2){4, 290} ⊕ (2){5, 005}
⊕ {7, 865} ⊕ (2){11, 583} ⊕ (2){17, 160}
⊕ {23, 595} ⊕ {37, 752} , (E.25)

⊗ = (3){1} ⊕ (2){11} ⊕ (2){55}

⊕ (2){65} ⊕ (5){165} ⊕ (6){330}
⊕ (2){429} ⊕ (4){462} ⊕ (2){1, 144}
⊕ (2){1, 430} ⊕ (3){3, 003} ⊕ (4){4, 290}
⊕ (2){5, 005} ⊕ (2){7, 865} ⊕ (2){11, 583}

⊕ (3){17, 160} ⊕ (2){23, 595} ⊕ {23, 595′}
⊕ {37, 752} , (E.26)

⊗ = (3){1} ⊕ (3){11} ⊕ (3){55}
⊕ (3){65} ⊕ (5){165} ⊕ (6){330}
⊕ (3){429} ⊕ (5){462} ⊕ (2){1, 144}
⊕ (2){1, 430} ⊕ (3){3, 003} ⊕ (5){4, 290}
⊕ {5, 005} ⊕ {7, 865} ⊕ {11, 583}

⊕ (3){17, 160} ⊕ {23, 595} ⊕ {23, 595′}
⊕ {28, 314} ⊕ {37, 752} ⊕ {47, 190} , (E.27)

⊗ = (3){11} ⊕ (5){55} ⊕ (4){165}

⊕ (4){330} ⊕ (2){429} ⊕ (6){462}
⊕ (4){1, 430} ⊕ (4){3, 003} ⊕ (3){4, 290}
⊕ (2){5, 005} ⊕ (3){11, 583} ⊕ (2){17, 160}
⊕ {23, 595} ⊕ (2){37, 752} ⊕ {47, 190}. (E.28)

Notice that there are only four independent equations and two identities:

= ⊗ − , (E.29)

= ⊗ − ⊗ , (E.30)

= ⊗ − , (E.31)

= ⊗ − ⊗ ⊕ , (E.32)
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⊗ = ⊗ − ⊗ ⊕ ⊗ , (E.33)

⊗ = ⊗ − ⊗ ⊕ ⊗ . (E.34)

Clearly these two identities (E.33) and (E.34) are correct based on equations (E.23)–

(E.28). Now we are facing the same problem as in the cubic level that we have more

undetermined variables than independent linear equations. Thus, we have to impose extra

informations: equation (E.13) and equation (E.14). Observe that there is no {7, 865} in the

decomposition of ⊗ , which implies that there must be no {7, 865} in the decom-

position of . However, there is {7, 865} showing up in the r.h.s. of Equation (E.16).

Thus, {7, 865} must come from , which means the second solution is correct.

Collecting all of the information we have so far, we derive the decompositions of all

SYT with four boxes:

= {1} ⊕ {165} ⊕ {330} ⊕ {1, 144}

⊕ {4, 290} ⊕ {5, 005} ⊕ {7, 865} ⊕ {17, 160} ,

(E.35)

= {11} ⊕ (2){55} ⊕ (2){165} ⊕ (2){330}

⊕ {429} ⊕ (3){462} ⊕ (2){1, 430} ⊕ (2){3, 003}
⊕ {4, 290} ⊕ {5, 005} ⊕ (2){11, 583} ⊕ {17, 160}
⊕ {23, 595} ⊕ {37, 752} ,

(E.36)

= (2){1} ⊕ {11} ⊕ (2){65} ⊕ (2){165}

⊕ (3){330} ⊕ {429} ⊕ {462} ⊕ {1, 144}
⊕ {3, 003} ⊕ (2){4, 290} ⊕ {7, 865} ⊕ {17, 160}

⊕ {23, 595} ⊕ {23, 595′} ,

(E.37)

= (2){11} ⊕ (3){55} ⊕ (2){165} ⊕ (2){330}

⊕ {429} ⊕ (3){462} ⊕ (2){1, 430} ⊕ (2){3, 003}
⊕ (2){4, 290} ⊕ {5, 005} ⊕ {11, 583} ⊕ {17, 160}
⊕ {37, 752} ⊕ {47, 190} ,

(E.38)
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= {1} ⊕ {65} ⊕ {165} ⊕ {330}
⊕ {429} ⊕ {462} ⊕ {1, 144} ⊕ {4, 290}
⊕ {17, 160} ⊕ {28, 314}.

(E.39)

E.4 Quintic level

Using similar methods as described above, we can solve for all the spinorial Young Tableaux
in the quintic level. For the totally antisymmetric SYT, there are two assumptions: (a.) the
quintic level one includes the cubic level one, i.e. it must include {32}, {1, 408} and {3, 520};
(b.) each irrep only appears once. Then a set of unique solutions comes to the fore.

= {32} ⊕ {320} ⊕ {1, 408} ⊕ {1, 760} ⊕ {3, 520} ⊕ {4, 224} ⊕ {5, 280}
⊕ {10, 240} ⊕ {24, 960} ⊕ {36, 960} ⊕ {137, 280} ⊕ {151, 008} ,

(E.40)

= (3){32} ⊕ (5){320} ⊕ (6){1, 408} ⊕ (2){1, 760} ⊕ (4){3, 520} ⊕ (3){4, 224}

⊕ (3){5, 280}⊕(3){10, 240}⊕{24, 960}⊕(2){28, 512}⊕(2){36, 960}⊕(2){45, 056}
⊕ {91, 520} ⊕ {137, 280} ⊕ {160, 160} ⊕ {274, 560} ⊕ {302, 016} ,

(E.41)

= (5){32} ⊕ (7){320} ⊕ (6){1, 408} ⊕ (3){1, 760} ⊕ (6){3, 520} ⊕ (2){4, 224}

⊕ (5){5, 280}⊕(3){10, 240}⊕{24, 960}⊕(3){28, 512}⊕(2){36, 960}⊕(3){45, 056}
⊕ {91, 520} ⊕ {128, 128} ⊕ {137, 280} ⊕ {160, 160} ⊕ {251, 680} ⊕ {292, 864} ,

(E.42)

= (4){32} ⊕ (7){320} ⊕ (8){1, 408} ⊕ (2){1, 760} ⊕ (7){3, 520} ⊕ (3){4, 224}

⊕ (5){5, 280} ⊕ (4){10, 240} ⊕ {24, 960} ⊕ (5){28, 512} ⊕ {36, 960} ⊕ (3){45, 056}
⊕ (2){91, 520} ⊕ {137, 280} ⊕ (2){160, 160} ⊕ {274, 560} ⊕ {292, 864} ,

(E.43)

= (4){32} ⊕ (6){320} ⊕ (6){1, 408} ⊕ (3){1, 760} ⊕ (6){3, 520} ⊕ (2){4, 224}

⊕ (5){5, 280} ⊕ (3){10, 240} ⊕ {24, 960} ⊕ (3){28, 512} ⊕ {36, 960} ⊕ (3){45, 056}
⊕ (2){91, 520} ⊕ {128, 128} ⊕ (2){160, 160} ⊕ {292, 864} ,

(E.44)

= (2){32} ⊕ (3){320} ⊕ (5){1, 408} ⊕ {1, 760} ⊕ (5){3, 520} ⊕ {4, 224}

⊕ (3){5, 280}⊕(3){10, 240}⊕(2){24, 960}⊕(3){28, 512}⊕{36, 960}⊕(2){45, 056}
⊕ (2){91, 520} ⊕ {128, 128} ⊕ {137, 280} ⊕ {160, 160} ,

(E.45)
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= {32} ⊕ {1, 408} ⊕ {3, 520} ⊕ {4, 224} ⊕ {10, 240} ⊕ {24, 960} ⊕ {28, 512}

⊕ {36, 960} ⊕ {91, 520}.

(E.46)

We will close this appendix here. However, there is one matter for future study that

is raised by the results presented here. In equations (3.2)–(3.7), there was given a step-by-

step recursive argument given for expanding a superfield. It is possible that adapting that

θ-coordinate based argument into the language of Young Tableaux might provide extra

information in the context of the handicraft approach.

E.5 Original script for the program in the Python language

In this section, the original script for the program we used to do the searching is attached.

The function of this program is explained as following.

First we have a set of numbers called “candidates” in the code. For example, in the

code attached below, this set of numbers is {1, 11, 55, 165, 330, 462}, which contains the

numbers showing up in the r.h.s. of equation (E.2). Then we have a target sum, and in

this case our target sum is 496. This program basically solves the equation

b1 + b211 + b355 + b4165 + b5330 + b6462 = 496 , (E.47)

where b1 to b6 are coefficients to be solved and they can be either 0 or 1. The output of

this code is [1, 165, 330] and then we have equation (E.3).

Listing 1. Original script for the program in the Python language

import numpy as np

def dfs(nums , target , start_index , subset , result ):

i f target == 0:

print (subset [:])

5 return result.append(subset [:])

for i in range(start_index , len(nums )):

i f nums[i] > target:

return

i f nums[i] == nums[i - 1] and i > start_index:

10 continue

subset.append(nums[i])

dfs(nums , target - nums[i], i+1, subset , result)

subset.pop()

15

candidates = [1, 11, 55, 165, 330, 462]

target = 496

nums = sorted(candidates)

result , subset = [], []

20 start_index = 0

dfs(nums , target , start_index , subset , result)
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F Lorentz decomposition results of the 11D, N = 1 scalar superfield by

Dynkin labels

In section 4.3, we listed the component field content of the 11D, N = 1 scalar superfield

by the dimensions of the SO(1,10) representations. Here we list them in terms of Dynkin

labels.

• Level-0: (00000)

• Level-1: (00001)

• Level-2: (00000)⊕ (00100)⊕ (00010)

• Level-3: (00001)⊕ (01001)⊕ (00101)

• Level-4: (00000)⊕(00100)⊕(00010)⊕(02000)⊕(10002)⊕(01100)⊕(00200)⊕(01002)

• Level-5: (00001)⊕(01001)⊕(00101)⊕(00003)⊕(11001)⊕(02001)⊕(10101)⊕(10003)⊕
(01101)

• Level-6: (00000)⊕(00100)⊕(00010)⊕(02000)⊕(10002)⊕(01100)⊕(20100)⊕(00200)⊕
(20010)⊕ (2)(01002)⊕ (00004)⊕ (11100)⊕ (00102)⊕ (02100)⊕ (11010)⊕ (11002)⊕
(02010)⊕ (10102)

• Level-7: (00001) ⊕ (01001) ⊕ (00101) ⊕ (00003) ⊕ (30001) ⊕ (11001) ⊕ (02001) ⊕
(2)(10101)⊕ (10003)⊕ (10011)⊕ (21001)⊕ (2)(01101)⊕ (20101)⊕ (01003)⊕ (12001)⊕
(01011)⊕ (20011)⊕ (03001)⊕ (00103)⊕ (11101)⊕ (11011)

• Level-8: (00000)⊕(00100)⊕(00010)⊕(40000)⊕(02000)⊕(10002)⊕(01100)⊕(20100)⊕
(31000)⊕(2)(00200)⊕(2)(20010)⊕(2)(01002)⊕(20002)⊕(00110)⊕(00020)⊕(00004)⊕
(22000)⊕ (11100)⊕ (00102)⊕ (10200)⊕ (30010)⊕ (02100)⊕ (13000)⊕ (2)(11010)⊕
(30002)⊕ (04000)⊕ (2)(11002)⊕ (2)(02010)⊕ (10110)⊕ (10020)⊕ (20200)⊕ (02002)⊕
(2)(10102)⊕ (21010)⊕ (10012)⊕ (21002)⊕ (20110)⊕ (01102)⊕ (20020)⊕ (12010)⊕
(01012)⊕ (12002)

• Level-9: (00001) ⊕ (01001) ⊕ (00101) ⊕ (00003) ⊕ (2)(30001) ⊕ (11001) ⊕ (40001) ⊕
(02001) ⊕ (3)(10101) ⊕ (10003) ⊕ (2)(10011) ⊕ (2)(21001) ⊕ (3)(01101) ⊕ (00201) ⊕
(2)(20101) ⊕ (01003) ⊕ (2)(12001) ⊕ (31001) ⊕ (2)(01011) ⊕ (20003) ⊕ (3)(20011) ⊕
(00021)⊕ (2)(03001)⊕ (00103)⊕ (00111)⊕ (30101)⊕ (22001)⊕ (2)(11101)⊕ (30011)⊕
(10201)⊕ (11003)⊕ (3)(11011)⊕ (13001)⊕ (10021)⊕ (02003)⊕ (10111)⊕ (02011)⊕
(21101)⊕ (21011)

• Level-10: (00000) ⊕ (00100) ⊕ (00010) ⊕ (40000) ⊕ (02000) ⊕ (10002) ⊕ (01100) ⊕
(2)(20100) ⊕ (31000) ⊕ (2)(00200) ⊕ (3)(20010) ⊕ (3)(01002) ⊕ (20002) ⊕ (00110) ⊕
(00020)⊕(30100)⊕(00004)⊕(22000)⊕(2)(11100)⊕(2)(00102)⊕(10200)⊕(2)(30010)⊕
(2)(02100) ⊕ (13000) ⊕ (3)(11010) ⊕ (40100) ⊕ (2)(30002) ⊕ (04000) ⊕ (3)(11002) ⊕
(21100)⊕(3)(02010)⊕(2)(10110)⊕(40010)⊕(00300)⊕(2)(10020)⊕(20200)⊕(02002)⊕
(4)(10102) ⊕ (2)(21010) ⊕ (2)(10012) ⊕ (12100) ⊕ (31100) ⊕ (3)(21002) ⊕ (01110) ⊕
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(01020) ⊕ (00210) ⊕ (00030) ⊕ (2)(20110) ⊕ (2)(01102) ⊕ (2)(20020) ⊕ (2)(12010) ⊕
(00120)⊕(31010)⊕(2)(01012)⊕(2)(20102)⊕(22100)⊕(2)(12002)⊕(31002)⊕(20012)⊕
(03002)⊕ (11110)⊕ (22010)⊕ (11020)⊕ (30102)⊕ (11102)⊕ (11012)

• Level-11: (00001) ⊕ (01001) ⊕ (00101) ⊕ (2)(00003) ⊕ (2)(30001) ⊕ (2)(11001) ⊕
(40001)⊕(2)(02001)⊕(4)(10101)⊕(2)(10003)⊕(2)(10011)⊕(3)(21001)⊕(4)(01101)⊕
(00201)⊕(4)(20101)⊕(2)(01003)⊕(3)(12001)⊕(2)(31001)⊕(3)(01011)⊕(2)(20003)⊕
(4)(20011)⊕ (00021)⊕ (2)(03001)⊕ (2)(00103)⊕ (2)(00111)⊕ (41001)⊕ (3)(30101)⊕
(2)(22001)⊕(4)(11101)⊕(30003)⊕(2)(30011)⊕(2)(10201)⊕(2)(11003)⊕(5)(11011)⊕
(02101)⊕ (13001)⊕ (40101)⊕ (32001)⊕ (2)(10021)⊕ (02003)⊕ (10103)⊕ (40003)⊕
(3)(10111) ⊕ (2)(02011) ⊕ (3)(21101) ⊕ (01201) ⊕ (21003) ⊕ (3)(21011) ⊕ (01111) ⊕
(01021)⊕ (12101)⊕ (31101)⊕ (20103)⊕ (20111)⊕ (12011)

• Level-12: (00000)⊕(00100)⊕(00010)⊕(40000)⊕(2)(02000)⊕(2)(10002)⊕(2)(01100)⊕
(2)(20100)⊕ (12000)⊕ (31000)⊕ (3)(00200)⊕ (3)(20010)⊕ (4)(01002)⊕ (2)(20002)⊕
(00110) ⊕ (00020) ⊕ (30100) ⊕ (2)(00004) ⊕ (2)(22000) ⊕ (3)(11100) ⊕ (2)(00102) ⊕
(00012) ⊕ (2)(10200) ⊕ (2)(30010) ⊕ (2)(02100) ⊕ (13000) ⊕ (4)(11010) ⊕ (40100) ⊕
(3)(30002)⊕ (32000)⊕ (04000)⊕ (5)(11002)⊕ (2)(21100)⊕ (4)(02010)⊕ (3)(10110)⊕
(40010)⊕(00300)⊕(2)(10020)⊕(10004)⊕(42000)⊕(3)(20200)⊕(40002)⊕(2)(02002)⊕
(5)(10102)⊕(3)(21010)⊕(3)(10012)⊕(12100)⊕(2)(31100)⊕(5)(21002)⊕(2)(01110)⊕
(01020)⊕(00210)⊕(00030)⊕(50002)⊕(4)(20110)⊕(30200)⊕(4)(01102)⊕(3)(20020)⊕
(11200)⊕(3)(12010)⊕(00120)⊕(2)(31010)⊕(00202)⊕(20004)⊕(41100)⊕(3)(01012)⊕
(3)(20102) ⊕ (22100) ⊕ (3)(12002) ⊕ (3)(31002) ⊕ (02200) ⊕ (2)(20012) ⊕ (00112) ⊕
(40200) ⊕ (03002) ⊕ (30110) ⊕ (3)(11110) ⊕ (2)(22010) ⊕ (2)(11020) ⊕ (30004) ⊕
(2)(30102)⊕ (41002)⊕ (3)(11102)⊕ (22002)⊕ (02110)⊕ (30012)⊕ (02020)⊕ (10202)⊕
(2)(11012)⊕ (21110)⊕ (10112)⊕ (21102)

• Level-13: (00001)⊕ (2)(01001)⊕ (2)(00101)⊕ (2)(00003)⊕ (2)(30001)⊕ (3)(11001)⊕
(40001)⊕(3)(02001)⊕(5)(10101)⊕(3)(10003)⊕(3)(10011)⊕(4)(21001)⊕(5)(01101)⊕
(2)(00201) ⊕ (5)(20101) ⊕ (3)(01003) ⊕ (4)(12001) ⊕ (3)(31001) ⊕ (4)(01011) ⊕
(3)(20003)⊕ (5)(20011)⊕ (00021)⊕ (2)(03001)⊕ (3)(00103)⊕ (2)(00111)⊕ (00013)⊕
(2)(41001) ⊕ (4)(30101) ⊕ (3)(22001) ⊕ (6)(11101) ⊕ (2)(30003) ⊕ (3)(30011) ⊕
(4)(10201)⊕ (3)(11003)⊕ (7)(11011)⊕ (2)(02101)⊕ (51001)⊕ (13001)⊕ (2)(40101)⊕
(2)(32001) ⊕ (2)(10021) ⊕ (2)(02003) ⊕ (2)(10103) ⊕ (2)(40003) ⊕ (4)(10111) ⊕
(3)(02011) ⊕ (5)(21101) ⊕ (10013) ⊕ (2)(01201) ⊕ (40011) ⊕ (2)(21003) ⊕ (50101) ⊕
(2)(20201) ⊕ (5)(21011) ⊕ (01103) ⊕ (2)(01111) ⊕ (01021) ⊕ (2)(12101) ⊕ (00203) ⊕
(2)(31101) ⊕ (2)(20103) ⊕ (2)(20111) ⊕ (20013) ⊕ (2)(12011) ⊕ (31003) ⊕ (30201) ⊕
(11201)⊕ (31011)⊕ (11111)

• Level-14: (00000)⊕(2)(00100)⊕(2)(00010)⊕(40000)⊕(2)(02000)⊕(10100)⊕(10010)⊕
(2)(10002) ⊕ (2)(01100) ⊕ (3)(20100) ⊕ (12000) ⊕ (31000) ⊕ (3)(00200) ⊕ (01010) ⊕
(4)(20010)⊕(5)(01002)⊕(2)(20002)⊕(2)(00110)⊕(00020)⊕(2)(30100)⊕(2)(00004)⊕
(2)(22000)⊕(3)(11100)⊕(3)(00102)⊕(00012)⊕(2)(10200)⊕(3)(30010)⊕(3)(02100)⊕
(13000) ⊕ (5)(11010) ⊕ (2)(40100) ⊕ (3)(30002) ⊕ (32000) ⊕ (04000) ⊕ (6)(11002) ⊕
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(2)(21100)⊕(01200)⊕(5)(02010)⊕(4)(10110)⊕(2)(40010)⊕(2)(00300)⊕(2)(10020)⊕
(50100) ⊕ (10004) ⊕ (42000) ⊕ (3)(20200) ⊕ (40002) ⊕ (2)(02002) ⊕ (7)(10102) ⊕
(4)(21010)⊕(4)(10012)⊕(2)(12100)⊕(2)(31100)⊕(50010)⊕(6)(21002)⊕(3)(01110)⊕
(60100)⊕ (01020)⊕ (2)(00210)⊕ (00030)⊕ (50002)⊕ (5)(20110)⊕ (01004)⊕ (30200)⊕
(5)(01102)⊕ (3)(20020)⊕ (2)(11200)⊕ (4)(12010)⊕ (00120)⊕ (3)(31010)⊕ (00202)⊕
(20004) ⊕ (60010) ⊕ (10300) ⊕ (41100) ⊕ (4)(01012) ⊕ (5)(20102) ⊕ (2)(22100) ⊕
(4)(12002) ⊕ (00104) ⊕ (4)(31002) ⊕ (02200) ⊕ (3)(20012) ⊕ (00112) ⊕ (40200) ⊕
(2)(03002)⊕ (2)(30110)⊕ (41010)⊕ (4)(11110)⊕ (21200)⊕ (3)(22010)⊕ (2)(11020)⊕
(30004)⊕(10210)⊕(4)(30102)⊕(2)(41002)⊕(20300)⊕(5)(11102)⊕(10030)⊕(22002)⊕
(02110)⊕(2)(30012)⊕(02020)⊕(2)(10202)⊕(40110)⊕(3)(11012)⊕(02102)⊕(31200)⊕
(2)(21110)⊕ (40102)⊕ (10112)⊕ (20210)⊕ (01202)⊕ (2)(21102)⊕ (21012)

• Level-15: (2)(00001) ⊕ (10001) ⊕ (2)(01001) ⊕ (20001) ⊕ (3)(00101) ⊕ (2)(00003) ⊕
(00011)⊕(3)(30001)⊕(3)(11001)⊕(2)(40001)⊕(3)(02001)⊕(6)(10101)⊕(3)(10003)⊕
(4)(10011)⊕(4)(21001)⊕(50001)⊕(6)(01101)⊕(3)(00201)⊕(6)(20101)⊕(3)(01003)⊕
(4)(12001)⊕ (3)(31001)⊕ (5)(01011)⊕ (60001)⊕ (3)(20003)⊕ (6)(20011)⊕ (00021)⊕
(3)(03001)⊕ (3)(00103)⊕ (3)(00111)⊕ (00013)⊕ (70001)⊕ (2)(41001)⊕ (5)(30101)⊕
(3)(22001) ⊕ (7)(11101) ⊕ (2)(30003) ⊕ (4)(30011) ⊕ (5)(10201) ⊕ (4)(11003) ⊕
(8)(11011)⊕ (3)(02101)⊕ (51001)⊕ (10005)⊕ (2)(13001)⊕ (3)(40101)⊕ (2)(32001)⊕
(2)(10021) ⊕ (3)(02003) ⊕ (3)(10103) ⊕ (2)(40003) ⊕ (5)(10111) ⊕ (3)(02011) ⊕
(6)(21101)⊕ (10013)⊕ (3)(01201)⊕ (2)(40011)⊕ (00301)⊕ (3)(21003)⊕ (2)(50101)⊕
(3)(20201)⊕ (01005)⊕ (6)(21011)⊕ (2)(01103)⊕ (2)(01111)⊕ (01021)⊕ (3)(12101)⊕
(50011) ⊕ (00203) ⊕ (3)(31101) ⊕ (3)(20103) ⊕ (3)(20111) ⊕ (12003) ⊕ (20013) ⊕
(2)(12011) ⊕ (31003) ⊕ (2)(30201) ⊕ (2)(11201) ⊕ (2)(31011) ⊕ (10301) ⊕ (30111) ⊕
(11103)⊕ (11111)

• Level-16: (2)(00000)⊕(10000)⊕(20000)⊕(2)(00100)⊕(30000)⊕(2)(00010)⊕(00002)⊕
(2)(40000) ⊕ (2)(02000) ⊕ (10100) ⊕ (50000) ⊕ (10010) ⊕ (3)(10002) ⊕ (2)(01100) ⊕
(60000) ⊕ (3)(20100) ⊕ (12000) ⊕ (31000) ⊕ (4)(00200) ⊕ (01010) ⊕ (4)(20010) ⊕
(70000)⊕(5)(01002)⊕(3)(20002)⊕(3)(00110)⊕(2)(00020)⊕(2)(30100)⊕(2)(00004)⊕
(2)(22000)⊕ (3)(11100)⊕ (80000)⊕ (3)(00102)⊕ (00012)⊕ (3)(10200)⊕ (3)(30010)⊕
(3)(02100)⊕ (13000)⊕ (5)(11010)⊕ (2)(40100)⊕ (4)(30002)⊕ (32000)⊕ (2)(04000)⊕
(6)(11002)⊕(2)(21100)⊕(01200)⊕(5)(02010)⊕(5)(10110)⊕(2)(40010)⊕(2)(00300)⊕
(3)(10020) ⊕ (50100) ⊕ (10004) ⊕ (42000) ⊕ (4)(20200) ⊕ (2)(40002) ⊕ (3)(02002) ⊕
(7)(10102)⊕(4)(21010)⊕(4)(10012)⊕(2)(12100)⊕(2)(31100)⊕(50010)⊕(6)(21002)⊕
(3)(01110)⊕(60100)⊕(01020)⊕(03100)⊕(2)(00210)⊕(00006)⊕(00030)⊕(2)(50002)⊕
(6)(20110)⊕(01004)⊕(2)(30200)⊕(6)(01102)⊕(4)(20020)⊕(2)(11200)⊕(4)(12010)⊕
(00120) ⊕ (3)(31010) ⊕ (2)(00202) ⊕ (2)(20004) ⊕ (60010) ⊕ (10300) ⊕ (41100) ⊕
(4)(01012)⊕(5)(20102)⊕(2)(22100)⊕(5)(12002)⊕(00104)⊕(4)(31002)⊕(2)(02200)⊕
(60002) ⊕ (3)(20012) ⊕ (00112) ⊕ (2)(40200) ⊕ (2)(03002) ⊕ (00400) ⊕ (3)(30110) ⊕
(01300)⊕(30020)⊕(41010)⊕(4)(11110)⊕(21200)⊕(3)(22010)⊕(2)(11020)⊕(30004)⊕
(10210)⊕ (4)(30102)⊕ (2)(41002)⊕ (20300)⊕ (6)(11102)⊕ (2)(10030)⊕ (2)(22002)⊕
(02110) ⊕ (2)(30012) ⊕ (02020) ⊕ (3)(10202) ⊕ (2)(40110) ⊕ (3)(11012) ⊕ (40020) ⊕
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(02102)⊕ (02004)⊕ (31200)⊕ (2)(21110)⊕ (40102)⊕ (10112)⊕ (20210)⊕ (01202)⊕
(3)(21102)⊕ (20202)⊕ (21012)
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