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Starting from higher dimensional adinkras constructed with nodes
referenced by Dynkin Labels, we define “adynkras.” These sug-
gest a computationally direct way to describe the component fields
contained within supermultiplets in all superspaces. We explicitly
discuss the cases of ten dimensional superspaces. We show this is
possible by replacing conventional θ-expansions by expansions over
Young Tableaux and component fields by Dynkin Labels. Without
the need to introduce σ-matrices, this permits rapid passages from
Adynkras → Young Tableaux → Component Field Index Struc-
tures for both bosonic and fermionic fields while increasing com-
putational efficiency compared to the starting point that uses su-
perfields. In order to reach our goal, this work introduces a new
graphical method, “tying rules,” that provides an alternative to
Littlewood’s 1950 mathematical results which proved branching
rules result from using a specific Schur function series. The ulti-
mate point of this line of reasoning is the introduction of mathe-
matical expansions based on Young Tableaux and that are algo-
rithmically superior to superfields. The expansions are given the
name of “adynkrafields” as they combine the concepts of adinkras
and Dynkin Labels.
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1. Introduction

Papert [1] introduced the phrase “computational thinking” in 1980. A search
on-line can be found to lead to the following comment.

Computational Thinking (CT)... is essential to the development
of computer applications, but it can also be used to support prob-
lem solving across all disciplines, including math, science, and
the humanities.

One point this approach emphasizes is focused attention on the formulation
of algorithms. In recent works [2, 3], we have been exploring emerging op-
portunities created by the adinkra-based framework, enhanced algorithmic
architectures, and computational applications to study superspace1 super-
gravity in the ten and eleven dimensional geometrical limits of the heterotic
string, superstrings, and M-Theory. These efforts have shown success as they
permitted the complete deciphering of the Lorentz spectra in so(1, 10) and
so(1, 9), respectively, for all component fields contained in scalar superfields.

1 It is an often overlooked historical fact that the concept of “superspace”
[4] was introduced independently and separately from the concept of
“superfields”[5] and we recognize S. Kuzenko for discussion.
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We posit this as a notable advance against the benchmark established by
Bergshoeff and de Roo [6] since our results cover Type-II superspaces and
11D superspace.

Adinkras appropriate for 10D and 11D superfields, involving billions
of degrees of freedom, have been successfully constructed by use of Young
Tableaux [3], Dynkin Labels [7–9], and Plethysm [8, 10, 11]. Successful al-
gorithms based on the information held solely in these adinkras, as opposed
to that in traditional θ-expansions of superfields, thus emerged due to their
increased calculational and computational efficiency.

The efficacy of this approach can be understood if we analogize a super-
field to a biological body where the adinkra plays the role of a genome. By
the study of genes and knowing their expressions, one can deduce informa-
tion about structures. This is the reason why using the foundation of the
adinkra concept, we were able to analyze [3] all the 231 (= 2,147,483,648)
bosonic degrees of freedom and all the 231 (= 2,147,483,648) fermionic de-
grees of freedom in the 11D, N = 1 scalar superfield. Scalar superfields act
as gateways to the similar deciphering the component field spectra of super-
fields in all spin representations. Using this fact, we have begun the task of
identifying superfields that contain the conformal graviton in these contexts.

By this means we discovered, a bit surprisingly, the 11D, N = 1 scalar
superfield contains:

(a.) the symmetrical conformal graviton at the 16-th order of the θ-expansion,

(b.) a 3-form at the 16-th order of the θ-expansion,

(c.) a conformal gravitino at the 17-th order of the θ-expansion, and

(d.) 1,494 bosonic fields and 1,186 fermionic fields in general,

... facts unknown from the time this theory was introduced into the litera-
ture.

Furthermore, we found the 11D, N = 1 scalar superfield does not possess
the antisymmetrical part of the component level vielbein at the sixteenth
level. Based on past experience with supergravity in superspace [12], com-
bined with the results from the study of the 11D, N = 1 scalar superfield,
the simplest proposal for the 11D, N = 1 supergravity prepotential is a
spinor superfield Ψα

2 where the complete component fields of Poincaré viel-
bein are contained at the 17-th level, along with the gauge 3-form, and the

2Here, Ψα is an 11D, N = 1 superfield, not to be confused with the 10D, N
= 1 superfield that we denote by the same symbol later in this work.
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complete component fields of Poincaré gravitino are contained at the 18-th
level in the θ-expansion.

Another surprise uncovered was the prolific presence of the compo-
nent graviton among 11D, N = 1 candidates for the SG prepotential. Our
scan reveals this particular presence of supergravity on-shell component oc-
curs in every superfield up to and including the Ψ{255255} = Ψ[2,0,2,0,0] =
Ψ{a3,a4|a1b1c1,a2b2c2}

3.
It may not be obvious if one begins with higher dimensional adinkras

described by Dynkin Labels, that there is a path to component fields. It is
the purpose of this work to provide an end-to-end demonstration showing
how this is carried out. We will marshal the lessons learned in the 11D, N
= 1 theory and apply them to the 10D, N = 1 scalar superfield as it is
the basis for gaining a complete understanding of off-shell supersymmetical
theories in this arena.

In this work, we will introduce a concept which shows some potential for
becoming a computationally superior complement for superfields. We call it
the “adynkrafield formulation” which appears as a natural consequence of
the path we have explored. The importance of two distinct sets of Young
Tableaux, each associated with Dynkin Labels in our discussions, points
toward the use of the Young Tableaux together with the introduction of a
“level parameter” ℓ as a basis for expansions. Initial evidence is given that
these are sufficient to accurately investigate the domain where heretofore
traditional Grassmann coordinates in superfields, as defined by Salam and
Strathdee, provided the sole means enabling investigations.

In Chapter two, we present the adinkra for the 10D, N = 1 scalar su-
perfield that provides the starting point for our construction. All nodes of
the adinkra are described by Dynkin Labels. We review how computational
efficiency is gained from this view point. Since adinkras utilizing Dynkin
Labels play a key role, the new term “adynkras” is introduced to describe
this particular form of adinkras.

In Chapter three, we turn to adapting the well known technology of
Young Tableaux to the task of representing the irreducible bosonic repre-
sentations of so(10). It should be noted the challenge here comes about be-
cause there is a well accepted method for using Young Tableaux to represent
the irreducible representations for su(10), but not for so(10). Adaptations

3This translation of notations between dimensions, Dynkin labels and the
index notation of an irrep will be explicitly explained in the following sec-
tions.
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are necessary to allow a set of decorated Young Tableaux to accomplish the
latter goal.

In the literature, a number of other works have offered proposals for
such adaptations to achieve this purpose [13–17]. Several of them use a
very similar approach to ours [13–16], which translates Dynkin labels to
Young Tableaux, and puts bosonic and spinorial Young Tableaux side by
side. Others associate irreducible representations with skew Young Tableaux
which involves “negative boxes” for tensor product calculations [17].

Our discussion starts with the presentation of a logical path for the con-
struction of a projection matrix for su(10) ⊃ so(10). Here we set our con-
ventions for the embedding. We next adopt a set of conventions for how the
Dynkin Labels are to be translated into conventional so(10) Young Tableaux.
This is followed by a brief discussion of how these so(10) Young Tableaux
are reducible with respect to a set of “adapted” so(10) Young Tableaux we
introduce in this work and the extraction of irreducible tableaux.

Chapter four is devoted to the graphical rules for the su(10) ⊃ so(10)
branching rules. Littlewood’s rule is reviewed. Then we turn to the introduc-
tion of a set of graphical rules, we call “tying rules,” that allow the su(10)
Young Tableaux to be decorated in such a way so as to produce irreducible
so(10) Young Tableaux. This is illustrated in some examples. However, this
discussion is limited to bosonic Young Tableaux, i.e. those Tableaux that
are associated with bosonic representations.

Chapter five aims to construct Young Tableau representations for the
spinorial irreducible representations of so(10). Mixed Young Tableaux as well
as the graphical rules that lead to correct dimensions are introduced. Mixed
Young Tableaux highlight the facts that we are using two distinct types
of Young Tableaux. Blue Tableaux are associated with bosonic indices and
representations while red Tableaux are associated with spinor indices and
representations. This is accompanied by the concomitant task of describing
a corresponding set of Dynkin Labels. Illustrations are given to show how
the issue of irreducibility is handled.

Chapter six presents the general graphical rules to get tensor product
decompositions of a bosonic irrep with the basic spinor representation of
so(10). The inverse relation between this tensor product rule and the dimen-
sion rule in last chapter is presented and demonstrated through examples.

Chapter seven brings all the strands of the previous chapters together
with the explicit presentation of the field variables showing all their various
types of indices associated with each node of the adynkra introduced in
Chapter two. The derivation begins from the adynkra in chapter two in
which the nodes are expressed in terms of Dynkin Labels. It is shown the
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Dynkin Labels contain sufficient data to derived a complete description of
the Lorentz structure of all the component fields. A complete description of
the irreducibility conditions is presented.

Chapter eight presents a new concept to which we give the name
“adynkrafields.” Adinkras and adynkras do not necessarily depend on field
variables. In such settings, the adinkras and adynkras play a role similar to
matrices in, for example, the study of su(3) representations.

Chapter nine presents our conclusions.
There are three appendices included in this work. Appendix A is devoted

to present a dictionary between bosonic indices of field variables, irreducible
Young Tableaux, and Dynkin Labels. Appendix B gives explicit examples of
the dimension formula for Mixed Young Tableaux defined in Chapter five.
Appendix C is devoted to explicit examples of the graphical tensor product
rules stated in Chapter six as well as providing demonstrations of the sub-
ject of multiplication of the fundamental SYT by BYT’s to obtain SYT’s.
It thus covers the same topics as Chapter 5 but now translates spinorial
representations into field language by only considering tensor product de-
composition.

The final portion of this paper includes our references.

2. The 10D, N = 1 scalar superfield adynkra

In the work of [3] the adinkra for the 10D, N = 1 scalar superfield, with
nodes expressed in terms of Dynkin Labels, was shown as it appears in Figure
1. Counting the number of open and closed nodes respectively implies this is
a superfield with 15 bosonic component fields and 12 fermionic component
fields. The Dynkin Labels on each node carry the information about the
SO(1,9) Lorentz representation of each field. However, the image signifies
another possibility to which we will return shortly.

In most of our initial investigations of higher dimensional adinkras, the
bulk of the discussions was carried out in cases where the dimensionality
of the representations of the nodes was illustrated. There is an ambiguity
in such labeling. We can see this by considering the dimensionality formula
in the simpler case of su(3). In the next chapter shown in equation (3.2),
there appears the relation between the dimensionality of a representation in
su(3) specified by the integers p and q which occur in a Dynkin Label [p, q].
The form of d(p, q) shows that the case where p = M and q = N has the
same dimensionality as the case where p = N and q = M for any positive
integers M and N. So for a fixed value of d(p, q), the solutions for p and q
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Figure 1: Adinkra Diagram for 10D, N = 1 Scalar Superfield

are not unique. Thus, labeling the nodes of the higher dimensional adinkra
with Dynkin Labels removes the ambiguity.
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The image in Figure 1 uses Dynkin Label to describe the Lorentz repre-
sentation associated with each node. In the following, it will be shown that
this realization has a computationally superior property. The knowledge of
the integers that appear in the Dynkin Label suffices to derive complete
component level field variables with their varied Lorentz index structures.
Henceforth, we will refer to adinkras where their nodes are described by
Dynkin Labels as “adynkras,” replacing the letters “ink” in “adinkra” by
the letters “ynk” from “Dynkin.”

The “platform” of this current work is within the context of linearized
Nordström supergravity in 10D, N = 1 superspace, as we established the
foundation for this in the work of [18]. One reason for performing this is
the component level construction of the linearized 10D, N = 1 Nordström
supergravity theory yields the simplest context in which the derivation faces
all the same problems present in the general class of models described pre-
viously [2, 3, 18].

In order to accomplish our task we need to develop:

(a.) a set of new concepts based on direct graphical manipulations of Young
Tableaux allowing them to generate su(10) ⊃ so(10) branching rules,
and

(b.) a “translation dictionary” for Dynkin Labels into indices on field vari-
ables.

In particular for task (a.), to our knowledge, these will be new concepts and
techniques introduced into the literature.

We need a well defined methodology for converting Dynkin Labels into
indices on a set of field variables. We now turn to this in the less complicated
context of the 10D, N = 1 system [18].

Almost since their introduction [19] and in one form or another, numbers
of physicists have posed the question, “Is the purpose of adinkras to replace
superfields?” We have always responded, “No, the purpose of adinkras is to
augment Salam-Strathdee superfields” [5].

From the time of the discovery of supersymmetry at the level of on-shell
component representations [20–22], the description’s incompleteness was ob-
vious. To remedy this, Salam and Strathdee invented superfields. However,
superfields are ill-posed as a convenient platform from which to study the
structure of the representation theory associated with spacetime supersym-
metry. A most forceful demonstration of this was given in our work of [3],
where we demonstrated the unwieldiness associated with the θ-expansion
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of the scalar 11D, N = 1 superfield itself acts as a computational impedi-
ment to deriving results. The problem arises due to the fact that the actual
derivation of component results require the subsidiary derivation of large
numbers of Fierz identities. In the context of this system, the totality of
these derivations has never been shown in the literature. We suspect the
reason is the daunting numbers of these.

The primary purpose of adinkras is to provide a “Goldilocks” solution
by avoiding the incompleteness of the component-level approach while si-
multaneously avoiding the unwieldiness of the superfield approach. This is
accomplished by banishing the need for γ-matrices (actually σ-matrices in
10D) in deriving supersymmetrical representation theory results.

3. Bosonic irreps of so(10) & irreducible bosonic young
tableaux

3.1. Preview: su(3) & irreducible bosonic young tableaux

In the manner of a warm-up, we review a discussion from a previous paper
[23] regarding the su(3) algebra. As covered there, we have seen the most
general su(3) Young Tableaux takes the form

(3.1)

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

.

We next introduce the Dynkin Label [p, q] as the highest weight vector for
irreps in su(3). The dimensionality of the irrep with the Dynkin Label [p, q]
is given by the Weyl dimension formula applied to su(3) [24]

(3.2) d(p, q) = 1
2
( p + 1 ) ( q + 1 ) ( p + q + 2 ) .

3.2. Feature: beginning su(10) → so(10) & irreducible bosonic
young tableaux

We now look at the bosonic Young Tableaux that correspond to bosonic
representations of so(10). Generally speaking, these are not necessarily irre-
ducible. In order to establish a graphical language to describe bosonic irre-
ducible representations in so(10), we must define irreducible bosonic Young
Tableaux.
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Consider the projection matrix for su(10) ⊃ so(10) [7],

(3.3) P
su(10)⊃so(10) =




1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 2 1 0 0 0




.

The highest weight of a specified irrep in su(10) is a row vector [p, q, r, s, t,
u, v, w, x], where p to x are non-negative integers. Since the su(10) YT with
n vertical boxes is the conjugate of the one with 10− n vertical boxes, we
need only consider the u = v = w = x = 0 case.

Starting from the weight vector [p, q, r, s, t, 0, 0, 0, 0] in su(10), we define
its projected weight vector [p, q, r, s, s+ 2t] in so(10) as the Dynkin Label of
the corresponding irreducible bosonic Young Tableau.

(3.4) [p, q, r, s, s+ 2t] = [p, q, r, s, t, 0, 0, 0, 0]P T
su(10)⊃so(10) .

Thus, given an irreducible bosonic Young Tableau, we obtain the defini-
tion of its corresponding bosonic irreducible Dynkin Label representation.
Moreover, we can reverse this process and show the one-to-one correspon-
dence between bosonic Dynkin Label irreps and irreducible bosonic Young
Tableaux. Namely, given a Dynkin Label [a, b, c, d, e], write a set of linear
equations:

a = p ,

b = q ,

c = r ,

d = s ,

e = s+ 2t ,

(3.5)

and obtain

p = a ,

q = b ,

r = c ,

s = d ,

t =
e− d

2
.

(3.6)
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The problem is that in order to obtain a valid YT, p, q, r, s, and t have to be
non-negative integers, meaning e− d has to be an non-negative even integer.
When e > d, we need to prove that e− d is even and assign the corresponding
YT with subscript (IR,+). When e < d, we assign the corresponding YT
with subscript (IR,−) which is described by the alternate Dynkin Label
given by [a, b, c, e, d]. In this case, p = a, q = b, r = c, s = e, and t = d−e

2 ,
where d− e has to be even.

The proof is simple. Consider the congruence classes of a representation
with Dynkin Label [a, b, c, d, e] in SO(10),

Cc1(R) := d+ e (mod 2) ,

Cc2(R) := 2a+ 2c+ 3d+ 5e (mod 4) .
(3.7)

A congruence class is an equivalent class of irreps. Based on the above equa-
tions, there are totally four congruence classes in SO(10),

(3.8)
[
Cc1, Cc2

]
(R) =





[0, 0]

[0, 2]

[1, 1]

[1, 3]

.

The quantity
[
Cc1, Cc2

]
can be treated as a vector and it satisfies

(3.9)
[
Cc1, Cc2

]
(R1 ⊗R2)

=
[
Cc1(R1) + Cc1(R2) (mod 2) , Cc2(R1) + Cc2(R2) (mod 4)

]
.

We know that

(3.10)





bosonic irrep⊗ bosonic irrep = bosonic irrep ,

bosonic irrep⊗ spinorial irrep = spinorial irrep ,

spinorial irrep⊗ spinorial irrep = bosonic irrep .

One can quickly check that Cc1(R) actually classifies the bosonic irreps and
spinorial irreps: Cc1(R) = 0 is bosonic and Cc1(R) = 1 is spinorial. Con-
sequently, a bosonic irrep satisfies d+ e = 0 (mod 2) and consequently
d− e = 0 (mod 2).

Summarizing, given an irreducible bosonic Young Tableau with p columns
of one box, q columns of two vertical boxes, r columns of three verti-
cal boxes, s columns of four vertical boxes, and t columns of five vertical
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boxes, the Dynkin Label of its corresponding bosonic irrep is [p, q, r, s, s+
2t] or [p, q, r, s+ 2t, s] depending on its self-duality. Given a bosonic irrep
with Dynkin Label [a, b, c, d, e], its corresponding irreducible bosonic Young
Tableau is composed of a columns of one box, b columns of two vertical
boxes, c columns of three vertical boxes, d columns of four vertical boxes,
and |e− d|/2 columns of five vertical boxes. Duality properties depend on
the sign of e− d which has been discussed. From the discussion above, we
know that a bijection is established between Dynkin Labels and BYTs, that
there’s no ambiguity in the translation from Dynkin Labels to BYTs. When
d = e (even), it would mean d columns of four vertical boxes, instead of
sticking two sets of e/2 columns of five boxes of opposite dualities.

The simplest examples, also the fundamental building blocks of a BYT,
are given below.
(3.11)

IR
≡ [1, 0, 0, 0, 0] ,

IR

≡ [0, 1, 0, 0, 0] ,

IR

≡ [0, 0, 1, 0, 0] ,

IR

≡ [0, 0, 0, 1, 1] ,

IR,+

≡ [0, 0, 0, 0, 2] ,

IR,−

≡ [0, 0, 0, 2, 0] .

We put “IR” as subscripts to indicate that these are irreducible representa-
tions4. Putting together these columns corresponds to adding their Dynkin
Labels. All the BYT with one or more columns of 5 boxes can be either
self-dual or anti-self-dual. Here we impose a rule that if there’s no + or −
subscript put at the corner, it is assumed as the direct sum of the two irreps.

(3.12)

IR

=

IR,+

⊕

IR,−

.

4This convention is also adopted by [14].
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With these basic elements, we can build different examples of BYTs,

IR

≡ [2, 0, 1, 0, 0] ,(3.13)

IR,+

≡ [1, 0, 0, 1, 3] ,(3.14)

IR,−

≡ [1, 0, 0, 3, 1] .(3.15)

These last two images illustrate the meaning of “duality” in the present con-
text. The Tableaux shown in (3.14) and (3.15) each corresponds to tensors
that possess ten indices, five of which are totally antisymmetric as signi-
fied by the length of the first column. Thus, with respect to these indices
the tensor are five-forms. It is a well recognized fact that a five-form in
the context of a ten dimensional manifold can either be dual or anti-dual.
This distinction is captured by the ± subscript shown at the bottom of the
tableaux.

3.3. Indices corresponding to irreducible bosonic young tableaux

When translating the irreducible bosonic Young Tableaux into field repre-
sentations, Young Tableaux tell us the index structure of the field. In some
literature [25, 26], for the efficiency in expressing an index structure, an en-
tire Young Tableau is drawn in the subscript of the field in replacement of a
bunch of overlapping ( ) and [ ]. Here we develop the notation further such
that it becomes compact and typable. We introduce the following notational
conventions. We put all the bosonic indices in a pair of curly braces “{ }”.
We use “|” to separate indices in column(s) of YT with different heights
and “,” to separate indices in column(s) of YT with the same heights. It
should be noted that the { }-indices, irreducible bosonic Young Tableaux,
and Dynkin Labels are equivalent and have one-to-one correspondence. The
general expression is given below in Figure 2 and Figure 3,
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Figure 2: Young Tableaux-Index Structure Notation & Conventions # 1

where in Figure 2 we have “disassembled” the YT to show how each col-
umn is affiliated with each type of subscript structure. In Figure 3, we have
assembled all the column into a proper YT.

Figure 3: Young Tableaux-Index Structure Notation & Conventions # 2

As one moves from the YT’s shown in Figure 2 to Figure 3, it is clear that
the number of vertical boxes is tabulating the number of 1-forms, 2-forms,
3-forms, 4-forms, and 5-forms in the YT’s. These are the entries between
the vertical | bars. These precisely correspond to the Dynkin Labels p, q,
r, s, and t. A first example of the correspondence between the subscript
conventions and the affiliated YT and Dynkin Label is shown in (3.16).
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More examples are provided in Appendix A.

(3.16) {a2, a3|a1b1c1d1} ≡

a1 a2 a3
b1
c1
d1 IR

≡ [2, 0, 0, 1, 1] .

One remark is that the { }-indices that include five vertical boxes within
them are separated into anti-self-dual and self-dual components that satisfy
the equations

(3.17) {a1b1c1d1e1}
± = ± 1

5!
ϵa1b1c1d1e1

a2b2c2d2e2{a2b2c2d2e2}
± .

Figure 3 is the so(10) generalization of the one shown in Equation (3.1)
for su(3). However, there is one important difference. The YT itself shown
in Equation (3.1) is related to irreducible representations of su(3), while in
Figure 3 the YT with “IR” subscript subject to certain conditions refers
to irreducible representations of so(10). YT’s without this subscript are re-
ducible with respect to so(10). In the next chapter, we will deal with extract-
ing irreducible representations of so(10) from YT’s without “IR” subscript
by a graphical means.

3.4. Irreducibility conditions

Irreducible bosonic Young Tableaux only tell us the index structures of the
fields when we translate the irrep descriptions into field variable language. If
we want the correct d.o.f.5 of the fields, we have to include the irreducibility
conditions or constraints. The irreducibility conditions are effectuated by
the branching rules for su(10) ⊃ so(10). Examples are

=
IR

{10} = {10}
,(3.18)

=
IR

⊕ ·

{55} = {54} ⊕ {1}
,(3.19)

=
IR

⊕
IR

{330} = {320} ⊕ {10}

,(3.20)

5We use d.o.f. as the abbreviation for ”degrees of freedom.”
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=

IR,−

⊕

IR,+

⊕

IR

{2310} = {1050} ⊕ {1050} ⊕ {210}

.(3.21)

In each above equation, the leading term tells us the index structure corre-
sponding to the irrep and the remaining terms tell us the irreducible condi-
tions or constraints. The degrees of freedom contributed by each term are
also presented below the YT. They can be translated into the field language
respectively,

Φ{a1}
: N/A ,

(3.22)

Φ{a1,a2}
: ηa1a2 Φ{a1,a2}

= 0 ,
(3.23)

Φ{a2|a1b1}
: ηa1a2 Φ{a2|a1b1}

= 0 ,
(3.24)

Φ{a2|a1b1c1d1e1}
:





ηa1a2 Φ{a2|a1b1c1d1e1}
= 0 ,

Φ{a2|a1b1c1d1e1}
+ = 1

5!ϵa1b1c1d1e1
f
1
g
1
h1i1j1Φ{a2|f1

g
1
h1i1j1}

+ ,

Φ{a2|a1b1c1d1e1}
− = − 1

5!ϵa1b1c1d1e1
f
1
g
1
h1i1j1Φ{a2|f1

g
1
h1i1j1}

− .

(3.25)

where

(3.26) Φ{a2|a1b1c1d1e1}
= Φ{a2|a1b1c1d1e1}

+ + Φ{a2|a1b1c1d1e1}
− .

as indicated in the text around Equation (3.12).
In the next chapter, we will see how these branching rules can be ob-

tained by graphical rules.

4. 10D bosonic young tableau tying rules

From Chapter 3, we know irreducible bosonic Young Tableaux for so(10)
can be drawn. In the An−1 = su(n) algebra, one can calculate the dimension
of an irrep by the well-known graphical device involving the use of the “hook
rule.” This leads to the question whether there exists a diagrammatic method
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to calculate the dimension of an irrep from the so(10) BYT directly, instead
of translating it to a Dynkin Label [a1, a2, a3, a4, a5] constructed from the
five integers a1, a2, a3, a4, and a5 followed by substituting the integers into
the Weyl dimension formula for the D5 algebra [7]

d(a1, a2, a3, a4, a5)

=
[ 3∏

k=1

k∏

i=1

( ∑k
j=i aj

k − i+ 1
+ 1
)][ 3∏

k=0

5∏

l=4

((
∑k

j=1 a4−j) + al

k + 1
+ 1
)]

×
[ 2∏

k=0

3∏

i=k+1

((
∑i

j=k+1 a4−j) + (
∑k

j=1 2a4−j) + a4 + a5

i+ k + 2
+ 1
)]

=

[
1

7!× 5!× 4!× 3!

]
(a1 + 1)(a2 + 1)(a3 + 1)(a4 + 1)(a5 + 1)

(a1 + a2 + 2)(a2 + a3 + 2)(a3 + a4 + 2)(a3 + a5 + 2)

(a1 + a2 + a3 + 3)(a2 + a3 + a4 + 3)(a2 + a3 + a5 + 3)(a3 + a4 + a5 + 3)

(a1 + a2 + a3 + a4 + 4)(a1 + a2 + a3 + a5 + 4)(a2 + a3 + a4 + a5 + 4)

(a2 + 2a3 + a4 + a5 + 5)(a1 + a2 + a3 + a4 + a5 + 5)

(a1 + a2 + 2a3 + a4 + a5 + 6)(a1 + 2a2 + 2a3 + a4 + a5 + 7) .

(4.1)

On the other hand, we already know there exist branching rules su(10) ⊃
so(10) such that a su(10) irrep can be projected to a direct sum of irreps
in so(10). In a branching rule, one of the irreps in so(10) must have the
same YT shape with that in su(10). Also, the dimensions of the totality of
representations obtained from the branching, when added together, should
match that of the “unbranched” representation. These properties manifest
in the examples of the analytical expressions of irreducible conditions as
mentioned in Section 3.4.

This inspires us to invent a diagrammatic method to obtain the branch-
ing rules of su(10) ⊃ so(10). Meanwhile, requiring the dimensions to match
before and after projections would give us dimensions of BYT in so(10).

This diagrammatic method is called tying rule. The origin of the rule’s
name comes from the notion of “ties”. Given two symmetric boxes in a
BYT, one can“tie” them by putting a node • in each box and a line between
them. In a field theoretical formulation using index notation, this means
contracting the two symmetric indices with the flat metric ηab, i.e. taking a
“trace”. The degrees of freedom are thus equivalent to those in the diagram
where those two boxes are “eliminated”. This is illustrated in Equation (4.2),
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where on the left the YT has two symmetric boxes, and on the right the
“tying” action is applied on them.

(4.2)
a b •−−• ≡ ·

Φ{a,b} ηabΦ{a,b} ≡ φ

In the following, we will express everything about the tying rule graphically
without mentioning the η-contractions, but readers should keep this in mind.

For completely antisymmetric BYTs, since no tie can be drawn (no two
symmetric boxes), the rules for calculating the dimensions are exactly the
same as the YTs in su(10). We will introduce the tying rules in the order of
completely symmetric and two-column (Section 4.2), three-column (Section
4.3), and n-column (n ≥ 4) BYTs (Section 4.4), where the latter ones in
the list have more complications and the former ones are specific cases of
them. While the tying rules up till 3-column BYTs are complete, tying rules
for 4-column and above remain incomplete as only several specific cases are
verified. This requires further investigation beyond this paper.

A remark is tying rule also works for general su(N) ⊃ so(N), i.e. AN−1 ⊃
DN/2 for even N or AN−1 ⊃ B(N−1)/2 for odd N6. The only difference be-
tween branching into a D-series algebra and a B-series algebra is that the
BYTs containing column(s) of N/2 boxes in the DN/2 algebra can be split
into a self-dual irrep and an anti-self-dual irrep (and thus contain two ir-
reps), but none of the BYTs in the B-series algebra have these self-duality
properties (so they will never be split into two irreps). A little Mathematica
program available in GitHub is written to verify the tying rules for all the
BYTs up to 3-columns for N > 6.

Another remark is that based on tying rules we can also calculate the
dimensionalities of bosonic irreps which will be presented in the following
sections. One can quickly check the consistency of the Weyl dimension for-
mula (4.1), the su(10) algebra hook rule, and our graphical tying rules. A

6 It seems likely that the proposal could be extended, with appropriate modi-
fications to cases relating branchings of the su(N) into the usp(N) algebras
(i.e. A2N−1 into CN ) as the latter possess a quadratic symplectic invari-
ant. In this case, the tying would take place vertically not horizontally. In
[35], King introduced two set of step-by-step graphical rules to describe
su(N) ⊃ so(N) and su(N) ⊃ usp(N) branching rules respectively. The for-
mer is an interpretation of Littlewood’s rule (that would be described later
in Section 4.1), and one would see later how similar in spirit it is to the
tying rule. We propose that the latter set of graphical rules by King is
in fact in the same vein with the vertical tying rule, with the exact same
mapping between Littlewood’s rule and the horizontal tying rule.

https://github.com/SNHazelMak/TyingRule_SUnSOnBranching
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simple python code to calculate Weyl dimension formula by inputting the
Dynkin Label can be found in GitHub.

But before we dive into the tying rule, we want to review a rule first pro-
posed by Littlewood [33, 35] and we propose as a conjecture7 that our tying
rule (up to 3-columns) must be equivalent. The rule in question is carried
out by utilizing a specific Schur function series and a “division operator” of
Young Tableaux. We will present the rule in Section 4.1.

4.1. Littlewood’s rules by a Schur function series

Schur functions were introduced by Issai Schur (1875 - 1941) in his doctoral
dissertation in 1901 [27]. They are symmetric functions that are more gen-
eral than elementary symmetric functions, which their symmetry properties
can be represented by Young Tableaux. In 1934, Littlewood and Richardson
published the famous Littlewood-Richardson rule [28] that gives the combi-
natorial description of the coefficients in the decompositions of the product of
two Schur functions as a linear combination of other Schur functions. It was
then broadly applied in the area of classical Lie algebras to understand ten-
sor products between two irreducible representations. For physicists, there
are also familiar books [38, 39] where such introductions and discussions
appear.

If we denote an irreducible representation of one of the An algebras by
{λ}, where { } means An and λ indicates the Young Tableau shape, we can
write the Littlewood-Richardson rule as

(4.3) {λ} ⊗ {µ} =
∑

ν

mν
λµ{ν} .

wheremν
λµ is a number. The way to obtain the tensor product is familiar: put

“a” labels in the first row of {µ}, “b” labels in the second, “c” labels in the
third, etc., and exploit all combinations of sticking these boxes containing
these letters to the YT {λ} such that they obey the rules,

1) The final Young diagram is regular (has a standard shape, not skew a
shape);

2) No two of the same letters sit in the same column (so that symmetry
is not violated); and

7A rigorous mathematical proof is currently lacking, but in the following
sections we present supporting evidence.

https://github.com/1211890120/HigherDimlCounting/blob/master/Weyl_dimension_SO10.py


✐

✐

“3-Mak” — 2022/6/18 — 3:03 — page 1468 — #20
✐

✐

✐

✐

✐

✐

1468 S. J. Gates, Jr., Y. Hu, and S.-N. H. Mak

3) When going from left to right, top to bottom, the accumulated number
of “a” is always greater than that of “b”, and that of “b” is always
greater than that of “c”, etc..

The coefficients mν
λµ can then be obtained by counting the numbers of {ν}

in the final decomposition.
We can then turn to a related operation, called quotient operation “/”8,

which is defined by

(4.4) {ν}/{µ} =
∑

λ

mν
λµ{λ} ,

where mν
λµ are exactly the same as the coefficients of the Littlewood-

Richardson rule for products [29–31]; and {ν}/{µ} is called a skew Schur
function.

The coefficients above immediately suggest that the same rules 1 - 3
stated above apply to the quotient operation, but now we put letters from
{µ} into {ν} and eliminate those boxes with letters. An example of the
quotient operation would be

(4.5)

IR

/
a a
b

IR

=
a a

b

IR

⊕
a a

b
IR

⊕
a

a
b

IR

⊕
a

b
a

IR

⊕ b a
a

IR

.

8Note that it is not the inverse operation of the Kronecker product ⊗.
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The meaning of these coefficients for quotient are the same as those for
product, illustrated by this example, is
(4.6)

IR

⊗
a a
b

IR

=
a a

b

IR

⊕ · · · ,

IR

⊗
a a
b

IR

=
a a

b
IR

⊕ · · · ,

IR

⊗
a a
b

IR

=
a

a
b

IR

⊕
a

b
a

IR

⊕ · · · ,

IR
⊗

a a
b

IR

= b a
a

IR

⊕ · · · ,

More explicitly, if we let

(4.7)

ν =

IR

, µ =
IR

,

λ1 =

IR

, λ2 =
IR

,

λ3 =
IR

, λ4 =
IR

,

according to the notations in Equations (4.3) and (4.4), then we have the
coefficients

(4.8) mν
λ1µ = 1 , mν

λ2µ = 1 , mν
λ3µ = 2 , mν

λ4µ = 1 .

With these understandings of the quotient operation, we can proceed to
the statement of the algorithm of calculating the branching rules of su(n) ⊃
so(n). By manipulating Schur function series, Littlewood proved [33]

(4.9) su(n) ⊃ so(n) : {λ} ⊃ [λ/D] ,

where [ ] means a representation in so(n) algebra, and
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(4.10) D = · ⊕
IR

⊕
IR

⊕
IR

⊕
IR

⊕
IR

⊕

IR

⊕ · · ·

is a Schur function series9 written in our notation, which contains all par-
titions with all parts even. King in his 1971 paper [35] understood this
rule diagrammatically through the rules of obtaining quotients, like those in
Equation (4.5), by quotient-ing all the terms in D. He described this intu-
ition as “step-by-step nature of the trace removal process of so(n)”, which
echoes with our definition of “tie” in Equation (4.2) but we are very explicit
in the symmetric property of the η-metric by putting the two nodes on the
same row.

For clarity, let us apply Equation (4.9) to

(4.11) λ = .

By implementing quotient operator with each term in D, only the terms
below give non-vanishing results,

9This Schur function series D contains all possible YTs constructed from

IR. Therefore, the number of terms containing 2n box(es) is the inte-
ger partition of n. This is why the Littlewood’s rule is very similar to tying
rule - that “/D” means removing all the combinations of IR, while

tying rules involve removing all the combinations of tied boxes •−−• IR.
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IR

/
· =

IR

,

IR

/
a a

IR
=

a
a

IR

⊕
a

a
IR

⊕ a a

IR

⊕ a
a

IR

,

IR

/
a a a a

IR
=

a
a a

a
IR

,

IR

/
a a
b b

IR

=
b a

b a

IR

⊕
b a
a

b
IR

⊕
a

b a
b

IR

,

IR

/
a a a a
b b

IR

=
b b a
a a

a
IR

⊕
b a

b a a
a

IR

,

(4.12)

while other terms vanish. This leads to the result

=

IR

⊕

IR

⊕
IR

[1, 2, 1, 0, 0] [1, 1, 1, 0, 0] [0, 3, 0, 0, 0]

{235950} = {174636} ⊕ {17920} ⊕ {7644}

⊕

IR

⊕
IR

[3, 0, 1, 0, 0] [2, 2, 0, 0, 0]

⊕ {14784} ⊕ {16380}

(4.13)
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⊕ 2
IR

⊕

IR

⊕
IR

⊕
IR

⊕
IR

[2, 1, 0, 0, 0] [1, 0, 1, 0, 0] [0, 2, 0, 0, 0] [0, 1, 0, 0, 0] [2, 0, 0, 0, 0]

⊕ (2){1386} ⊕ {945} ⊕ {770} ⊕ {45} ⊕ {54}

.

4.2. Tying rule for completely symmetric and two-column BYTs

Now we turn to tying rule. For completely symmetric and two-column bosonic
Young Tableaux, there are two main steps to find the branching rules. Given
a YT in su(10), we perform the following to find how it decomposes into a
direct sum of irreps in so(10).

Step 1:: Draw all possible combination of ties (including no tie at all).
Vertical position of ties does not matter. Keep one copy for each
of the equivalent ones.

Step 2:: For each diagram, wipe out the boxes with ties. Then the decom-
position in so(10) would be the sum of all these BYTs.

A very detailed description of this algorithm is given below to foster a
thorough understanding about the meaning of the above two main steps.
Let n be the number of boxes of the Young Tableau to be decomposed.

1) Draw a tie between two boxes in the same row. That is equivalent
to contracting two vector indices with a metric. Next we erase those
two boxes and create a new Young Tableau (with n− 2 boxes) in the
decomposition.

2) Repeat the above step until no tie can be drawn further. In each step we
create a new Young Tableau with n− 2t boxes, where t is the number
of ties. Then the entire Young Tableau can be decomposed into direct
sums of tmax + 1 irreducible Young Tableaux (with subscript IR as we
denote them).

3) Look at the Young Tableau with the maximum number of ties (or
the minimum number of boxes without ties). Calculate the dimension
using the usual Young Tableau rules and call it dtmax

.

4) Look at the Young Tableau with the next maximum number of ties
(or the next minimum number of boxes without ties). Calculate the
dimension using the usual Young Tableau rules and call it d̃tmax−1.
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Then the dimension of this irreducible Young Tableau is dtmax−1 =
d̃tmax−1 − dtmax

.

5) Repeat the above step for all irreducible Young Tableaux until t = 0.
For a general t, the dimension of that irreducible Young Tableau is
dt = d̃t −

∑
t′>t dt′ , where d̃t is the dimension calculated by the usual

Young Tableau rules, and dt′ are the dimensions of the irreducible
representations.

6) Finally, we obtain a decomposition of the reducible Young Tableau into
a direct sum of irreducible Young Tableaux. The dimensions satisfy
d̃0 = d0 + d1 + · · ·+ dtmax−1 + dtmax

.

To make things as clear as possible, we discuss two explicit examples.
The first example is a completely symmetric Young Tableau. Steps 1 - 2
allow us to draw the ties and the irreducible Young Tableaux as follows.

=
IR

⊕ •−−•
IR

(4.14)

⊕ •−−• •−−•
IR

.

This is the branching rule for in su(10) to so(10). So tmax =
2, and thus the final decomposition has tmax + 1 = 3 irreducible Young
Tableaux. In this example, n = 5, and the three irreducible Young Tableaux
have 5, 3, and 1 box(es) respectively. Steps 3 - 5 allow us to find the dimen-
sions of the irreducible Young Tableaux as follows.

•−−• •−−•
IR

d2 = 10 ,

•−−•
IR

d1 = d̃1 − d2 =
10× 11× 12

3× 2× 1
− 10 = 210 ,

IR
d0 = d̃0 − d1 − d2

=
10× 11× 12× 13× 14

5× 4× 3× 2× 1
− 210− 10 = 1782 .

(4.15)

Therefore,

(4.16) {2002} = {1782} ⊕ {210′} ⊕ {10} ,

where the irreducible representation {2002} of su(10) corresponds to the
Dynkin Label [5,0,0,0,0,0,0,0,0], while {1782}, {210′} and {10} of so(10)
corresponds to the Dynkin Labels [5, 0, 0, 0, 0], [3, 0, 0, 0, 0] and [1, 0, 0, 0, 0]
respectively.
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The second example is a two-column Young Tableau. Steps 1 - 2 allow
us to draw the ties and the irreducible Young Tableaux as follows.

(4.17) =

IR

⊕
•−−•

IR

⊕
•−−•
•−−•

IR

.

This is the branching rule for in su(10) to so(10). Again tmax = 2,

so we have 3 irreducible Young Tableaux in the decomposition. And again
n = 5, so we have three irreducible Young Tableaux with 5, 3, and 1 box(es)
respectively. Steps 3 - 5 allow us to find the dimensions of the irreducible
Young Tableaux as follows.

•−−•
•−−•

IR

d2 = 10 ,

•−−•

IR

d1 = d̃1 − d2 =
10× 11× 9

3× 1× 1
− 10 = 320 ,

IR

d0 = d̃0 − d1 − d2 =
10× 11× 9× 10× 8

4× 2× 3× 1× 1
− 320− 10 = 2970 .

(4.18)

Therefore,

(4.19) {3300} = {2970} ⊕ {320} ⊕ {10} ,

where the irreducible representation {3300} of su(10) corresponds to the
Dynkin Label [0,1,1,0,0,0,0,0,0], while {2970}, {320} and {10} of so(10)
corresponds to the Dynkin Labels [0, 1, 1, 0, 0], [1, 1, 0, 0, 0] and [1, 0, 0, 0, 0]
respectively.

4.3. Tying rule for three-column BYTs

For a three-column BYT, there are two steps to figure out how a su(10) irrep
(which is reducible in so(10)) decomposes into so(10) irreducible parts.
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Step 1:: Draw all the possible combinations of ties (including no tie at all).
They can skip a box (as long as they are on the same row and
remain symmetric). Vertical position of ties does not matter. Keep
one copy for the equivalent ones.

Step 2:: For each diagram, wipe out the boxes with the ties and rearrange
them vertically according to symmetry properties (we’ll explain it
shortly) such that they have standard YT shapes. If a standard
YT shape cannot be obtained, or the rearrangements cannot be
performed with symmetry preserved, throw that BYT away. Then
the decomposition in so(10) would be the sum of all the remaining
BYTs.

Let us focus on step 1 first. To illustrate the idea, we will discuss two
examples below.
(4.20)

:
IR

,
•−−•

IR

,
•−· · ·−•

IR

,
•−−•

IR

.

:

IR

,

•−−•

IR

,

•−−•
•−−•

IR

,

•−−•
•−−•
•−−•

IR

,

•−−•

IR

,

•−−•
•−−•

IR

,

•−−•
•−−•

•−−•

IR

,

•−−•
•−−•

IR

,

•−−•
•−−•
•−−•

IR

,

•−· · ·−•

IR

,

•−· · ·−•
•−−•

IR

,

•−· · ·−•
•−−•
•−−•

IR

,

•−· · ·−•
•−−•

IR

,

•−· · ·−•
•−−•

•−−•

IR

,

•−· · ·−•
•−· · ·−•

IR

,

•−· · ·−•
•−· · ·−•
•−−•

IR

.

(4.21)

Now, let us consider step 2. Before we proceed with examples, let us
explain in detail the meaning of the symmetry properties we mentioned
above. In general, consider a YT containing two columns of unequal numbers
of boxes, one withM boxes and one withN boxes. Without loss of generality,
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let M < N .

(4.22) N





...
...

...

}
M





The symmetry relations go as follows.

1) The i-th box in the M -column is symmetric with the i-th box in the
N -column (i = 1, . . . ,M);

2) The i-th box in the M -column is antisymmetric with the j-th box in
the N -column for j ̸= i and j ≤M (j = 1, . . . ,M);

3) The i-th box in theM -column has no symmetry relation with the k-th
box in the N -column for k > M (k =M + 1, . . . , N).

If we use the example in Equation (4.21), we can illustrate these three con-
ditions as follows.

◦ ◦

IR

∗
∗

IR

∼

∼

IR

symmetric antisymmetric no symmetry relation

(4.23)

We have explained the definitions of the symmetry relations between any
pair of boxes in a BYT. What does it mean by saying the symmetry prop-
erties are preserved? Since we perform all the ties horizontally, we are only
allowed to move the boxes vertically. Then three scenarios below are possible
after rearrangements.

◦ ◦ ∗ ∗ ∼ ∼

must must not no restriction
(4.24)

Symmetry properties are preserved if the final BYT abides by these rules,
i.e. the originally symmetric boxes must remain symmetric, the originally
antisymmetric boxes must not become symmetric, and the boxes that do
not have any symmetry relation originally can end up being symmetric.

With these in mind, we can now erase the boxes that are tied up (with
a bullet in the middle), and rearrange them vertically. Let us start with
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the first example in Equation (4.20). The last diagram can not be vertically
rearranged to be a regular YT shape,

(4.25)
•−−•

IR

−→ .

The remaining diagrams could be rearranged as follows,

•−−•

IR

−→
IR

,

−••−
∼

·∼·

IR

−→ ∼ ∼
IR

.

(4.26)

Both of these diagrams are allowed as they have standard YT shapes and
all the symmetry properties are preserved. Together with the diagram with
no tie, we can write the branching rule

=
IR

⊕
IR

⊕
IR

[2, 1, 0, 0, 0] [0, 1, 0, 0, 0] [2, 0, 0, 0, 0]

{1485} = {1386} ⊕ {45} ⊕ {54}

.(4.27)

We turn to the more complicated second example in Equation (4.21). Before
we perform delicate vertical rearrangements, we can discard diagrams that
obviously could not be arranged to standard YT shapes, including

•−−•
•−−•

IR

−→ ,

•−−•
•−−•
•−−•

IR

−→ ,

•−−•
•−−•
•−−•

IR

−→ ,

•−· · ·−•
•−· · ·−•

IR

−→ ,

•−· · ·−•
•−· · ·−•
•−−•

IR

−→ .

(4.28)

We can now carry out the rearrangements of the remaining diagrams. To
facilitate the presentation, in the rearrangement process, we will use the
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number “1” to indicate the boxes in the first row of the final diagram, and
the number “2” to indicate those in the second row, etc.. We will use the
colors in Equations (4.23) and (4.24) to indicate the conditions of symmetric,
antisymmetric, and no symmetry relation respectively. For a row with a
single box, we use black color. Since it’s always about pairs of boxes, some
boxes might need to be indicated twice. To avoid this, we will specify the
conditions of symmetric and antisymmetric first, then if the box next to it
is in green color, it has no symmetry relation with the other boxes on the
same row. Here are the ones that are allowed according to symmetry rules.

3
2 2
1 1 1

2−••−

IR

−→
3

22 2
1 1 1

IR

,

3
2 2
1 1 1
4 −••−

IR

−→

4
3
2 2
1 1 1

IR

,

2
1 1
4
3 −•

−•
•−
•−

IR

−→

4
3
2
1 1

IR

,

3

2
1 −•

−•
−•

•−
•−

•−

IR

−→
3
2
1

IR

,

2
1 1

1
3 −•
−•
•−

•−

IR

−→
3
2

11 1

IR

,

3
2 2
1 1 1
·3·−••−

IR

−→
3 3
2 2
1 1 1

IR

,

2
1 1
3
·2·3 −•

−•
•−

•−

IR

−→
3
2 2
1 1

IR

,

2
1 1

1
·2·3 −•
−•

•−
•−

IR

−→
2 2

11 1

IR

,

1

2
·1·−•

−•
−•

•−
•−

•−

IR

−→
2
1 1

IR

.

(4.29)

The remaining diagram is

(4.30)

1

1
·1·−•
−•
−•

•−
•−
•−

IR

−→ 1 11
IR

,
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which is not allowed by the symmetry rule in Equation (4.24), and thus
disregarded. Therefore,

=

IR

⊕

IR

⊕

IR

[0, 1, 1, 1, 1] [0, 2, 1, 0, 0] [1, 1, 0, 1, 1]

{304920} = {192192} ⊕ {34398} ⊕ {36750}

⊕

IR

⊕

IR

⊕

IR

⊕

IR

[1, 0, 0, 1, 1] [0, 0, 1, 0, 0] [2, 0, 1, 0, 0] [1, 0, 2, 0, 0]

⊕ {1728} ⊕ {120} ⊕ {4312} ⊕ {27720}

⊕

IR

⊕
IR

⊕
IR

[0, 1, 1, 0, 0] [1, 2, 0, 0, 0] [1, 1, 0, 0, 0]

⊕ {2970} ⊕ {4410} ⊕ {320}

.

(4.31)

To foster a better feeling for these rules, especially about the diagrams
that violate the symmetry properties, i.e. contain the antisymmetric boxes
on the same row in Equation (4.24), we put a very enlightening example at
the end. Since it’s very easy to observe which BYT would not end up being
a standard shape, those would be excluded right away. The equivalent ones
would not be written twice also.

:

IR

,

•−−•

IR

,

•−−•
•−−•

IR

,

•−−•
•−−•
•−−•

IR

,

•−−•
•−−•
•−−•
•−−•

IR

,

•−· · ·−•

IR

,

•−· · ·−•
•−−•

IR

,

•−· · ·−•
•−−•
•−−•

IR

,

(4.32)
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•−· · ·−•
•−−•
•−−•
•−−•

IR

,

•−· · ·−•
•−−•

IR

,

•−· · ·−•
•−−•

•−−•

IR

,

•−· · ·−•
•−−•

•−−•
•−−•

IR

,

•−· · ·−•
•−· · ·−•

•−−•

IR

,

•−· · ·−•
•−· · ·−•

•−−•
•−−•

IR

,

•−· · ·−•
•−· · ·−•

•−−•
•−−•

IR

.

Now, let us just focus on those diagrams that would inevitably contain two
antisymmetric boxes in one row, and thus must be discarded.

3
2 2 2
1 1 1

3
·3·−•
−•

•−
•−

IR

−→
3 33

2 2 2
1 1 1

IR

,(4.33)

2
1 1 1
3
·3·
·2·−•

−•
−•

•−
•−

•−

IR

−→
3 3
2 2
1 1 1

IR

.(4.34)

From the way these two diagrams vanish, we know there are 4 more diagrams
that vanish in the same way,

•−· · ·−•
•−−•

•−−•

IR

,

•−· · ·−•
•−−•

•−−•
•−−•

IR

,(4.35)

•−· · ·−•
•−· · ·−•

•−−•
•−−•

IR

,

•−· · ·−•
•−· · ·−•

•−−•
•−−•

IR

.(4.36)

We call the two diagrams in Equation (4.35) the descendants of the diagram
in Equation (4.33), as both diagrams contain the pair of ties (on the top
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two rows) of the (4.33) diagram which caused the diagram to contain an-
tisymmetric boxes on the same row; and therefore the descendants would
contain these exact same antisymmetric boxes and be discarded for the ex-
act same reason. In a similar sense, the two diagrams in Equation (4.36) are
the descendants of the diagram in Equation (4.34) as they contain the same
problematic triplet of ties (on the top three rows) of the (4.34) diagram.
Thus the final decomposition is

=

IR

⊕

IR

⊕

IR

[0, 0, 0, 4, 2] [0, 0, 2, 2, 0] [0, 2, 0, 2, 0]

⊕ [0, 0, 0, 2, 4] ⊕ [0, 0, 2, 0, 2] ⊕ [0, 2, 0, 0, 2]

{1176120} =
{141570}

⊕ {141570}
⊕

{144144′}
⊕ {144144′}

⊕
{46800}

⊕ {46800}

⊕

IR

⊕

IR

[2, 0, 0, 2, 0] [0, 0, 0, 2, 0]

⊕ [2, 0, 0, 0, 2] ⊕ [0, 0, 0, 0, 2]

⊕
{4950}

⊕ {4950}
⊕

{126}
⊕ {126}

⊕

IR

⊕

IR

⊕

IR

⊕

IR

[0, 0, 1, 2, 2] [0, 1, 1, 1, 1] [1, 1, 0, 1, 1] [1, 0, 0, 1, 1]

⊕ {270270} ⊕ {192192} ⊕ {36750} ⊕ {1728}

.(4.37)

4.4. Tying rule for n-column BYTs (n ≥ 4)

For a n-column BYT with n ≥ 4, the tying rule is as follows.
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Step 1: Draw all the possible combinations of ties (including no tie at all).
They can skip any number of box(es) (as long as they are on the
same row and remain symmetric). Vertical position of ties does not
matter. Keep one copy for each of the equivalent ones.

Step 2: For each diagram, erase the boxes with the ties and rearrange them
vertically according to symmetry properties such that they become
a standard YT shape. If a standard YT shape cannot be obtained,
or the rearrangements cannot be performed with symmetry pre-
served, throw that BYT away. Then the decomposition in so(10)
would be the sum of all the remaining BYTs.

In the su(10) ⊃ so(10) branching rules, when a Young Tableau in su(10)
contains 4 or more columns, the irreps in so(10) begin to have multiplicities
larger than one. The key to understanding 4+ columns is therefore in Step
1: what does equivalence mean when ties are drawn?

Notice that when a YT has 4 or more columns, there is more than one
way to put two ties in a row. For example, two ties can be put in a row of
4 boxes in the following 3 different ways,

(4.38) •−−• •−−• , •− •−· · ·−•· · ·−• , •− •−· · ·−•· · ·−• ,

given that these 4 boxes are inequivalent. The question now comes - when will
they become equivalent? Stated another way, could we exchange two nodes
that separately belong to two ties on the same row, such that the diagram
after operation is equivalent to the original diagram? Let us remark that
in these exchanges the specific boxes tied would not change, therefore they
give the same irrep and it is for counting the multiplicity of each irrep in
so(10) after the application of branching rules.

To answer this question, let us study some special cases. Recall that in
Section 4.2, the totally symmetric BYT example (4.14) does not contain 3
copies of

IR
but only one, as all of the five boxes are equivalent - they

are all exchangeable (totally symmetric). So let us propose a condition of
exchanging two nodes on two ties that would leave the diagram invariant.

1) When two nodes are in two columns with the same number of boxes
- so the two boxes that the two nodes posited are equivalent and ex-
changeable.
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For the special class of BYTs with all columns having the same number of
box(es), this rule must apply. An example other than (4.14) is

: 1
IR

:
•−−• •−−•

IR

=
•− •−· · ·−•· · ·−•

IR

=
•− •−· · ·−•· · ·−•

IR

,

1
IR

:
•−−• •−−•

•−−•
IR

=
•− •−· · ·−•· · ·−•

•−−•
IR

=
•− •−· · ·−•· · ·−•

•−−•
IR

,

1 · :
•−−• •−−•
•−−• •−−•

IR

=
•− •−· · ·−•· · ·−•
•− •−· · ·−•· · ·−• IR

=
•− •−· · ·−•· · ·−•
•− •−· · ·−•· · ·−• IR

=
•−−• •−−•
•− •−· · ·−•· · ·−• IR

=
•−−• •−−•
•− •−· · ·−•· · ·−• IR

=
•− •−· · ·−•· · ·−•
•− •−· · ·−•· · ·−• IR

.

(4.39)

Therefore,

=
IR

⊕
IR

⊕
IR

[0, 4, 0, 0, 0] [2, 2, 0, 0, 0] [4, 0, 0, 0, 0]

{70785} = {52920} ⊕ {16380} ⊕ {660}

⊕
IR

⊕
IR

⊕ ·

[0, 2, 0, 0, 0] [2, 0, 0, 0, 0] [0, 0, 0, 0, 0]

⊕ {770} ⊕ {54} ⊕ {1}

.(4.40)

In fact, for all BYTs with all columns having the same number of box(es),
according to rule 1., all the irreps in the decompositions appear only once.

Now, let us turn to another class of BYTs - those with all columns un-
equal. Rule 1. would not apply. Although all columns are inequivalent, the
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diagrams involving two ties on the same row do not naively have multiplic-
ities 3. We thereby propose the second condition of exchanging two nodes
that could make two diagrams equivalent.

2) When there is another tie connecting the two columns where the two
nodes located - then this tie offers an additional symmetry.

Let us demonstrate this rule with the following example.

: 3

IR

:

•−−• •−−•

IR

̸=

•− •−· · ·−•· · ·−•

IR

̸=

•− •−· · ·−•· · ·−•

IR

,

2
IR

:

•−−• •−−•
•−· · ·−•

IR

=

•− •−· · ·−•· · ·−•

•−· · ·−•

IR

̸=

•− •−· · ·−•· · ·−•
•−· · ·−•

IR

,

2

IR

:

•−−• •−−•
•−−•

IR

=

•− •−· · ·−•· · ·−•
•−−•

IR

̸=

•− •−· · ·−•· · ·−•

•−−•

IR

,

(4.41)
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2
IR

:

•−−• •−−•
•−−•

IR

̸=

•− •−· · ·−•· · ·−•
•−−•

IR

=

•− •−· · ·−•· · ·−•
•−−•

IR

.

These are the irreps with multiplicities not equal to one. Others have mul-
tiplicity one. Some examples are

1
IR

:

•−−• •−−•
•−· · ·−•
•−−•

IR

=

•− •−· · ·−•· · ·−•
•−· · ·−•
•−−•

IR

=

•− •−· · ·−•· · ·−•
•−· · ·−•
•−−•

IR

,

1
IR

:

•−−• •−−•
•−−•

•−−•

IR

=

•− •−· · ·−•· · ·−•
•−−•

•−−•

IR

=

•− •−· · ·−•· · ·−•
•−−•

•−−•

IR

.

(4.42)

Other symmetry rules in Step 2 are exactly the same as those stated in
3-column BYTs (Section 4.3). Together we have

=

IR

⊕

IR

⊕

IR

[1, 1, 1, 1, 1] [1, 2, 1, 0, 0] [2, 1, 0, 1, 1]

{1812096} = {1048576} ⊕ {174636} ⊕ {143000}

⊕

IR

⊕

IR

⊕

IR

[2, 0, 2, 0, 0] [0, 2, 0, 1, 1] [1, 0, 1, 1, 1]

⊕ {112320} ⊕ {73710} ⊕ {72765}

⊕

IR

⊕ 3

IR

⊕
IR

[0, 1, 2, 0, 0] [1, 1, 1, 0, 0] [2, 2, 0, 0, 0]

⊕ {70070} ⊕ (3){17920} ⊕ {16380}
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⊕

IR

⊕

IR

⊕
IR

[3, 0, 1, 0, 0] [2, 0, 0, 1, 1] [0, 3, 0, 0, 0]

⊕ {14784} ⊕ {8085} ⊕ {7644}

⊕

IR

⊕

IR

⊕ 2
IR

⊕ 2

IR

[0, 1, 0, 1, 1] [0, 0, 2, 0, 0] [2, 1, 0, 0, 0] [1, 0, 1, 0, 0]

⊕ {5940} ⊕ {4125} ⊕ (2){1386} ⊕ (2){945}

⊕ 2
IR

⊕
IR

⊕
IR

[0, 2, 0, 0, 0] [2, 0, 0, 0, 0] [0, 1, 0, 0, 0]

⊕ (2){770} ⊕ {54} ⊕ {45}

.(4.43)

Now we report the status of those BYTs with some equal columns and
some unequal columns. Although rules 1. and 2. apply to count most of
the diagrams in the decompositions correctly, there are often one or two
diagram(s) in each of those BYTs with multiplicities off by one. We hereby
make a guess that there is a missing piece in these rules of exchanging nodes
to count equivalences, and this is under investigation.

We close this section by restating the inspiration for our “tying rules”
comes from the conventional physicist’s approach to “pulling out” irreducible
representations of tensors defined over orthogonal groups. Namely, given
a general symmetrical tensor that is reducible, and an invariant quadratic
tensor, the physicist will typically “pull out the irreps” by contracting indices
on the symmetric tensor with the invariant quadratic tensor. The contraction
of indices “ties” a pair of indices together, hence “tying rules.”

5. Spinorial irreps of so(10)

In this chapter, we will exploit the graphical interpretation of Dynkin Labels
of spinorial irreducible representations of so(10) and its utility in translating
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an irrep to field-theoretical language. This can be applied to understand the
following two aspects of a spinorial irrep:

(a.) the proper index structure of the field; and

(b.) the irreducible constraints and the counting of the degrees of freedom.

These understandings of spinorial irreps are tightly related to some tensor
product rules. They are presented in Chapter 6.

Let us start with a general explanation for (a.). The basic elements of
spinorial irreps are

[0, 0, 0, 0, 1] ≡ 16 = {16} ,

[0, 0, 0, 1, 0] ≡ 16 = {16} .
(5.1)

For convenience, we introduce a notation for mixed YT that is defined from
the Dynkin Label. Since putting together the bosonic columns in Equation
(3.11) corresponds to adding Dynkin Labels, we can carry out a similar thing
for these spinorial YT too. If we put together Equations (5.1) and (3.11),
we can draw a general mixed YT10

t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·
· · ·

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

IR,±

(5.2)

=





[p, q, r, s, s+ 2t+ 1], for + and = 16 ,

[p, q, r, s+ 2t, s+ 1], for− and = 16 ,

[p, q, r, s+ 1, s+ 2t], for + and = 16 ,

[p, q, r, s+ 2t+ 1, s], for− and = 16 .

One point to note though, is and are two different types of YT,
so when they are put together on a row, it does not imply that they are
symmetric. Also, the above Dynkin Labels should all be red as they are

10We represent the basic spinorial irrep by and put it on the right of the
BYT. In [13, 14], they represent it by a long upward arrow ↑ and put it
on the right of the BYT. In [15, 16], they represent it by a column of 5
’s which means “half” of a column of 5 boxes (as [0, 0, 0, 0, 1] is “half” of

[0, 0, 0, 0, 2] in terms of Dynkin labels), and put it on the right of the BYT.
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spinorial irreps. The alternate coloring was just to illustrate the origin of
those digits. Two simple extra examples are

16 IR
= [1, 0, 0, 0, 1] ,(5.3)

16

IR

= [0, 1, 1, 1, 0] .(5.4)

Note that although there is no ambiguity in translating from a mixed
YT to a Dynkin Label for a spinorial irrep as in Equation (5.2), there is
an ambiguity for the converse translation. For a general bosonic irrep, the
Dynkin Label [a, b, c, d, e] has 5 integers, while in the BYT there are 5 num-
bers p, q, r, s, and t to describe the numbers of columns with 1, 2, 3, 4, and
5 boxes respectively. So they already form a one-to-one mapping between
Dynkin Labels and BYTs. Now the basic spinorial irreps in Equation (5.1)
are introduced. New YT notations 16 and 16 are introduced, so there are
7 fundamental objects for YTs. A general Dynkin Label [a, b, c, d, e] remains
to have only 5 integers, and there’s one more degree of freedom that we
can gain from the Dynkin Label: the parity of |e− d|. Therefore, we have
6 degrees of freedom for Dynkin Labels. So ambiguities arise. The simplest
example is stated below.

[0, 0, 0, 1, 2] = [0, 0, 0, 1, 1] + [0, 0, 0, 0, 1] ,

[0, 0, 0, 1, 2] = [0, 0, 0, 0, 2] + [0, 0, 0, 1, 0] ,
(5.5)

where the “+” here just means viewing each Dynkin Label as a vector and
summing them integer by integer, but not any sort of direct sum of irreps.
The way to resolve this is to eliminate one degree of freedom from the
spinorial YT notation by making a choice - for the following dimension rules,
we interpret every spinorial irrep (an irrep is spinorial when |e− d| is odd)
to be [0, 0, 0, 0, 1] “+” some other bosonic Dynkin Labels, when e > d. When
e < d, perform the conjugation first, apply the dimension rule, and carry out
the conjugation again to obtain the final result. Interpreted in another way,
that would mean for e < d, it would be [0, 0, 0, 1, 0] “+” some other bosonic
Dynkin Labels. With this condition, for the example in Equation (5.5), we
pick

(5.6) [0, 0, 0, 1, 2] = [0, 0, 0, 1, 1] + [0, 0, 0, 0, 1] =

16

IR

,
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while for [0, 0, 0, 2, 1], since e < d, we carry out the conjugation first to find
[0, 0, 0, 1, 2], map it to YT notation according to Equation (5.6), then per-
form conjugation again. Therefore,

(5.7) [0, 0, 0, 2, 1] = [0, 0, 0, 1, 1] + [0, 0, 0, 1, 0] =

16

IR

.

Now the ambiguity has been cleared. This also brings us to two remarks.

1) Since we choose to translate a Dynkin Label [a, b, c, d, e] with e > d to
YT notation, so in mixed YT notation, only self-dual BYTs remain -
but of course if we perform a conjugation we obtain the anti-self-dual
parts. Therefore, a general spinorial irrep (or its conjugate) can be
represented by

(5.8)

t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·
· · ·

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

IR,+

.

2) While writing the irrep in dimension notation, it is {dim} if the number
of boxes in the BYT part is even, and {dim} if odd.

For the following dimension rules, we would focus on the e > d cases (and
the readers can obtain the e < d cases by conjugation). For convenience of
presentation, from now on, represents 16 unless specified otherwise. And
the overall spinorial irrep would always be specified.

5.1. General spinorial irrep graphical dimension rules

How do we calculate the dimensions of these spinorial irreps graphically
then? And what about their irreducible constraints? It turns out that these
two questions are two sides of the same coin. In [36], the general formula for
Dn algebra spinorial irrep was first given,

(5.9) [∆;λ] = [λ/P ]⊗∆ ,
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where ∆ is the basic spinorial irrep, λ is a BYT shape, and

(5.10) P =
∑

m

(−1)m

m︷ ︸︸ ︷
· · ·

IR
,

is a Schur function series.
A direct translation into our notation is

t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·
· · ·

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

IR,+

=

p+q+r+s+t∑

m=0

(−1)m




t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·
· · ·

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

IR,+

/ m︷ ︸︸ ︷
· · ·

IR




⊗ (−)m

16 ,

(5.11)

where on the right hand side

(5.12) (−)m

16 =

{
16 , for m even

16 , for m odd
.

The SYT dimension formula is just taking the “dim” operator on both sides,

dim




t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·
· · ·

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

IR,+
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=




∑p+q+r+s+t
m=0 (−1)m dim




t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·
· · ·

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

IR,+

/ m︷ ︸︸ ︷
· · ·

IR







× dim
( )

.

(5.13)

If we look at the right hand side of Equation (5.9), we notice that the
dimension of the basic spinorial irrep is pulled out. Let us focus on the
bosonic part [λ/P ], i.e. the

∑p+q+r+s+t
m=0 part in Equation (5.13). If we look

at it term-by-term, m is the number of box(es) in a row removed in each
term, and it ranges from m = 0 (no box removed) to m = p+ q + r + s+ t
(entire row removed). Therefore, in the sum,
(5.14)

t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·
· · ·

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

IR

−→

t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·

q︷ ︸︸ ︷
· · ·

IR

original diagram −→ last diagram

.

This turns out to be an interesting combinatorics problem. Since the “/”
operator would only count all the equivalent removals once, e.g.

...
...

IR

/

IR
=

...
...

IR

⊕
...

...

IR

,

...
...

IR

/

IR
=

...
...

IR

,

(5.15)

the quotient operator for each m

(5.16)

t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·
· · ·

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

IR,+

/ m︷ ︸︸ ︷
· · ·

IR
,
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can be thought as removing m objects from the following p+ q + r + s+ t
objects,

(5.17)

t︷ ︸︸ ︷
t · · · t

s︷ ︸︸ ︷
s · · · s

r︷ ︸︸ ︷
r · · · r

q︷ ︸︸ ︷
q · · · q

p︷ ︸︸ ︷
p · · · p ,

with of course all p objects are indistinguishable, all q objects are indis-
tinguishable, etc.. Therefore, for each m, the problem of how many terms
appear there becomes:

Given a multiset {p, · · · , p, q, · · · , q, r, · · · , r, s, · · · , s, t, · · · , t},
how many subsets with a fixed size m are there?

Although we do not know the close form, we have an efficient algorithm to
obtain the number11. If we write

(5.18) (1 + x+ · · ·+ xp)(1 + x+ · · ·+ xq)(1 + x+ · · ·+ xr)

× (1 + x+ · · ·+ xs)(1 + x+ · · ·+ xt) =

p+q+r+s+t∑

m=0

cmx
m ,

then cm equals the number of subsets of size m. To obtain all the subsets,
just modify the above polynomial to

(5.19) (1 + p+ · · ·+ pp)(1 + q + · · ·+ qq)

× (1 + r + · · ·+ rr)(1 + s+ · · ·+ ss)(1 + t+ · · ·+ tt) ,

and take the part of the homogeneous polynomial of degree m in it. Each
term then corresponds to a subset, or a combination.

To remove the abstractness, let us look at an example. Consider a mixed
YT with the BYT part with (p, q, r, s, t) = (1, 2, 1, 0, 0), i.e.

(5.20)

IR

,

and m ranges from 0 to 4 (= 1 + 2 + 1). Application of Equations (5.18) and
(5.19) gives us the combinations in Table 1.

11SNHM thanks Kevin Iga for this idea.
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m Number of combinations cm Combinations

0 1 1

1 3 p, q, r

2 4 pq, pr, q2, qr

3 3 pq2, pqr, q2r

4 1 pq2r

Table 1: All possible combinations of removing m boxes for (p, q, r, s, t) =
(1, 2, 1, 0, 0)

Now let us translate back to the BYT notation and look at the terms in the
sum one by one.
(5.21)

m = 0 :

IR

,

m = 1 :
p

IR

, q

IR

,
r

IR

,

m = 2 :
p

q

IR

,
p

r
IR

, q q

IR

, q
r

IR

,

m = 3 :
p

q q

IR

,
p

q
r

IR

, q q
r

IR

,

m = 4 :
p

q q
r

IR

.

Another point to note is that each term is attached by a (−1)m factor. That
means when even number of boxes are removed, we add the dimensions
of those terms; when odd number of boxes are removed, we subtract their
dimensions. Therefore,

(5.22) dim




IR


 =

(
dim




IR
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− dim




IR


− dim




IR


− dim

(

IR

)

+ dim




IR


+ dim

(

IR

)
+ dim




IR




+ dim

(

IR

)
− dim




IR


− dim

(

IR

)

− dim

(

IR

)
+ dim

(

IR

) )
× dim

( )
.

Numerically,

1260000 =
(
174636

− 34398 − 68640 − 37362

+ 17920 + 7644 + 14784 + 16380

− 4312 − 4410 − 4608

+ 1386
)

× 16 .

(5.23)

In the following sections, we will apply the spinorial dimension rule (5.13)
for the spinorial irreps composed of completely antisymmetric, completely
symmetric, two-equal-column, and two-unequal-column BYTs attached with
a 16 . These are the types of spinorial irreps that would appear in the 10D,
N = 1 scalar superfield. The general dimension formulas and the irreducible
conditions will be presented in Sections 5.2, 5.3, 5.4 and 5.5, while the ex-
plicit details of the corresponding examples will be presented in Appendix B.

5.2. Completely antisymmetric BYTs attached with {16}

First let us consider totally antisymmetric BYTs attached with a 16 . By
applying (5.13), one has
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dim


 n





...

...

IR








=


 dim


 n





...

...

IR







− dim


 (n− 1)





...

IR










× dim
( )

.

(5.24)

This formula for calculating the irrep dimensions (or the degrees of freedom
of a field) is very suggestive about how we should write out the irreducible
conditions. First note that the removal of a box from the BYT part in the
mixed YT is equivalent to the contraction by a (σa)αβ matrix. If we use the
index notation we invented in Section 3.3, with the general field on the left
and the general irreducible condition on the right, we find

(5.25) Ψ{a1···an
}
α : (σan)αβΨ{a1···an

}β = 0 ,

where n = 1, . . . , 5. The degree of freedom of the irreducible condition is
that of d.o.f.({a1 · · · an−1})× d.o.f.(α) as the sigma matrix contracted one
vector index out. Therefore, it is consistent with the dimension formula as
written in Equation (5.24), or in index notation,

dim
(
Ψ{a1···an

}
α
)
= d.o.f.({a1 · · · an})× d.o.f.(α)(5.26)

− d.o.f.({a1 · · · an−1})× d.o.f.(α) .

5.3. Completely symmetric BYTs attached with {16}

Now let us turn to totally symmetric BYTs attached with a 16 .

dim
(

· · ·· · ·
︸ ︷︷ ︸

n

IR

)
=

(
dim

(
· · ·· · ·

︸ ︷︷ ︸
n

IR

)

− dim
(

· · ·
︸ ︷︷ ︸

n−1

IR

)
+ · · ·

(5.27)
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+ (−1)n−1 dim
(

IR

)
+ (−1)n dim

(
·
)
)

× dim
( )

.

Again, we can write the analytical expressions of the fields on the left and
the corresponding set of irreducible constraints on the right as follows,
(5.28)

Ψ{a1,··· ,an
}
α :





(σan)αβΨ{a1,··· ,an
}
α ≡ ψ{a1,··· ,an−1}β

= 0 ,

(σan−1)γβψ{a1,··· ,an−1}β
≡ ψ{a1,··· ,an−2}

γ = 0 ,
...

(σa1)γβψ{a1}β
= 0 (n odd) , (σa1)γβψ{a1}

β = 0 (n even) ,

where n = 1, 2, . . . . From these conditions, the dimension formula would be

dim
(
Ψ{a1,··· ,an

}
α
)

= d.o.f.({a1, · · · , an})× d.o.f.(α)

−

(
d.o.f.({a1, · · · , an−1})× d.o.f.(α)

−
(
d.o.f.({a1, · · · , an−2})× d.o.f.(α) − · · ·

−
(
d.o.f.({a1})× d.o.f.(α) − d.o.f.(α)

) ) )

=
(
d.o.f.({a1, · · · , an}) − d.o.f.({a1, · · · , an−1})

+ d.o.f.({a1, · · · , an−2})

− · · · + (−1)n−1 d.o.f.({a1}) + (−1)n
)
× d.o.f.(α) ,

(5.29)

which agrees with Equation (5.27). One can see that for n = 1, it recovers
the n = 1 case of the totally antisymmetric BYT attached with a 16 in
Equation (5.26).

5.4. Two-equal-column BYTs attached with {16}

How about two column BYTs with same number of boxes in each column,
attached with a 16? We have
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dim


 ...

...

IR




=


 dim


 ...

...

IR


 − dim


 ...

...

IR


 + dim

(
...

...
IR

) 


× dim
( )

.

(5.30)

The general form of the irreps with index notations on the left and the set
of irreducible constraints on the right is
(5.31)

Ψ{a1···an
,b1···bn}

α :

{
(σbn)αβΨ{a1···an

,b1···bn}
α ≡ ψ{a1···an

|b1···bn−1}β
= 0 ,

(σan)γβψ{a1···an
|b1···bn−1}β

= 0 ,

where n = 1, . . . , 5. The dimension formula derived from these constraints is

dim
(
Ψ{a1···an

,b1···bn}
α
)

= d.o.f.({a1 · · · an, b1 · · · bn})× d.o.f.(α)

−
(
d.o.f.({a1 · · · an|b1 · · · bn−1})× d.o.f.(α)

− d.o.f.({a1 · · · an−1, b1 · · · bn−1})× d.o.f.(α)
)

=
(
d.o.f.({a1 · · · an, b1 · · · bn}) − d.o.f.({a1 · · · an|b1 · · · bn−1})

+ d.o.f.({a1 · · · an−1, b1 · · · bn−1})
)
× d.o.f.(α) .

(5.32)

which corresponds to Equation (5.30). For n = 1, this formula reduces to the
dimension formula for the n = 2 case of the totally symmetric BYT attached
with a 16 in Equation (5.29).

5.5. Two-unequal-column BYTs attached with {16}

Last but not least, one may wonder about the dimensions of the spinorial
irreps represented by two-column BYTs with different number of boxes in
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the two columns attached with a 16 ,

dim




...
...

...

IR




=




dim




...
...

...

IR




− dim




...
...

...

IR








 − dim




...
...

...
IR


 + dim




...
...

...
IR







× dim
( )

.

(5.33)

Now let us give the general expression for the fields and the general set of
irreducible conditions. There are two equivalent ways to write the set of
irreducible conditions.

Ψ{a1···an
|b1···bm}

α (m > n) :





(σbm)αβΨ{a1···an
|b1···bm}

α ≡ ψ{a1···an
|b1···bm−1}β

= 0 ,

(σan)αβΨ{a1···an
|b1···bm}

α = 0 ,

(σan)γβψ{a1···an
|b1···bm−1}β

= 0 ,

or




(σbm)αβΨ{a1···an
|b1···bm}

α = 0 ,

(σan)αβΨ{a1···an
|b1···bm}

α ≡ ψ{a1···an−1|b1···bm}β = 0 ,

(σbm)γβψ{a1···an−1|b1···bm}β = 0 ,

(5.34)
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where m = 2, . . . , 5 and n = 1, . . . ,m− 1. The general dimension formula is

dim
(
Ψ{a1···an

|b1···bm}
α
)

= d.o.f.({a1 · · · an|b1 · · · bm})× d.o.f.(α)

−
(
d.o.f.({a1 · · · an|b1 · · · bm−1})× d.o.f.(α)

− d.o.f.({a1 · · · an−1|b1 · · · bm−1})× d.o.f.(α)
)

− d.o.f.({a1 · · · an−1|b1 · · · bm})× d.o.f.(α)

= d.o.f.({a1 · · · an|b1 · · · bm})× d.o.f.(α)

−
(
d.o.f.({a1 · · · an−1|b1 · · · bm})× d.o.f.(α)

− d.o.f.({a1 · · · an−1|b1 · · · bm−1})× d.o.f.(α)
)

− d.o.f.({a1 · · · an|b1 · · · bm−1})× d.o.f.(α)

=
(
d.o.f.({a1 · · · an|b1 · · · bm}) − d.o.f.({a1 · · · an|b1 · · · bm−1})

− d.o.f.({a1 · · · an−1|b1 · · · bm})

+ d.o.f.({a1 · · · an−1|b1 · · · bm−1})
)
× d.o.f.(α) ,

(5.35)

and one can check that it agrees with Equation (5.33). When one
compares it to the dimension formula for two-equal-column BYT at-
tached with a 16 in Equation (5.32), one quickly understands the rela-
tion between that formula and this dimension formula (5.35). Since for
the case of two-equal-column mixed YT, m = n and ψ{a1···an

|b1···bm−1}β
=

ψ{a1···an−1|b1···bm}β , so it was not counted twice and there was only
one term d.o.f.({a1 · · · an|b1 · · · bn−1}) in Equation (5.32). For Equa-
tion (5.35), however, we have both d.o.f.({a1 · · · an|b1 · · · bm−1}) and
d.o.f.({a1 · · · an−1|b1 · · · bm}) terms. This exactly reflects the meaning of “/”
operator of BYT - that equivalent removals of one box will be only counted
once, as indicated in Equation (5.15).

6. Tensor product rules of a bosonic irrep with the basic
spinorial irrep

For a Dn algebra, the tensor product rule of a general BYT [λ] with the basic
spinorial irrep ∆ = {16} was first given by Murnaghan and Littlewood in
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1938 and 1950 respectively [32, 34],

(6.1) [λ]⊗∆ = [∆;λ/Q] ,

where Q is a Schur function series defined by

(6.2) Q =
∑

n




...

IR



n .

It turns out that the spinorial irrep dimension rule in Equation (5.9) was
derived from this tensor product rule. In [36], King found the “inverse” of
the Schur function series Q to be P , as explicitly defined in Equation (5.10).

Following the footsteps of Section 5.1, we translate the tensor product
rule to our notation.

t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·
· · ·

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

IR,+

⊗

=

h⊕

n=0







h





t︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·
· · ·

s︷ ︸︸ ︷
· · ·
· · ·
· · ·
· · ·

r︷ ︸︸ ︷
· · ·
· · ·
· · ·

q︷ ︸︸ ︷
· · ·
· · ·

p︷ ︸︸ ︷
· · ·

IR,+





/ 


...

IR



n




(−)n

16




,

(6.3)

where (−)n

16 is attached to the BYT after the quotient operation; and

(6.4) h =





5 , for t ̸= 0

4 , for t = 0 and s ̸= 0

3 , for t = s = 0 and r ̸= 0

2 , for t = s = r = 0 and q ̸= 0

1 , for t = s = r = q = 0 and p ̸= 0

0 , for t = s = r = q = p = 0

,

is the height of the BYT. The tensor product rule is very similar to the SYT
dimension rule in terms of combinatorics, and it’s even simpler as we do not
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have the alternating signs in the final sum - we just take the direct sum of
all possible objects we obtain.

Let us show an example to illustrate the idea,

(6.5)

IR

⊗ .

Since we have three rows of different numbers of boxes, we consider the
three rows to be different. So n ranges from 0 to h = 3, and what we do is
to remove n objects from the following 3 objects,

(6.6)
L
M
N

.

As these objects are all distinguishable, the combinatorics become very sim-

ple. The numbers of combinations are just the binomial coefficients

(
3
n

)
.

If we look at the BYTs in the right hand side of Equation (6.3) without
attaching the spinorial YT, term by term, we have

n = 0 :

IR

,

n = 1 :
L

IR

, M

IR

,
N

IR

,

n = 2 :
L

M

IR

,
L

N
IR

, M
N

IR

,

n = 3 :
L

M
N

IR

.

(6.7)
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Therefore,

IR

⊗

=
16

IR

⊕
16

IR

⊕
16

IR

⊕
16

IR

⊕
16

IR

⊕
16

IR

⊕
16

IR

⊕
16

IR

.

(6.8)

Or in dimension notation,

{174636} ⊗ {16} = {1260000}

⊕ {258720} ⊕ {529200} ⊕ {332640}

⊕ {144144} ⊕ {70560} ⊕ {155232}

⊕ {43680} .

(6.9)

To see how Schur function series P and Q as defined in Equations (5.10)
and (6.2) are inverses of each other, let us use the above example to demon-
strate the consistency of the SYT dimension rule (5.9) and the tensor prod-
uct formula (6.1), i.e.
(6.10)

dim




IR

⊗


 = dim




IR


 × dim

( )
.

In Equation (5.22), the dimension formula for

IR

was shown.

Next, we could write down the dimension formulas for each term on the right
hand side of (6.8). Note that the conjugation of an irrep would not change its
dimension, so the same dimension formula applies. The dimension formula
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can be written in the notation (with even more details left out)

(6.11) dim([∆;λ]) =
( ∑

i

bi dim(λi)
)

× dim(∆) .

where bi can take the values +1, −1 or 0. Then we can conveniently put all
the relevant dimension formulas in Table 2.

1 -1 -1 -1 1 1 1 1 0 -1 -1 -1 0 0 1 0 0 0 0
0 1 0 0 -1 -1 0 0 0 1 1 0 0 0 -1 0 0 0 0
0 0 1 0 -1 0 -1 -1 1 1 1 1 -1 -1 -1 0 1 0 0
0 0 0 1 0 -1 0 -1 0 0 1 1 0 0 -1 -1 0 1 0
0 0 0 0 1 0 0 0 -1 -1 -1 0 1 1 1 0 -1 0 0
0 0 0 0 0 1 0 0 0 0 -1 0 0 0 1 0 0 -1 0
0 0 0 0 0 0 0 1 0 0 -1 -1 0 1 1 1 -1 -1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 -1 -1 0 1 1 -1

⊗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Consistency check of the tensor product formula with the dimension
formula and the demonstration of P as an inverse of Q

The first column contains all the terms on the right hand side of (6.8); and
the first row contains all possible λi’s in Equation (6.11) generated by them.
The numbers in the middle of the table are bi’s. Each row of bi’s represents
all the terms in the dimension formula for that irrep [∆;λ] in the first entry
of the row. By the tensor product results in Equation (6.8), adding up all
the dimensions of the terms on the right hand side gives us the dimension of
the tensor product. This operation corresponds to adding up each column
of bi’s in the middle of the table, which gives us the last row of the table -
the dimension for the tensor product. As we can see, only the leading term
remains, and all other terms sum up to zero, i.e. they cancel with each other.
Therefore, we verify Equation (6.10).

Moreover, we easily see that when summing up the terms in the Schur
function series Q, the alternating signs generated by P naturally allow non-
leading terms cancel with each other. It is in the sense that the Schur func-
tion series P is an inverse of the Schur function series Q.

Some more examples are shown in Appendix C, where we start from ten-
sor product rules and then derive SYT dimension formulas. This approach
is the converse of what we have just done.
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7. Complete descriptions of component fields in 10D, N = 1
scalar superfield

In this chapter, we present the complete descriptions of all component fields
that occur in the 10D, N = 1 scalar superfield decomposition. In [3] (and
Section 2 above) we presented the Lorentz descriptions of all the component
fields. By using the techniques discussed in the previous sections, we can
translate the Dynkin Labels of the component fields in Figure 1 to Young
Tableaux.

(7.1) V =





Level− 0 · ,

Level− 1 16 ,

Level− 2
IR

,

Level− 3 16

IR
,

Level− 4
IR

⊕

IR,+

,

Level− 5

16

IR,+

⊕ 16

IR
,

Level− 6

IR,+

⊕
IR

,

Level− 7 16IR ⊕
16

IR

,

Level− 8 IR ⊕
IR

⊕

IR

,

Level− 9 16IR ⊕
16

IR

,

Level− 10

IR,−

⊕
IR

,

Level− 11

16

IR,−

⊕ 16

IR
,

Level− 12
IR

⊕

IR,−

,

Level− 13 16

IR
,

Level− 14
IR

,

Level− 15 16 ,

Level− 16 · .
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Or we can directly translate the whole adynkra into Figure 7.

·

16

IR

16IR

IR
IR,+

16

IR,+
16IR

IR,+ IR

16IR
16

IR

IR IR IR

16IR
16

IR

IR,− IR

16

IR,−
16IR

IR
IR,−

16IR

IR

16

·

Figure 4: 10D, N = 1 Adinkra in Young Tableaux
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Given the data above, we can define a series G̃(ℓ) dependent on a real
parameter “ℓ” via the equation
(7.2)

G̃ = · ⊕ ℓ 16 ⊕ 1
2
(ℓ)2

IR

⊕ 1
3!
(ℓ)3 16

IR
⊕ 1

4!
(ℓ)4

IR
⊕ 1

4!
(ℓ)4

IR,−

⊕ 1
5!
(ℓ)5

16

IR,−

⊕ 1
5!
(ℓ)5 16

IR
⊕ 1

6!
(ℓ)6

IR,−

⊕ 1
6!
(h)6

IR

⊕ 1
7!
(ℓ)7 16IR ⊕ 1

7!
(ℓ)7

16

IR

⊕ 1
8!
(ℓ)8 IR ⊕ 1

8!
(ℓ)8

IR

⊕ 1
8!
(ℓ)8

IR

⊕ 1
9!
(ℓ)9 16IR ⊕ 1

9!
(ℓ)9

16

IR

⊕ 1
10!

(ℓ)10

IR,+

⊕ 1
10!

(ℓ)10

IR

⊕ 1
11!

(ℓ)11
16

IR,+

⊕ 1
11!

(ℓ)11 16

IR
⊕ 1

12!
(ℓ)12

IR
⊕ 1

12!
(ℓ)12

IR,+

⊕ 1
13!

(ℓ)13 16

IR
⊕ 1

14!
(ℓ)14

IR

⊕ 1
15!

(ℓ)15 16 ⊕ 1
16!

(ℓ)16 · .

We use the parameter “ℓ” to track the level of the YT’s that follow it, which
will play an important role when we define the product of two superfields.
Since the maximal number of the level is sixteen, the product of two YT’s
contributes to (ℓ)n and when n > 16 this piece will be ruled out. If we set
ℓ = 1, G̃ reduces to G, which will be defined in (8.1) in the next Chapter.
They are alternate forms to each other.

The index structures of all fifteen bosonic and twelve fermionic fields are
identified below along with the level at which the fields occur in the adinkra
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of the superfield.
(7.3)

V =





Level− 0 Φ(x) ,

Level− 1 Ψα(x) ,

Level− 2 Φ{a1b1c1}
(x) ,

Level− 3 Ψ{a1b1}
α(x) ,

Level− 4 Φ{a1b1,a2b2}
(x) , Φ{a2|a1b1c1d1e1}

+(x) ,

Level− 5 Ψ{a1b1c1d1e1}
+
α(x) , Ψ{a2|a1b1}

α(x) ,

Level− 6 Φ{a2b2|a1b1c1d1e1}
+(x) , Φ{a2,a3|a1b1c1}

(x) ,

Level− 7 Ψ{a1,a2,a3}α
(x) , Ψ{a2|a1b1c1}

α(x) ,

Level− 8 Φ{a1,a2,a3,a4}
(x) , Φ{a1b1c1,a2b2c2}

(x) ,

Φ{a2,a3|a1b1c1d1}
(x) ,

Level− 9 Ψ{a1,a2,a3}
α(x) , Ψ{a2|a1b1c1}α

(x) ,

Level− 10 Φ{a2b2|a1b1c1d1e1}
−(x) , Φ̂{a2,a3|a1b1c1}

(x) ,

Level− 11 Ψ{a1b1c1d1e1}
−α(x) , Ψ{a2|a1b1}α

(x) ,

Level− 12 Φ̂{a1b1,a2b2}
(x) , Φ{a2|a1b1c1d1e1}

−(x) ,

Level− 13 Ψ{a1b1}α
(x) ,

Level− 14 Φ̂{a1b1c1}
(x) ,

Level− 15 Ψα(x) ,

Level− 16 Φ̂(x) .

These component fields are subject to irreducibility conditions listed below.

• Level-3:

(7.4) Ψ{a1b1}
α(x) : (σa1)αβΨ{a1b1}

α(x) = 0 .

• Level-4:

(7.5) Φ{a1b1,a2b2}
(x) :

{
ηa1a2Φ{a1b1,a2b2}

(x) = 0 ,

ηa1a2ηb1b2Φ{a1b1,a2b2}
(x) = 0 .

Φ{a2|a1b1c1d1e1}
+(x) :

(7.6)

{
ηa1a2Φ{a2|a1b1c1d1e1}

+(x) = 0 ,

Φ{a2|a1b1c1d1e1}
+(x) = + 1

5!ϵa1b1c1d1e1
f
1
g
1
h1i1j1Φ{a2|f1

g
1
h1i1j1}

+(x) .
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• Level-5:

Ψ{a1b1c1d1e1}
+
α(x) :

(7.7)

{
(σe1)βαΨ{a1b1c1d1e1}

+
α(x) = 0 ,

Ψ{a1b1c1d1e1}
+
α(x) = + 1

5!ϵa1b1c1d1e1
f
1
g
1
h1i1j1Ψ{f

1
g
1
h1i1j1}

+
α(x) .

(7.8) Ψ{a2|a1b1}
α(x) :





(σb1)αδΨ{a2|a1b1}
α(x) ≡ ψ{a1,a2}δ

(x) = 0 ,

(σa2)αδΨ{a2|a1b1}
α(x) ≡ ψ{a1b1}δ

(x) = 0 ,

(σb1)δϵψ{a1b1}δ
(x) = 0 .

• Level-6:

Φ{a2b2|a1b1c1d1e1}
+(x) :

(7.9)





ηa1a2Φ{a2b2|a1b1c1d1e1}
+(x) = 0 ,

ηa1a2ηb1b2Φ{a2b2|a1b1c1d1e1}
+(x) = 0 ,

Φ{a2b2|a1b1c1d1e1}
+(x) = 1

5!ϵa1b1c1d1e1
f
1
g
1
h1i1j1Φ{a2b2|f1

g
1
h1i1j1}

+(x) .

(7.10) Φ{a2,a3|a1b1c1}
(x) :

{
ηa2a3Φ{a2,a3|a1b1c1}

(x) = 0 ,

ηa1a3Φ{a2,a3|a1b1c1}
(x) = 0 .

• Level-7:
(7.11)

Ψ{a1,a2,a3}α
(x) :





(σa3)αδΨ{a1,a2,a3}α
(x) ≡ ψ{a1,a2}

δ(x) = 0 ,

(σa2)ϵδψ{a1,a2}
δ(x) ≡ ψ{a1}ϵ

(x) = 0 ,

(σa1)τϵψ{a1}ϵ
(x) = 0 .

(7.12)

Ψ{a2|a1b1c1}
α(x) :





(σa2)αδΨ{a2|a1b1c1}
α(x) ≡ ψ{a1b1c1}δ

(x) = 0 ,

(σc1)αδΨ{a2|a1b1c1}
α(x) ≡ ψ{a2|a1b1}δ

(x) = 0 ,

(σc1)δϵψ{a1b1c1}δ
(x) = 0 .
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• Level-8:

(7.13) Φ{a1,a2,a3,a4}
(x) :

{
ηa3a4Φ{a1,a2,a3,a4}

(x) = 0 ,

ηa1a2ηa3a4Φ{a1,a2,a3,a4}
(x) = 0 .

(7.14) Φ{a1b1c1,a2b2c2}
(x) :





ηc1c2Φ{a1b1c1,a2b2c2}
(x) = 0 ,

ηb1b2ηc1c2Φ{a1b1c1,a2b2c2}
(x) = 0 ,

ηa1a2ηb1b2ηc1c2Φ{a1b1c1,a2b2c2}
(x) = 0 .

(7.15) Φ{a2,a3|a1b1c1d1}
(x) :

{
ηa2a3Φ{a2,a3|a1b1c1d1}

(x) = 0 ,

ηa1a3Φ{a2,a3|a1b1c1d1}
(x) = 0 .

• Level-9:
(7.16)

Ψ{a1,a2,a3}
α(x) :





(σa3)αδΨ{a1,a2a3}
α(x) ≡ ψ{a1,a2}δ

(x) = 0 ,

(σa2)ϵδψ{a1,a2}δ
(x) ≡ ψ{a1}

ϵ(x) = 0 ,

(σa1)τϵψ{a1}
ϵ(x) = 0 .

(7.17)

Ψ{a2|a1b1c1}α
(x) :





(σa2)αδΨ{a2|a1b1c1}α
(x) ≡ ψ{a1b1c1}

δ(x) = 0 ,

(σc1)αδΨ{a2|a1b1c1}α
(x) ≡ ψ{a2|a1b1}

δ(x) = 0 ,

(σc1)δϵψ{a1b1c1}
δ(x) = 0 .

• Level-10:

Φ{a2b2|a1b1c1d1e1}
−(x) :

(7.18)





ηa1a2Φ{a2b2|a1b1c1d1e1}
−(x) = 0 ,

ηa1a2ηb1b2Φ{a2b2|a1b1c1d1e1}
−(x) = 0 ,

Φ{a2b2|a1b1c1d1e1}
−(x) = − 1

5!ϵa1b1c1d1e1
f
1
g
1
h1i1j1Φ{a2b2|f1

g
1
h1i1j1}

−(x) .

(7.19) Φ̂{a2,a3|a1b1c1}
(x) :

{
ηa2a3Φ̂{a2,a3|a1b1c1}

(x) = 0 ,

ηa1a3Φ̂{a2,a3|a1b1c1}
(x) = 0 .
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• Level-11:

Ψ{a1b1c1d1e1}
−α(x) :

(7.20)

{
(σe1)βαΨ{a1b1c1d1e1}

−α(x) = 0 ,

Ψ{a1b1c1d1e1}
−α(x) = − 1

5!ϵa1b1c1d1e1
f
1
g
1
h1i1j1Ψ{f

1
g
1
h1i1j1}

−α(x) .

(7.21)

Ψ{a2|a1b1}α
(x) :





(σb1)αδΨ{a2|a1b1}α
(x) ≡ ψ{a1,a2}

δ(x) = 0 ,

(σa2)αδΨ{a2|a1b1}α
(x) ≡ ψ{a1b1}

δ(x) = 0 ,

(σb1)δϵψ{a1b1}
δ(x) = 0 .

• Level-12:

(7.22) Φ̂{a1b1,a2b2}
(x) :

{
ηa1a2Φ̂{a1b1,a2b2}

(x) = 0 ,

ηa1a2ηb1b2Φ̂{a1b1,a2b2}
(x) = 0 .

Φ{a2|a1b1c1d1e1}
−(x) :

(7.23)

{
ηa1a2Φ{a2|a1b1c1d1e1}

−(x) = 0 ,

Φ{a2|a1b1c1d1e1}
−(x) = − 1

5!ϵa1b1c1d1e1
f
1
g
1
h1i1j1Φ{a2|f1

g
1
h1i1j1}

−(x) .

• Level-13:

(7.24) Ψ{a1b1}α
(x) : (σa1)αβΨ{a1b1}α

(x) = 0 .

The important point to note is this presentation of all the component
fields in the 10D, N = 1 scalar superfield, with their index structures show-
ing a complete set of vector and spinor indices, is achieved without ever
introducing any σ-matrices.

Let us here consider the results in this chapter from a slightly different
perspective. We begin from the space of fields that we denote by {F}. This
space naturally is bisected {F} = {F}b ⊕ {F}f according whether a
specific field is a bosonic or fermionic representation of the Lorentz algebra.



✐

✐

“3-Mak” — 2022/6/18 — 3:03 — page 1511 — #63
✐

✐

✐

✐

✐

✐

Advening to adynkrafields 1511

Thus a representation of {F} can be written in the form

{F} = {
scalar
ϕ(x)

spin− 0
,

photon
Aa(x)
spin− 1

,
graviton
hab(x)
spin− 2

, . . . }(7.25)

⊕ {
spinor
λα(x)

spin− 1
2

,
spinor
λα(x)

spin− 1
2

,
gravitino
ψa

β(x)
spin− 3

2

,
gravitino
ψaβ(x)
spin− 3

2

, . . . } ,

and the ellipses in the equations denote the fact these are infinite dimensional
sets12. One point the discussion in this chapter makes clear is that the irre-
ducible decomposition of the fields in {F} can be efficiently accomplished by
the replacement of the various vector and spinor indices with Dynkin Label
as precisely the same information is conveyed. Moreover, since the Dynkin
Labels provide a specification of YT’s, the latter can replace space-teime
vector and spinor indices. When this is done, (7.25) is replaced by

{F} = {
scalar
ϕ(x)

spin− 0
,

photon
A (x)
spin− 1

,
graviton
h (x)
spin− 2

, . . . }(7.26)

⊕ {
spinor
λ16(x)

spin− 1
2

,
spinor
λ16(x)

spin− 1
2

,
gravitino
ψ 16(x)
spin− 3

2

,
gravitino
ψ 16(x)
spin− 3

2

, . . . } .

Finally, in view of the perspective of Wigner, who indicated that free
elementary particles are irreducible representations of Poincaré group, one
can rewrite (7.26) in the form

{F} = {
scalar
· (x)

spin− 0
,

photon
(x)

spin− 1
,
graviton

(x)
spin− 2

, . . . }(7.27)

⊕ {
spinor

16(x)
spin− 1

2

,
spinor

16(x)
spin− 1

2

,
gravitino

16(x)
spin− 3

2

,
gravitino

16(x)
spin− 3

2

, . . . } ,

where space-time dependent YT’s replace fields.
The supersymmetry transformation is a map that acts between the

spaces {F}b and {F}f . Physicists have long assumed this map is homo-
topic to the identity map and thus assume the existence of an infinitesimal

12Above, for convenience only, we have used the spin nomenclature of the
field space in 4D to describe these fields.
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operator δQ which depends on a parameter ϵα (also valued in the double
cover) with the property

(7.28) δQ(ϵ
α)F = {F̃}f ⊕ {F̃}b .

The elements of {F̃}f are linear in ϵα and linear in the elements of {F}f
and may involve tensors that are invariant under the action of isometries of
the metric of the d-dimensional manifold and can involve first derivatives.
The elements of {F̃}b are linear in ϵα and linear in the elements of {F}b
and may involve tensors that are invariant under the action of isometries of
the metric of the D-dimensional Lorentz algebra acting on the manifold and
can involve first derivatives.

There are another set of infinitesimal variations, “translations” that can
be defined on the space of fields. These are denoted by δP and depend on
parameters ξa where these parameters are valued in the tangent space to
the manifold

(7.29) δP (ξ
a)F = (ξa∂a{F}b) ⊕ (ξa∂a{F}f ) .

A system which consists of a subset of all the fields in {F} is supersymmetric
if the subset realizes the following equation

(7.30) δQ(ϵ
α
1 ) δQ(ϵ

β
2 ) − δQ(ϵ

α
2 ) δQ(ϵ

β
1 ) = δP (ξ

a) ,

where ξa = i2 < ϵα1 (γ
a)αβϵ

β
2 >. Systems satisfying this condition are said

to be “off-shell supersymmetric” or to possess “off-shell spacetime supersym-
metry.” The remarkable fact is that now decades after its first statement,
the general irreducible solution to this problem is still not known.

What the physics community has quite effectively used is the fact that
there is a related set of equations on the space of fields that is simpler to
solve.

A hypersurface in field space may be defined by imposing some differen-
tial equations on the fields. For example, the scalar field might be harmonic,
satisfying the condition that its d’Alembertian vanishes. In physics we call
such a condition “an equation of motion” if it is derivable by the extremiza-
tion of some function, typically denoted by S, that we call the action. Let
us denote such equations of motion generically by the symbol ∂S. Most of
the discussions in the physics literature involve representations such that

(7.31) δQ(ϵ
α
1 ) δQ(ϵ

β
2 ) − δQ(ϵ

α
2 ) δQ(ϵ

β
1 ) = δP (ξ

a) + ∂S .
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Any formulation that is equivalent to superfields implies ∂S = 0 up to gauge
transformations.

8. From superfields to adynkrafields

The path we have travelled began with the adynkra in Figure 1 that sug-
gested a reconceptualization of the superfield in terms of Young Tableaux
which possess a well understood algebra. This replacement eliminates the
need σ-matrices in the expansion of the superfield. As a consequence of
branching rules, derivable from decoration of the Young Tableaux, Fierz
identities are eliminated with a huge savings in terms of computational
costs. On the basis of these, far more efficient algorithms for the explicit
component-level examination of superfields are achievable... as we have
shown in the present work.

The adynkra shown in Figure 1 can be expressed totally in a field-
independent manner and purely in terms of group-theoretical constructs
mathematically in terms of G with the definition

G = 1 ⊕ ℓ
{( )

× [a1, b1, c1, d1, e1]
}

(8.1)

⊕
16⊕

p=2

1
p!
(ℓ)p

{(
(∧ )p−2 ∧

)
× [ap, bp, cp, dp, ep]

}
,

and where a number of definitions must be understood and these include:

(a.) denotes the SYT introduced in (5.1),

(b.) the ∧ product denotes the usual rule for multiplying two tableaux,
but restricted so that only single column resultants are kept,

(c.) [ap, bp, cp, dp, ep] denotes a Dynkin Label for an irrep in so(10) where
the
quantities ap, bp, cp, dp, and ep are a set of integers,

(d.) A × [ap, bp, cp, dp, ep] = [ap, bp, cp, dp, ep] where A is a single column
SYT
containing the irrep [ap, bp, cp, dp, ep] otherwise A × [ap, bp, cp, dp, ep] =
0,

(e.) A × [ap, bp, cp, dp, ep] = m [ap, bp, cp, dp, ep] if instead A contains the
representation
[ap, bp, cp, dp, ep] m-times, and finally
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(f.) {A × [ap, bp, cp, dp, ep]} is a notation implying independent sums to be
taken over
all possible values of ap, bp ,cp ,dp, and ep.

The mathematical object G, as illustrated in the alternate form shown in
(7.2) for the case of 10D, N = 1 superfields, is the fundamental one we have
been studying in the works of [2, 3] and that has allowed unprecedented
clarity and access to the component field structures of high dimensional
superfield theories.

For arbitrary dimensions D, we can generalize the result of (8.1) to be
of the form

G = 1 ⊕ ℓ
{( )

× [Dk1]
}

(8.2)

⊕
d⊕

p=2

1
p!
(ℓ)p

{(
(∧ )p−2 ∧

)
× [Dkp]

}
,

where [Dk1] and [Dkp] denote Dynkin Labels appropriate for the fields over
the D-dimensional manifold and the quantity d is the dimensionality of the
minimal spinor representation for the D-dimensional manifold.

We may call G̃ and G “adynkra series,” which appears to be an adapted
and specialized series expansion in terms of Young Tableaux.

All of these results strongly suggest adynkras are pointing in the
direction of using series expansion in terms of YT’s as a tool to
gain the most fundamental mathematical understanding of this
class of problems.

The results of (7.2) can be combined with those in (7.3) - (7.24) to yield an
“adynkrafield.”

Ĝ(x) = Φ(x) + ℓ 16 Ψα(x) + 1
2
(ℓ)2

IR

Φ{a1b1c1}
(x)

+ 1
3!
(ℓ)3 16

IR
Ψ{a1b1}

α(x) + 1
4!
(ℓ)4

IR
Φ{a1b1,a2b2}

(x)

+ 1
4!
(ℓ)4

IR,−

Φ{a2|a1b1c1d1e1}
+(x)

+ 1
5!
(ℓ)5

16

IR,−

Ψ{a1b1c1d1e1}
+
α(x) + 1

5!
(ℓ)5 16

IR
Ψ{a2|a1b1}

α(x)
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+ 1
6!
(ℓ)6

IR,−

Φ{a2b2|a1b1c1d1e1}
+(x)

+ 1
6!
(ℓ)6

IR

Φ{a2,a3|a1b1c1}
(x) + 1

7!
(ℓ)7 16IRΨ{a1,a2,a3}α

(x)

+ 1
7!
(ℓ)7

16

IR

Ψ{a2|a1b1c1}
α(x) + 1

8!
(ℓ)8 IRΦ{a1,a2,a3,a4}

(x)

+ 1
8!
(ℓ)8

IR

Φ{a1b1c1,a2b2c2}
(x) + 1

8!
(ℓ)8

IR

Φ{a2,a3|a1b1c1d1}
(x)

+ 1
9!
(ℓ)9 16IRΨ{a1,a2,a3}

α(x) + 1
9!
(ℓ)9

16

IR

Ψ{a2|a1b1c1}α
(x)

+ 1
10!

(ℓ)10

IR,+

Φ{a2b2|a1b1c1d1e1}
−(x)

+ 1
10!

(ℓ)10

IR

Φ̂{a2,a3|a1b1c1}
(x)

+ 1
11!

(ℓ)11
16

IR,+

Ψ{a1b1c1d1e1}
−α(x)

+ 1
11!

(ℓ)11 16

IR
Ψ{a2|a1b1}α

(x) + 1
12!

(ℓ)12
IR

Φ̂{a1b1,a2b2}
(x)

+ 1
12!

(ℓ)12

IR,+

Φ{a2|a1b1c1d1e1}
−(x) 1

13!
(ℓ)13 16

IR
Ψ{a1b1}α

(x)

+ 1
14!

(ℓ)14

IR

Φ̂{a1b1c1}
(x) + 1

15!
(ℓ)15 16Ψα(x)

+ 1
16!

(ℓ)16 Φ̂(x) ,

(8.3)

and it is to understand that each index on every field has all of it indices
“tied” to indices in the YT that precedes it. Bosonic indices are tied to blue
boxes in the YT. Fermionic indices are tied to the red boxes. It should be
noted that at most one red box appears for all terms. The result in (8.3)
arises from taking (8.1) followed by the use of branching rules in the cases
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of even numbers of red box to replace them by blue boxes. Finally we have
evaluated the “inner product” G · {F}.

Further with this definition, it seems reasonable to define a supercovari-
ant derivative D via the formula

(8.4) D = ∂ℓ + i ℓ •−−∂

when acting on such an adynkrafield. Here the ∂ operator is the derivative
with respect to space-time coordinate. Its index is tied to the index in the
blue box that precedes it. Continuing investigation of such objects seem to
possess the promise to unravel further long-standing mysteries about the
structure of the representation theory of space-time supersymmetry.

The adynkra in (7.1) can be tensored with the 16 representation. This
yields the following decomposition of Vα at each level:

• Level-0: 16

• Level-1: IR ⊕
IR

⊕

IR,−

• Level-2: 16 ⊕ 16IR ⊕ 16

IR
⊕

16

IR

• Level-3:
IR

⊕

IR

⊕
IR

⊕
IR

⊕

IR,+

⊕

IR

• Level-4: 16IR ⊕ 16

IR
⊕

16

IR,+

⊕
16

IR

⊕ (2) 16

IR

⊕ 16

IR
⊕

16

IR

• Level-5:

IR,+

⊕
IR

⊕

IR

⊕
IR

⊕ (2)

IR,+

⊕
IR

⊕
IR

⊕

IR,+

⊕

IR,+

⊕

IR
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• Level-6: 16

IR
⊕ 16IR ⊕

16

IR

⊕ 16IR ⊕ 16

IR

⊕

16

IR,+

⊕ 16

IR
⊕ (2)

16

IR

⊕ 16

IR
⊕

16

IR

⊕
16

IR

• Level-7: IR ⊕
IR

⊕

IR,+

⊕
IR

⊕
IR

⊕

IR

⊕

IR,+

⊕ (2)

IR

⊕
IR

⊕

IR,−

⊕
IR

⊕

IR,+

⊕

IR

• Level-8: 16IR ⊕
16

IR

⊕ (2) 16IR ⊕ 16

IR
⊕ 16IR

⊕ (2)
16

IR

⊕
16

IR

⊕ 16

IR
⊕

16

IR

⊕
16

IR

⊕
16

IR

⊕
16

IR

• Level-9: IR ⊕

IR

⊕
IR

⊕

IR,−

⊕ (2)
IR

⊕
IR

⊕

IR,−

⊕

IR,+

⊕

IR

⊕
IR

⊕

IR

⊕

IR

⊕

IR,−
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• Level-10:

16

IR,−

⊕ 16IR ⊕
16

IR

⊕ 16IR ⊕ (2) 16

IR

⊕
16

IR

⊕
16

IR

⊕ 16

IR
⊕

16

IR,−

⊕
16

IR

⊕
16

IR

• Level-11:
IR

⊕
IR

⊕ (2)

IR,−

⊕
IR

⊕

IR,−

⊕

IR

⊕

IR,−

⊕

IR

⊕
IR

⊕

IR,−

• Level-12: (2) 16

IR
⊕ 16IR ⊕

16

IR

⊕ 16

IR
⊕

16

IR,−

⊕ 16

IR
⊕

16

IR

• Level-13:
IR

⊕

IR,−

⊕
IR

⊕

IR

⊕
IR

⊕

IR,−

• Level-14: 16 ⊕ 16IR ⊕ 16

IR
⊕

16

IR

• Level-15: · ⊕
IR

⊕

IR

• Level-16: 16

We can also apply D to the adynkrafield in (8.3),

DĜ(x) = 16 Ψα(x) + (ℓ)

[

IR

Φ{a1b1c1}
(x) + i IR∂a1

Φ(x)

]
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+ 1
2!
(ℓ)2

[
16

IR
Ψ{a1b1}

α(x) + i 2 ( 16 + 16IR ) ∂a1
Ψα(x)

]

+ 1
3!
(ℓ)3




IR
Φ{a1b1,a2b2}

(x) +

IR,−

Φ{a2|a1b1c1d1e1}
+(x)

+ i 3

(

IR
+

IR

+
IR

)
∂a2

Φ{a1b1c1}
(x)




+ 1
4!
(ℓ)4

[ 16

IR,−

Ψ{a1b1c1d1e1}
+
α(x) + 16

IR
Ψ{a2|a1b1}

α(x)

+ i 4
(

16IR + 16

IR
+

16

IR

+ 16

IR

)
∂a2

Ψ{a1b1}
α(x)

]

+ 1
5!
(ℓ)5




IR,−

Φ{a2b2|a1b1c1d1e1}
+(x) +

IR

Φ{a2,a3|a1b1c1}
(x)

+ i 5
(

IR
+

IR

+
IR

)
∂a3

Φ{a1b1,a2b2}
(x)

+ i 5




IR,−

+

IR

+

IR,−

+

IR,−


 ∂a3

Φ{a2|a1b1c1d1e1}
+(x)




+ 1
6!
(ℓ)6

[
16IRΨ{a1,a2,a3}α

(x) +
16

IR

Ψ{a2|a1b1c1}
α(x)

+ i 6




16

IR

+

16

IR,−


 ∂a2

Ψ{a1b1c1d1e1}
+
α(x)

+ i 6
(

16

IR
+ 16IR + 16

IR
+ 16

IR

+
16

IR

+ 16

IR

)
∂a3

Ψ{a2|a1b1}
α(x)

]

+ 1
7!
(ℓ)7

[
IRΦ{a1,a2,a3,a4}

(x) +
IR

Φ{a1b1c1,a2b2c2}
(x)
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+

IR

Φ{a2,a3|a1b1c1d1}
(x) + i 7

(

IR,−

+

IR

+

IR,−

+

IR,−

)
∂a3

Φ{a2b2|a1b1c1d1e1}
+(x) + i 7

(

IR

+
IR

+

IR

+
IR

+
IR

)
∂a3

Φ{a2,a3|a1b1c1}
(x)




+ 1
8!
(ℓ)8

[
16IRΨ{a1,a2,a3}

α(x) +
16

IR

Ψ{a2|a1b1c1}α
(x)

+ i 8
(

16IR + 16IR + 16IR

+ 16

IR

)
∂a4

Ψ{a1,a2,a3}α
(x) + i 8

(
16

IR

+ 16

IR

+
16

IR

+
16

IR

+
16

IR

+
16

IR

)
∂a3

Ψ{a2|a1b1c1}
α(x)




+ 1
9!
(ℓ)9




IR,+

Φ{a2b2|a1b1c1d1e1}
−(x) +

IR

Φ̂{a2,a3|a1b1c1}
(x)

+ i 9
(

IR + IR +
IR

)
∂a5

Φ{a1,a2,a3,a4}
(x)

+ i 9

(

IR

+

IR

+
IR

)
∂a3

Φ{a1b1c1,a2b2c2}
(x)

+ i 9

(

IR

+
IR

+

IR,−

+

IR,+

+

IR

+

IR

)
∂a4

Φ{a2,a3|a1b1c1d1}
(x)




+ 1
10!

(ℓ)10




16

IR,+

Ψ{a1b1c1d1e1}
−α(x) + 16

IR
Ψ{a2|a1b1}α

(x)
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+ i 10
(

16IR + 16IR + 16IR

+ 16

IR

)
∂a4

Ψ{a1,a2,a3}
α(x) + i 10

(
16

IR

+ 16

IR
+

16

IR

+
16

IR

+
16

IR

+
16

IR

)
∂a3

Ψ{a2|a1b1c1}α
(x)




+ 1
11!

(ℓ)11

[

IR
Φ̂{a1b1,a2b2}

(x) +

IR,+

Φ{a2|a1b1c1d1e1}
−(x)

+ i 11




IR,+

+

IR

+

IR,+

+

IR,+




× ∂a3
Φ{a2b2|a1b1c1d1e1}

−(x)

+ i 11

(

IR

+
IR

+

IR

+
IR

+
IR

)
∂a4

Φ̂{a2,a3|a1b1c1}
(x)

]

+ 1
12!

(ℓ)12

[
16

IR
Ψ{a1b1}α

(x)

+ i 12




16

IR

+

16

IR,+


 ∂a2

Ψ{a1b1c1d1e1}
−α(x)

+ i 12

(
16

IR
+ 16IR + 16

IR
+ 16

IR
+

16

IR

+ 16

IR

)
∂a3

Ψ{a2|a1b1}α
(x)

]

+ 1
13!

(ℓ)13

[

IR

Φ̂{a1b1c1}
(x)

+ i 13

(

IR
+

IR

+
IR

)
∂a3

Φ̂{a1b1,a2b2}
(x)
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+ i 13




IR,+

+

IR

+

IR,+

+

IR,+




× ∂a3
Φ{a2|a1b1c1d1e1}

−(x)

]

+ 1
14!

(ℓ)14
[

16Ψα(x)

+ i 14
(

16IR + 16

IR
+

16

IR

+ 16

IR

)
∂a2

Ψ{a1b1}α
(x)

]

+ 1
15!

(ℓ)15


 Φ̂(x) + i 15

(

IR
+

IR

+
IR

)
∂a2

Φ̂{a1b1c1}
(x)




+ i 1
15!

(ℓ)16 ( 16 + 16IR ) ∂a1
Ψα(x) .

(8.5)

It can be seen the effect of the operator D upon calculating D Ĝ(x) is
similar to the result that is found for the tensoring calculation 16 Ĝ(x).
However, the two calculations yield different results. One way to quantify
the difference is to define

(8.6) ∆WZg(n) =
17! × n

(n+ 1)! (16− n)!
,

so that at each value of n the quantity ∆WZg(n) counts the number of

degrees of freedom in the difference [ 16 - D ] Ĝ(x) at Level-n13. A further
calculation reveals

(8.7)

16∑

n=1

∆WZg(n) = 983, 041 = [(16 − 1) × (65, 536)] + 1 .

If we regard 16 Ĝ(x) as a connection adynkrafield and DĜ(x) as its gauge
transformation, then 491,521 is the number bosonic components which is

13The way to understand the reason for the form of (8.7) is to recall the
lowest component field of G must describe the component
level gauge parameter that is present even in the WZ gauge and
hence the mismatch between the naive equality of bosons versus fermions.
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not equal to the 491,520 fermionic components contained in the adynkrafield
connection in a Wess-Zumino gauge with respect this gauge transformation.

8.1. From symbolic notation to tensor notation

As we have mentioned, the fields that are shown in (8.3) have the indices
on the field contracted with the ”invisible” indices on the YT’s. For this
equation, the contractions should be relatively straight forward to surmise.
Instead with (8.5) these contractions may not appear so obvious. Thus, in
this subsection, time will be spent showing some example in the hope the
general case will be made clear.

Let us begin with the second order terms on the second line of (8.5)

[
DĜ(x)

]
(ℓ)2 = + 1

2!
(ℓ)2

[
16

IR
Ψ{a1b1}

α + i 2 ( 16 + 16IR ) ∂a1
Ψα

]
.

(8.8)

On the leading term involving Ψ{a1b1}
α(x), the a1-index, and the b1-index

are contracted with the two invisible bosonic indices of and the α-index is

contracted with the invisible fermionic index of 16. For the remaining terms
there are subtleties to consider. Our deliberations begin by expanding the
final two terms in (8.8)

(8.9) ( 16 + 16IR ) ∂a1
Ψα = 16 ( ∂a1

Ψα ) + 16IR ( ∂a1
Ψα ) .

Next we introduce the relation

∂a1
Ψα = [ ∂a1

Ψα − k1 (σa1
)αδ(σ

b1)δγ ∂b1 Ψγ ](8.10)

+ k1 (σa1
)αδ(σ

b1)δγ ∂b1 Ψγ

which implies the equations in (8.11) and (8.12)

16 ∂a1
Ψα = 16 [ ∂a1

Ψα − k1 (σa1
)αδ(σ

b1)δγ ∂b1 Ψγ ](8.11)

+ k1 16 (σa1
)αδ(σ

b1)δγ ∂b1 Ψγ ,

and

16IR∂a1
Ψα = 16IR[ ∂a1

Ψα − k1 (σa1
)αδ(σ

b1)δγ ∂b1 Ψγ ](8.12)

+ k1 16IR(σa1
)αδ(σ

b1)δγ ∂b1 Ψγ .

Our conventions for 10D, N = 1 superspace have previously been given in
[18] where it was presented that we use a “mostly plus” Minkowski metric
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and define a 10D set of Pauli matrices by

(8.13) (σa)αβ (σ
b)βγ + (σb)αβ (σ

a)βγ = 2 ηab δα
γ ,

whereby this equation implies the following result

(σa)αβ (σ
b)βγ = ηab δα

γ + (σab)α
γ ,(8.14)

for our calculations. Contraction on the vector indices in (8.14) yields

(σa)αβ(σa)
βγ = 10 δα

γ .(8.15)

Thus, if we define [P1]a
b
α
γ and [P2]a

b
α
γ via the equations

[P1] a
b
α
γ =

[
δa

b δα
γ − 1

10
(σa)αδ(σ

b)δγ
]
,

[P2] a
b
α
γ = 1

10
(σa)αδ(σ

b)δγ
(8.16)

we obtain

(8.17)

[P1] a
c
α
δ [P1] c

b
δ
γ = [P1] a

b
α
γ ,

[P2] a
c
α
δ [P2] c

b
δ
γ = [P2] a

b
α
γ ,

[P1] a
c
α
δ [P2] c

b
δ
γ = 0 .

Upon choosing k1 =
1
10
, we can rewrite the results shown in (8.11) and (8.12)

in the forms

(8.18) 16 ∂a1
Ψα = 16 [P1] a1

c1 α
δ [ ∂c1 Ψδ ] + 16 [P2] a1

c1 α
δ [ ∂c1 Ψδ ] ,

and

16IR∂a1
Ψα = 16IR [P1] a1

c1 α
δ [ ∂c1 Ψδ ](8.19)

+ 16IR [P2] a1

c1 α
δ [ ∂c1 Ψδ ] .

The projection operators [P1] a
b
α
β and [P2] a

b
α
β are precisely the ones that

separate the irreducible projections of ∂bΨβ into its “sigma-traceless” part
and its “pure sigma trace” part. Thus, it follows that (8.18) and (8.19) can
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be rewritten in the simpler forms

(8.20) 16 ∂a1
Ψα = 16 [P2] a1

b1 α
β [ ∂b1 Ψβ ] ,

and

(8.21) 16IR∂a1
Ψα = 16IR [P1] a1

b1 α
β [ ∂b1 Ψβ ] .

This set of calculations yields a very general rule when contracting the in-
dices on a YT with a following expression involving fermionic fields. Namely,
when the number of blue boxes in the YT does not match the number of
bosonic indices in the expression, this is due to the appearance of “sigma
traces” in the fermionic expression.

We now turn to the third order terms on the second line of (8.5)

[
DĜ(x)

]
(ℓ)3 = + 1

3!
(ℓ)3

[

IR
Φ{a1b1,a2b2}

(x)

+

IR,−

Φ{a2|a1b1c1d1e1}
+(x)

+ i 3

(

IR
+

IR

+
IR

)
∂a2

Φ{a1b1c1}
(x)

]
.(8.22)

On the leading term involving Φ{a1b1,a2b2}
(x), the a1-index, and the b1-

index are contracted with the two invisible bosonic indices in the first column
of the preceding YT, and the a2-index, and the b2-index are contracted with
the two invisible bosonic indices in the second column of the preceding YT.

On the second term involving Φ{a2|a1b1c1d1e1}
+(x), the a1, ..., e1 indices

are contracted with the five invisible bosonic indices in the first column of
the preceding YT, and the a2-index is contracted with the single box in the
second column of the preceding YT.

The really interesting terms appear on the second line of (8.22). Here
our deliberations begin by expanding the final three terms,

(

IR
+

IR

+
IR

)
∂a2

Φ{a1b1c1}
(x)

(8.23)
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=
IR
∂a2

Φ{a1b1c1}
(x) +

IR

∂a2
Φ{a1b1c1}

(x) +
IR

∂a2
Φ{a1b1c1}

(x) .

Here the only subtlety involves the first term.
On the leading term involving ∂a2

Φ{a1b1c1}
(x), it is immediately clear

there are only two invisible bosonic indices on the YT, but there are four
bosonic indices on the spatial derivative acting on the field that follows the
tableau. The matching of indices can only be reconciled if two of the indices
are “contracted away.” This means we must have

(8.24)
IR
∂a2

Φ{a1b1c1}
(x) =

IR
ηa1a2 ∂a2

Φ{a1b1c1}
(x) .

with the b1 and c1 indices contracted with the preceding YT. It should be
noted that the antisymmetry of the the indices of the field Φ{a1b1c1}

(x) im-
plies that the choice of which index is contracted with the partial derivative
is immaterial.

For the second term involving ∂a2
Φ{a1b1c1}

(x), the process is straight-
forward. Each bosonic index in the expression ∂a2

Φ{a1b1c1}
(x) is contracted

with an invisible index of one of the boxes in the YT.
Finally, for the third and last term involving ∂a2

Φ{a1b1c1}
(x), the index

on the partial derivative is contracted with the invisible index of the box in
the second column. The remaining indices a1, b1, and c1 are each contracted
with one of the invisible indices associated with the boxes in the first column
of the preceding YT.

This set of calculations yields a very general rule, analogous to the one
appearing below (8.21), when contracting the indices on a YT with a fol-
lowing expression involving bosonic fields. Namely, when the number of blue
boxes in the YT does not match the number of bosonic indices in the expres-
sion, this is due to the appearance of the Minkowski metric in the bosonic
expression.

8.2. From adynkrafields back to 1D adinkras

A final amusing matter is that having reached the introduction of
adynkrafields, we can take a limit where the higher dimensional
adynkrafields are forced into the form of 1D, N = 16 valise adinkras! The is
done by imposing the condition that all of the field variables depend solely
on a time-like coordinate τ and the imposition of the condition that (ℓ)2 =
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1. This leads to

ĜAdnk(τ) =

{
Φ(τ) + 1

2
IR

Φ{a1b1c1}
(τ) + 1

4! IR
Φ{a1b1,a2b2}

(τ)

+ 1
4!

IR,−

Φ{a2|a1b1c1d1e1}
+(τ)

+ 1
6!

IR,−

Φ{a2b2|a1b1c1d1e1}
+(τ) + 1

6!
IR

Φ{a2,a3|a1b1c1}
(τ)

+ 1
8! IRΦ{a1,a2,a3,a4}

(τ) + 1
8!

IR

Φ{a1b1c1,a2b2c2}
(τ)

+ 1
8!

IR

Φ{a2,a3|a1b1c1d1}
(τ) + 1

10!
IR

Φ̂{a2,a3|a1b1c1}
(τ)

+ 1
10!

IR,+

Φ{a2b2|a1b1c1d1e1}
−(τ) + 1

12! IR
Φ̂{a1b1,a2b2}

(τ)

+ 1
12!

IR,+

Φ{a2|a1b1c1d1e1}
−(τ) + 1

14!
IR

Φ̂{a1b1c1}
(τ)

+ 1
16!

Φ̂(τ)

}
+ ℓ

{
16 Ψα(τ) + 1

3!
16

IR
Ψ{a1b1}

α(τ)

+ 1
5!

16

IR,−

Ψ{a1b1c1d1e1}
+
α(τ) + 1

5!
16

IR
Ψ{a2|a1b1}

α(τ)

+ 1
7! 16IRΨ{a1,a2,a3}α

(τ) + 1
7!

16

IR

Ψ{a2|a1b1c1}
α(τ)

+ 1
9! 16IRΨ{a1,a2,a3}

α(τ) + 1
9!

16

IR

Ψ{a2|a1b1c1}α
(τ)

+ 1
11!

16

IR,+

Ψ{a1b1c1d1e1}
−α(τ) + 1

11!
16

IR
Ψ{a2|a1b1}α

(τ)
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+ 1
13!

16

IR

Ψ{a1b1}α
(τ) + 1

15! 16 Ψα(τ)

}
,(8.25)

which can be simplified further to eliminate all the factors involving the
factorial function by rescaling the field variables appropriately.

This 1D, N = 16 valise adinkra system clearly contains 32,768 bosons
and 32,768 fermions. It also contains the information associated with the
Lorentz representations (via the YT’s) of the original 10D, N = 1 scalar
supermultiplet for which it is the hologram. Application of the D operator
to this expansion shown above while retaining terms only up to order (ℓ)
will permit the derivations of the GR (d, N) matrices [40, 41] associated
with this system.

In the work of [42], the inaugural discussion relating supermultiplets
in greater than 1D to those in 1D was given. There was a portion of the
derivation that was not explicitly presented. Let us recall from this past
work, valise adinkra systems were described in the following manner.

A set of bosonic fields Φi and fermionic fields Ψk̂ (where the index i

takes on values for one to any integer d and the index k̂ ranges of the same
values) describe valise adinkra systems. Furthermore, two sets of matrices
(L

I
) i k̂ and (R

I
) k̂ i are also introduced where the index I ranges over the

integers, but its maximum value N is not necessarily restricted to be the
same as that of the indices i and k̂. The following conditions may be imposed
on the matrices

(8.26)
( LI )i

ȷ̂ (RJ )ȷ̂
k + (LJ )i

ȷ̂ (RI )ȷ̂
k = 2 δIJ δi

k ,

(RJ )ı̂
j ( LI )j

k̂ + (RI )ı̂
j ( LJ )j

k̂ = 2 δIJ δı̂
k̂ ,

(8.27) (RI )ȷ̂
k δik = (LI )i

k̂ δȷ̂k̂ ,

along with the following differential equations being imposed on Φi and Ψk̂

(8.28) D
I
Φi = i (L

I
) i k̂ Ψk̂ , D

I
Ψk̂ = (R

I
) k̂ i

d

dτ
Φi .
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so the equations (8.26), (8.27), and (8.28) uniformly imply the operator
equation is satisfied

(8.29) D
I
D

J
+ D

J
D

I
= i 2 δI J

d

dτ
,

on Φi and Ψk̂. The fields Φi and Ψk̂ can be related to the 1D fields in (8.25)
via

(8.30)
Φi(τ) =

{
Φ(τ), Φ{a1b1c1}

(τ), Φ{a1b1,a2b2}
(τ), . . .

}
,

Ψk̂(τ) =
{
Ψα(τ), Ψ{a1b1}

α(τ), Ψ{a1b1c1d1e1}
+
α(τ), . . .

}
.

Currently, it is not clear how to construct the D
I
operators from D. This

will be the subject of a future investigation.
The algebra for the L-matrices and R-matrices in (8.26) defines the

GR(d, N) algebra or the “Garden Algebra” (d, N). In the present con-
text d = 32,768 and N = 16. In future investigations (as it will be possible
to study the case where the ranges of i and k̂ covers 1, . . . , 32768, and
the range of I covers 1, . . . , 16), derivation will uncover how the (L

I
) and

(R
I
) matrices holographically store the information of the YT’s concerning

the Lorentz representations of the fields in (8.25). This is the portion not
undertaken in [42].

8.3. Adynkras, and links between nodes

It is clear from the presentation in Equation (7.1) for V (as well as the one
on pages 57 - 59 for 16 V) that each adinkra associates some Level numbers
with sets of YT’s. Furthermore, the YT’s are partitioned into two classes.
The BYT’s possess no red boxes while the SYT’s possess one red box. Let
us introduce notational devices for this division. We will use the symbol
{R(i)}p to denote the “i-th” BYT at Level-p. It should be noted that the
range of the index “i” depends on the value of p. In a similar manner, we
will use the symbol {R(i)}p to denote the “i-th” SYT at Level-p. Once more
it should be noted that the range of the index “i-th” depends on the value
of p.

Next, we introduce four coefficients c
+(i)
{R(j)}

p+1

, c
−(i)
{R(j)}

p−1

, c
+(j)
{R(i)}

p+1

, and

c
−(j)
{R(i)}

p−1

which are determined by examining properties of the adynkra.

In particular, there are four calculations to be implemented, and these are
respectively

(8.31) c
+(i)
{R(j)}

p+1

= F1

[ (
16 ⊗ {R(i)}p

)
∩ {R(j)}p+1

]
,
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(8.32) c
−(i)
{R(j)}

p−1

= F2

[ (
16 ⊗ {R(j)}p−1

)
∩ {R(i)}p

]
,

(8.33) c
+(j)
{R(i)}

p+1

= F3

[ (
16 ⊗ {R(j)}p

)
∩ {R(i)}p+1

]
,

(8.34) c
−(j)
{R(i)}

p−1

= F4

[ (
16 ⊗ {R(i)}p−1

)
∩ {R(j)}p

]
,

where F1, F2, F3, and F4, are functions. All of these functions have the
property that if the intersections indicated as their respective arguments
vanish, then the functions output the value of zero. The functions F1 and,
F3 yield outputs of the value one if their respective intersections are non-
vanishing. The functions F2 and F4 yield outputs of the value of 0 or 1 if
their respective intersections are non-vanishing. When the value of the c-
coefficient is 0, there is no link between those particular two nodes. When it
is 1, there is a link. For these the intersection principle can only tell us which
links must be absent. However, the appearance of the links in the adinkra
does not necessarily imply the corresponding normalization coefficients have
to be non-vanishing.

8.4. Adynkrafields, expansion basis change, and superfields

The discussion in this chapter also points to a relation between the con-
cepts in the adinkras, adynkrafields approach, and traditional description
supermultiplets in terms of superfields.

Let us construct a quantity K from a superfield that can be viewed as an
analog to G. We can “strip” a scalar superfield of all of its field components
which suggests the construct

(8.35) K = 1 ⊕ θα ⊕
16⊕

p=2

θα1 · · · θαp .

Up to normalization factors it can be argued, initially, that the two expres-
sions G and K are related to one another via a change of basis θα → ℓ .
This transformation is consistent if there is an understanding that the “red
box” actually carries an “invisible” spinor index. We have used this conven-
tion in writing (8.3), (8.5), and (8.25). This is also an assumption implicitly
used through out this chapter. The “blue boxes” carry invisible vectorial
indices, and the “red boxes” carry invisible spinorial indices.
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The exponential of the level parameter ℓ plays an important role. It is
seen that in (8.3) this parameter tracks the level of the YT’s as they appear
in the higher dimensional adynkra. So the exponents range from 0 to 16.
On the other hand, within the equation (8.25) which applies to only one
dimensional valise systems, the exponent of ℓ only takes on values 0 and 1.
Within the context of 1D, N = 16 theories, there are many possible values
of this exponent. The exponents in (8.25) correspond to a two-level adinkra
while the ones in (8.3) correspond to a full sixteen-level adinkra in 1D if we
set x0 = τ and all spatial components xi = 0. There are many other choices
for the values of the exponents of ℓ as explored in the work of [43] in one
class of examples.

In the context adynkras and adinkras, the exponents of the level pa-
rameter play another important role. The exponents control the engineering
dimension of the fields that follow in the expansion in (8.3) and (8.25). So
for example, the fact that all the bosons in (8.25) are associative with (ℓ)0

implies all the bosons possess the same engineering dimensions. Similarly,
the fact that all the fermions in (8.25) are associate with (ℓ)1 implies all
the fermions possess the same engineering dimensions. However, the engi-
neering dimensions of the fermions differs by a unit of (mass)−

1

2 from the
engineering dimensions of the bosons. This follows from the interpretation
of adynkrafields arising from superfields via the change of basis θα → ℓ .

There is one implication about the substitution suggestion as the θ-
variable is anti-commuting. This demands that the product ℓ should also
be anti-commuting. The most natural way to do this is to assume the anti-
commutivity of the red box.

Finally, the results earlier in this section, may be combined with the
result in (7.26) to gain an insight into how this formalism works. We first
introduce an even more condense notation by writing the “blue spacetime
derivative” ∂ = •−−∂ . Now some samples of component actions can be
presented in the simplest cases of actions for the spin-0, spin-1/2, and spin-
1 fields from (7.26) as illustractions. The respective actions are simply

S{0} =

∫
d10x 1

2

〈
∂ ϕ(x)

∣∣∣ ∂ ϕ(x)
〉

,(8.36)

S
16

=

∫
d10x i 1

2

〈
λ

16
(x)
∣∣∣ ∂ λ

16
(x)
〉

,(8.37)

S
16

=

∫
d10x i 1

2

〈
λ

16
(x)
∣∣∣ ∂ λ

16
(x)
〉

,(8.38)

S{1} =

∫
d10x 1

4

〈
∂ ∧A (x)

∣∣∣ ∂ ∧ A (x)
〉

,(8.39)
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where notation ⟨ ⟩ indicates that intermediate calculations are to be done
in the space of the YT’s and after these are completely evaluated, only
the coefficient of the singlet Tableau is retained. We are thus advocating an
effectively index-free notation until the final stage of the derivation of results.
As Tableaux and Dynkin Labels are interchangeable, this is the orgin of the
gain in calculational efficiency based on the used of adynkrafields.

9. Conclusion

In this work we have shown all the steps that allow one to begin with an
adynkra of the 10D, N = 1 scalar superfield and apply a well defined set of
rules to “tease” from this starting point and finally obtain the field variables
(together with their irreducibility conditions) for which the Dynkin Labels
provide descriptions.

There remain a few more steps before one obtains a complete component-
level description of 10D, N = 1 Nordström supergravity theory. These in-
clude:

(a.) the use of the adynkra to provide a starting point for ansatzë for the
component level supersymmetry variations on each component field,
and

(b.) substitute all of these results in the expressions that appear in [18]
which relate 10D, N = 1 Nordström supergeometry to the 10D, N =
1 scalar superfield.

It should be noted the adynkra plays a role in efficiency in part (a.). Namely
only representations connected by links in the adynkra are allowed to ap-
pear in the component level supersymmetry variations. This together with
Lorentz invariance fixes (up to a set of constants) the form of these varia-
tions. These final constants are fixed by the condition of closure of the SUSY
algebra. Using modern IT applications, it should be possible to completely
fix this final set of constants.

However, we should remind the reader that even if this is all explicitly
carried out, one still has a reducible construction. That is a separate problem
needing further investigation of the properties of the quantities G̃ or G.

We believe the explicit presentation in this work should be convincing to
the skeptical reader that there exists a well-defined set of steps that starts
with the 10D, N = 1 adynkra shown in Figure 1 and leads to the complete
component field description given in Chapter 7. To our knowledge, this is
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the first such completely explicit presentation at the component level in the
literature.

To tie these results with the corresponding geometrical ones discussed
in [18], we note that Φ(x) at Level-0 is the scalar graviton, while Ψα(x) at
Level-1 is the non-conformal part of the gravitino. Finally, the component
field Φ{a1b1c1}(x) corresponds to the lowest component of a superfield so

that Φ{a1b1c1}(x) = G{a1b1c1}(x) ∝ (σa1b1c1)αβ
(
DαDβ V

)
|. From Eq (5.11)

and Eq. (5.14) in the work of [18], we know this field G{a1b1c1} is the lowest
component of a quantity that appears in the supertorsion Tα b

γ and the
supercurvature Rαβ

c d. All the remaining component fields seen at Levels 3
- 16 occur as the lowest components of superfields obtained by applications
of spinor derivatives of orders 1 - 14 to G{a1b1c1} in the supertorsion Tα b

γ

and the supercurvature Rαβ
c d.

For the skeptic, we present this as the most explicit evidence to date
that, at least with respect to a supergeometrical formulation, there exists
a well-defined theory of 10D, N = 1 Nordström supergravity expressed in
terms of the fifteen bosonic and twelve fermionic component fields exhibited
in Chapter 7.

In Chapter 4, we have checked the consistency of branching rules of
su(10) ⊃ so(10) as well as the Weyl dimension formula, the su(10) algebra
hook rule, and our graphical tying rules for all BYTs up to 3-columns.
We are thus able to show our graphical rules for branching rules and the
dimensionality of irreps actually have a substantial support. So we cast this
into the form of a conjecture.

Conjecture: The calculation of the branching rules for gen-
eral su(N) ⊃ so(N) where AN−1 ⊃ DN/2 for even N , or AN−1 ⊃
B(N−1)/2 for odd N , may be found by using the hook rule and the
application of the tying rules for that irrep’s Young Tableau in
su(N), if that Young Tableau contains less than or equal to three
columns.

However, this still is not a replacement for a rigorous mathematical proof.
In this work, we have presented preliminary evidence for the existence of

adynkrafields which have the potential to replace superfields as tools for the
study of dynamical systems that realize supersymmetry. There are still some
points about this proposal that remain unclear and will require further study
in the future. One obvious consequence of the introduction of adynkrafields
is their multiplication rules, following as a result of applying tensor product
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rules to the YT’s that appear in the expansions of adinkrafields. This obser-
vation must have further implications for obtaining a deeper understanding
of superspace integration theory.

Finally, in this work we have introduced an essentially coordinate-free
“generator of supersymmetry multiplets” in the form of the operator G that
appears in (8.2). It operates on the space of fields {F} introduced in (7.25)
to produce scalar supermultiplets via an “inner product” G · {F}. Tensoring
G with any Young Tableaux λ suitable to describe an irrep in the space of
fields {F} produces higher representation supermultiplets by tensoring first
and then applying the inner product, i.e. (λG) · {F}. It should also be clear
that a very similar argument can be made for Salam-Strathdee superfields.
Namely a scalar superfield may be regarded as an “inner product” K · {F}.

With respect to supersymmetry, the operator G is reducible. Under-
standing how to decompose it remains an unsolved, the one great unsolved,
problem of supersymmetry representation theory.

“By believing passionately in something that still does not
exist, we create it.”

— Franz Kafka
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Appendix A. More discussion of index notation

In Section 3.3, we introduced notational conventions to express the index
structure which corresponds to the irreducible bosonic Young Tableaux. The
general expression was shown in Figure 2. In this appendix, we will present
more examples of this notation.

First, recall the general expression of the notation.
(A.1)

We start with some simple examples where only p ̸= 0.

{a1} ≡ a1 IR
≡ [1, 0, 0, 0, 0] ,(A.2)

{a1, a2} ≡ a1 a2 IR
≡ [2, 0, 0, 0, 0] ,(A.3)

{a1, a2, a3} ≡ a1 a2 a3 IR
≡ [3, 0, 0, 0, 0] ,(A.4)

{a1, a2, a3, a4} ≡ a1 a2 a3 a4 IR
≡ [4, 0, 0, 0, 0] .(A.5)

Then we turn to some examples where t = 0, which means we don’t need
to consider self duality.

{a1b1} ≡
a1
b1 IR

≡ [0, 1, 0, 0, 0] ,

(A.6)

{a2|a1b1} ≡
a1 a2
b1 IR

≡ [1, 1, 0, 0, 0] ,

(A.7)

{a1b1, a2b2} ≡
a1 a2
b1 b2 IR

≡ [0, 2, 0, 0, 0] ,

(A.8)
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{a1b1c1} ≡
a1
b1
c1 IR

≡ [0, 0, 1, 0, 0] ,

(A.9)

{a2|a1b1c1} ≡
a1 a2
b1
c1 IR

≡ [1, 0, 1, 0, 0] ,

(A.10)

{a2, a3|a1b1c1} ≡
a1 a2 a3
b1
c1 IR

≡ [2, 0, 1, 0, 0] ,

(A.11)

{a1b1c1, a2b2c2} ≡
a1 a2
b1 b2
c1 c2 IR

≡ [0, 0, 2, 0, 0] ,

(A.12)

{a1b1c1d1, a2b2c2d2, a3b3c3d3, a4b4c4d4} ≡

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4 IR

≡ [0, 0, 0, 4, 4] .

(A.13)

Finally, some examples where we have to take self duality into account
are presented as below.

{a1b1c1d1e1}
+ ≡

a1
b1
c1
d1
e1 IR,+

≡ [0, 0, 0, 0, 2] ,(A.14)

{a1b1c1d1e1}
− ≡

a1
b1
c1
d1
e1 IR,−

≡ [0, 0, 0, 2, 0] ,(A.15)
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{a2|a1b1c1d1e1}
+ ≡

a1 a2
b1
c1
d1
e1 IR,+

≡ [1, 0, 0, 0, 2] ,(A.16)

{a2|a1b1c1d1e1}
− ≡

a1 a2
b1
c1
d1
e1 IR,−

≡ [1, 0, 0, 2, 0] ,(A.17)

{a2b2|a1b1c1d1e1}
+ ≡

a1 a2
b1 b2
c1
d1
e1 IR,+

≡ [0, 1, 0, 0, 2] ,(A.18)

{a2b2|a1b1c1d1e1}
− ≡

a1 a2
b1 b2
c1
d1
e1 IR,−

≡ [0, 1, 0, 2, 0] .(A.19)

Appendix B. Explicit examples of spinorial irrep dimension
formulas

In this appendix, we list explicit examples of spinorial irrep dimension formu-
las for completely antisymmetric, completely symmetric, two-equal-column
and two-unequal-column BYTs attached with a {16} respectively. These are
the types of spinorial irreps that appear in the 10D, N = 1 scalar superfield.

In the following sections, we list the irreps in Dynkin Label, mixed YT
notation and dimensions on the left, and how we calculate the dimensions
graphically and numerically on the right. Note that on the right, we omit
all the “dim” notation for compact presentation. Hence the “×” just means
multiplying the dimensions, but not any sort of tensor product or direct
product; and the “−” just means subtracting the corresponding dimensions,
but not any sort of complement.
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B.1. Completely antisymmetric BYTs attached with {16}

[1, 0, 0, 0, 1] =
IR

(
IR

− ·
)
×

= {144} ( 10 − 1 ) × 16
(B.1)

[0, 1, 0, 0, 1] =
IR

(

IR

−
IR

)
×

= {560} ( 45 − 10 ) × 16

(B.2)

[0, 0, 1, 0, 1] =

IR




IR

−
IR


×

= {1200} ( 120 − 45 ) × 16

(B.3)

[0, 0, 0, 1, 2] =

IR




IR

−

IR


×

= {1440} ( 210 − 120 ) × 16

(B.4)

[0, 0, 0, 0, 3] =

IR,+




IR

−

IR




×

= {672} ( (126 + 126) − 210 ) × 16

(B.5)

B.2. Completely symmetric BYTs attached with {16}

[2, 0, 0, 0, 1] =
IR

(
IR

−
IR

+ ·
)
×

= {720} ( 54 − 10 + 1 ) × 16

(B.6)

[3, 0, 0, 0, 1] =
IR

(
IR

−
IR

+
IR

− ·
)
×

= {2640} ( 210 − 54 + 10 − 1 ) × 16

(B.7)
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[4, 0, 0, 0, 1] =
IR

(
IR

−
IR

+
IR

−
IR

+ ·
)
×

= {7920} ( 660 − 210 + 54 − 10 + 1 ) × 16

(B.8)

B.3. Two-equal-column BYTs attached with {16}

[0, 2, 0, 0, 1] =
IR

(

IR

−
IR

+
IR

)
×

= {8064} ( 770 − 320 + 54 ) × 16

(B.9)

[0, 0, 2, 0, 1] =

IR




IR

−

IR

+
IR


×

= {30800} ( 4125 − 2970 + 770 ) × 16

(B.10)

[0, 0, 0, 2, 3] =

IR




IR

−

IR

+

IR


×

= {39600} ( 8910 − 10560 + 4125 ) × 16

(B.11)

[0, 0, 0, 0, 5] =

IR,+




IR

−

IR

+

IR




×

= {9504} ( (2772 + 2772) − (6930 + 6930) + 8910 ) × 16

(B.12)
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B.4. Two-unequal-column BYTs attached with {16}

[1, 1, 0, 0, 1] =
IR

(

IR

−
IR

−
IR

+
IR

)
×

= {3696} ( 320 − 54 − 45 + 10 ) × 16

(B.13)

[0, 1, 1, 0, 1] =

IR




IR

−
IR

−

IR

+
IR


×

= {25200} ( 2970 − 770 − 945 + 320 ) × 16

(B.14)

[0, 0, 1, 0, 3] =

IR




IR

−

IR

−

IR

+

IR




×

= {29568} ( (6930 + 6930) − 10560 − (3696 + 3696) + 5940 ) × 16

(B.15)

Appendix C. Spinorial irreps of so(10) in field theory
notation by tensor products

In Chapter 6, we described the tensor product rule for a general bosonic
irrep with the basic spinorial irrep, and explained how the Schur function
series Q serves as an inverse of the Schur function series P by verifying the
tensor product rule from the SYT dimension rule. In this appendix, we will
turn to the spinorial irreps that appear in the 10D, N = 1 scalar superfield,
i.e.
(C.1)

,
IR

,

IR,±

,
IR

,
IR

,

IR

.

In this appendix, we plan to achieve two goals:

(a.) provide some explicit examples of tensor product rules; and
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(b.) show that Q is the inverse of P through these examples by obtaining
the formulas in Appendix B from these tensor product rules.

Note that (b.) is the converse of what we did in Section 6.
For the first SYT in (C.1), the relevant tensor product rule is

· ⊗ = 16

{1} ⊗ {16} = {16}
,(C.2)

so that there is no irreducible condition, and we know that it translates to
index notations as

{16} = Ψα ,(C.3)

{16} = Ψα .(C.4)

For the second and the third SYTs in (C.1), the relevant tensor product
rules are those totally antisymmetric BYTs tensored with a basic spinorial
irrep. They are listed as follows.

IR
⊗ = 16 IR

⊕ 16

{10} ⊗ {16} = {144} ⊕ {16}
,

(C.5)

IR

⊗ =
16

IR

⊕ 16 IR
⊕ 16

{45} ⊗ {16} = {560} ⊕ {144} ⊕ {16}

,

(C.6)

IR

⊗ =
16

IR

⊕
16

IR

⊕ 16 IR
⊕ 16

{120} ⊗ {16} = {1200} ⊕ {560} ⊕ {144} ⊕ {16}

,

(C.7)

IR

⊗ =

16

IR

⊕
16

IR

⊕
16

IR

⊕ 16 IR
⊕ 16

{210} ⊗ {16} = {1440} ⊕ {1200} ⊕ {560} ⊕ {144} ⊕ {16}

,

(C.8)
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IR

⊗ =

16

IR,+

⊕

16

IR

⊕
16

IR

⊕
16

IR

⊕ 16 IR
⊕ 16

({126} ⊕ {126}) ⊗ {16} = {672} ⊕ {1440} ⊕ {1200} ⊕ {560} ⊕ {144} ⊕ {16}

,

(C.9)

where Equation (C.9) can be split into

IR,+

⊗ =

16

IR,+

⊕
16

IR

⊕ 16 IR

{126} ⊗ {16} = {672} ⊕ {1200} ⊕ {144}

,(C.10)

IR,−

⊗ =

16

IR

⊕
16

IR

⊕ 16

{126} ⊗ {16} = {1440} ⊕ {560} ⊕ {16}

.(C.11)

From the above tensor product rules, we obtain

16

IR

=
IR

⊗ 16 −
IR

⊗ 16

{560} = {45} ⊗ {16} − {10} ⊗ {16}

,(C.12)

16

IR,+

=

IR

⊗ 16 −

IR

⊗ 16

{672} = ({126} ⊕ {126}) ⊗ {16} − {210} ⊗ {16}

,(C.13)

and their conjugates. The “−” here denotes the removal of the terms in the
direct sum. Note that the dimensions obtained from these two equations
agree exactly with Equations (B.2) and (B.5).
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For the forth SYT in (C.1), the relevant tensor product rules are Equa-
tions (C.2) and (C.5), and the totally symmetric BYTs tensored with a basic
spinorial irrep listed as follows.

IR
⊗ = 16 IR

⊕ 16 IR

{54} ⊗ {16} = {720} ⊕ {144}
,(C.14)

IR
⊗ = 16 IR

⊕ 16 IR

{210′} ⊗ {16} = {2640} ⊕ {720}
.(C.15)

From these tensor product rules we derive

16 IR
=

IR
⊗ 16 −

IR
⊗ 16 ⊕

IR
⊗ 16 − · ⊗ 16

{2640} = {210′} ⊗ {16} − {54} ⊗ {16} ⊕ {10} ⊗ {16} − {1} ⊗ {16}
.

(C.16)

which is consistent with (B.7).
For the last two SYTs in (C.1), the relevant tensor product rules are

Equations (C.5), (C.6), (C.7), (C.14) and the two following equations,

IR

⊗ =
16

IR

⊕
16

IR

⊕ 16 IR
⊕ 16 IR

{320} ⊗ {16} = {3696} ⊕ {560} ⊕ {720} ⊕ {144}

,

(C.17)

IR

⊗ =
16

IR

⊕
16

IR

⊕
16

IR

⊕
16

IR

⊕ 16 IR
⊕ 16 IR

{945} ⊗ {16} = {8800} ⊕ {1200} ⊕ {3696} ⊕ {560} ⊕ {720} ⊕ {144}

.

(C.18)

Then we have

16

IR

=
IR

⊗ 16 − ⊗ 16 −
IR

⊗ 16 ⊕
IR

⊗ 16

{3696} = {320} ⊗ {16} − {45} ⊗ {16} − {54} ⊗ {16} ⊕ {10} ⊗ {16}

,

(C.19)

16

IR

=

IR

⊗ 16 − ⊗ 16 −
IR

⊗ 16 ⊕
IR

⊗ 16

{8800} = {945} ⊗ {16} − {120} ⊗ {16} − {320} ⊗ {16} ⊕ {45} ⊗ {16}

,

(C.20)

where Equation (C.19) agrees with Equation (B.13).
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