
Physics Letters B 772 (2017) 300–305
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

General relativity from three-forms in seven dimensions

Kirill Krasnov

School of Mathematical Sciences, University of Nottingham, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 May 2017
Received in revised form 8 June 2017
Accepted 9 June 2017
Available online 29 June 2017
Editor: M. Cvetič

We consider a certain theory of 3-forms in 7 dimensions, and study its dimensional reduction to 4D, 
compactifying the 7-dimensional manifold on the 3-sphere of a fixed radius. We show that the resulting 
4D theory is (Riemannian) General Relativity (GR) in Plebanski formulation, modulo corrections that are 
negligible for curvatures smaller than Planckian. Possibly the most interesting point of this construction 
is that the dimensionally reduced theory is GR with a non-zero cosmological constant, and the value of 
the cosmological constant is directly related to the size of S3. Realistic values of � correspond to S3 of 
Planck size.
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It is almost universally agreed that General Relativity (GR) 
should be viewed as a low energy approximation to some other 
theory. The usual view is that this is some quantum gravity theory 
that gives the ultra-violet (UV) completion of perturbatively quan-
tised GR.

It is also possible that GR arises as the low energy limit of some 
other classical theory, and it is only this distinct from GR classical 
theory that is to be UV completed quantum mechanically. A sce-
nario of this sort is part of string theory, where 4D gravity arises 
by compactification from 11D supergravity. The latter is to be com-
pleted quantum mechanically by M-theory.

Scenarios embedding 4D GR into other classical theories are in-
teresting for several reasons. First, what comes out from such an 
embedding is usually more than just GR. There are typically more 
degrees of freedom, and this is of interest both phenomenologi-
cally as well as for the question of the UV completion. Indeed, UV 
incomplete theories may arise as the low energy approximation of 
UV complete theories, the latter having more degrees of freedom 
than the former.

In the extensively studied Kaluza–Klein scenarios 4D gravity 
arises from a higher dimensional theory that is again gravity (pos-
sibly with extra fields). The purpose of this letter is to point out 
that (Riemannian signature) General Relativity in four dimensions 
may be obtained by compactification from a higher-dimensional 
theory of a very different nature. Thus, we show that a certain dy-
namical theory of 3-forms in 7 dimensions, when compactified on 
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the 3-sphere (of a fixed size) gives a 4D gravity theory that at low 
energies is indistinguishable from GR.

Mathematically, the idea of our construction is rather simple 
and natural and can be explained already here. It is well-known 
that gravity can be usefully described using the language of frame 
fields instead of the metric. A frame eI is a collection of one-
forms that are declared orthonormal. This defines the metric via 
ds2 = ηI J eI e J , where ηI J is the flat metric. When the frame field 
is used to describe geometry, it is also very natural to allow the 
spin connection w I J (later used to construct the curvature) to be-
come an independent object. Its relation to derivatives of the frame 
is then fixed by its field equation.

The (spin) connection w I J can locally be viewed as a one-form 
with values in the Lie algebra of Lorentz group, or orthogonal 
group SO(D) of appropriate dimension D if one wants to de-
scribe metrics of Riemannian signature. On the other hand, the 
frame one-forms are not so(D) Lie algebra valued (apart from the 
case of 3D gravity where the frame index can be identified with 
the Lie algebra index). However, one can construct two-forms that 
are Lie algebra valued, taking the wedge product of frame with 
itself B I J := eI ∧ e J . This gives rise to a formalism for gravity 
in which the basic fields are Lie algebra valued one-forms w I J

and two-forms B I J . The two-forms must however be appropriately 
constrained in order to guarantee that they come from the frame 
field. This formalism is particularly simple in 4 dimensions, see 
below, but can also be used to describe gravity in any dimension, 
see [1].

The main idea behind the constructions of this letter is that 
it is natural to combine the one- and two-forms of such a for-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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mulation of gravity into a single object — a 3-form in a higher 
dimensional space. The space in question is (locally) the product 
of the spacetime and the SO(D) group manifolds, i.e. it is the to-
tal space of the principal SO(D) bundle over space(time). Let mI J

be Lie algebra valued one-forms on the SO(D) group manifold, i.e. 
Maurer–Cartan forms. To exhibit the fields w I J and B I J as com-
ponents of a 3-form in the total space of the bundle, we use the 
matrix notation in which mI J , w I J are one-forms and B I J are two-
forms valued in the space of anti-symmetric D × D matrices. We 
then consider the following 3-form

C = Tr (m ∧ m ∧ m + m ∧ m ∧ w + m ∧ B) . (1)

Thus, the spin connection 1-forms w I J arise as two vertical one 
horizontal components of the 3-form C above, and the fields B I J

arise as the one vertical two horizontal components. This recovers 
all fields of the 2-form formulation of gravity as components of 
a 3-form in the total space of the SO(D) group bundle over the 
spacetime. In [2,3] it was explained how 3D gravity can be usefully 
described in this fashion. The purpose of this letter is to outline the 
construction that works for 4D gravity.

While the idea described is general enough to work in any 
dimension, the 3-forms are most interesting objects in 6 and 7 di-
mensions, as we review below. On the other hand, the total space 
of the SO(4) group principal bundle over a 4-dimensional mani-
fold is 10 dimensional. But instead of working with the full 4D 
rotation group one can take one of its chiral halves, i.e. either its 
self-dual or anti-self-dual part, both of which are 3-dimensional. 
There is a formalism for 4D gravity [4,5] that works with one- and 
two-forms with values in the Lie algebra of the chiral half of the 
rotation group. We will base our construction on this formalism. 
In this case the total space of the bundle is 7-dimensional, and we 
are in the setting where 3-forms are most natural and interest-
ing.

The fundamental fact about a generic (or using the terminology 
of [6] stable) 3-form C on a 7-dimensional manifold M is that it 
defines a metric gC . The metric is explicitly given by the following 
formula

gC (ξ,η)volC = −1

6
iξ C ∧ iηC ∧ C . (2)

Here gC (ξ, η) is the result of the metric contraction of two vector 
fields ξ, η, volC is the volume form for gC , and iξ,η is the opera-
tion of insertion of a vector field into a form. The metric (2) has 
been known for more than a century, see e.g. [7] for a historical 
perspective. It is ultimately related to the geometry of spinors in 
7 and 8 dimensions, see e.g. [8] for the discussion of the spinor 
aspect, and to octonions, see e.g. [9].

Generic 3-forms in 7 dimensions are related to the exceptional 
group G2. This can be defined as the subgroup of GL(7) that sta-
bilises a generic 3-form, see [10] and more recently [6]. The space 
of generic 3-forms (at a point) can then be identified with the 
coset GL(7)/G2. It is easy to see that the spaces GL(7)/G2 and 
�3

R
7 have the same dimension 35. The fact that C defines gC ex-

plains why G2 is a subgroup of SO(7).
The volume form volC , playing an important role below, can 

also be described explicitly as a homogeneity degree 7/3 object 
built from C . Thus, let ε̃a1...a7 be the densitiesed completely anti-
symmetric tensor taking values ±1 in any coordinate system. Here 
a = 1, . . . , 7. We can then construct the following degree 7 and 
weight 3 scalar:

ε̃a1...a7 ε̃b1...b7 ε̃c1...c7 Ca1b1c1 . . . Ca7b7c7 . (3)

The cube root of this expression is a multiple of volC . This is not 
the most useful in practise way of computing the volume form — 
it is usually much more effective to compute the volume volC from 
the determinant of gC .

Let us now make C dynamical. Consider the following action 
principle

S[C] = 1

2

∫
M

C ∧ dC + 6λvolC . (4)

The first term here (i.e. the case λ = 0) describes a topological field 
theory considered in [11]. The Euler–Lagrange equations following 
from (4) are

dC = λ ∗C . (5)

Here ∗C is the Hodge dual of C computed using gC . The numer-
ical coefficient on the right-hand-side here is simplest verified by 
noticing that volC = −(1/7)C ∧ ∗C , and then using the homogene-
ity to compute the variation of volC with respect to C . We note 
that, because the two terms in (4) scale differently, by rescaling C
we can always achieve λ = 1 at the expense of introducing a pa-
rameter in front of the action. We will do so from now on. Thus, 
there are no free parameters in the theory (4).

Real 3-forms C are of two possible types, see e.g. [7]. Forms 
of one type give gC of signature (4, 3). Forms of the other type 
give the Riemannian signature metrics gC . Such 3-forms satisfying 
(5) describe what [8] call nearly parallel G2 structures. Note that 
(5) implies that ∗C is closed. However, this equation also says that 
dC �= 0. Thus, the critical points of (4) are not the possibly more fa-
miliar in this context torsion-free G2 structures satisfying dC = 0, 
d∗C = 0 and describing G2 holonomy manifolds. A related observa-
tion is that the equation (5) implies that the metric gC is Einstein 
with non-zero scalar curvature, see proposition 3.10 from [8]. In 
contrast, G2-holonomy manifolds are Ricci flat, see e.g. [6].

Equations (5) have been studied in the literature [8]. The vari-
ational principle (4) is a subcase of a more general action (29) 
in [12], with 1- and 5-forms set to zero and the auxiliary met-
ric integrated out. It is also similar to prepotentials appearing in 
the literature on G2 compactifications of M-theory, see e.g. [13]. 
Nevertheless, it seems that the theory of 3-forms (4) has not been 
studied in the literature. Note that action (4) is different from the 
ones considered by Hitchin [6]. The simplest Hitchin action is the 
last term in (4), restricted to 3-forms in a fixed cohomology class. 
Our action is the sum of those in [11] and [6], with the only con-
straint on C being that it is generic (or stable), which is an open 
condition.

Additional information about the theory (4) is given in a recent 
paper [14]. In particular, this reference demonstrates that (4) is a 
7D theory with 3 propagating degrees of freedom. Also, some so-
lutions of the equations (5) are described, in particular those that 
can be obtained as S3 bundles over S4.

We now describe a relation to 4D General Relativity (GR). We 
claim that (4) dimensionally reduced on S3 (of a fixed radius) is a 
4D theory of gravity that is for all practical purposes indistinguish-
able from (Riemannian signature) GR. This means that while the 
reduced theory is, strictly speaking, not GR, it coincides with GR 
for Weyl curvatures smaller than Planckian, which is anyway the 
regime where we can trust GR as a classical theory. All this is to 
be explained in more details below.

To explain why the outlined embedding of 4D GR into a the-
ory of 3-forms in 7D may be interesting, let us remind the reader 
the basics of Kaluza–Klein (KK) theory. Here one starts with GR 
in higher dimensions and dimensionally reduces to 4 dimensions. 
In the simplest and also historically the first setup one starts with 
GR (with zero cosmological constant) in 5 dimensions and dimen-
sionally reduces on S1. If one fixes the size of S1, as was done 
in the first treatments, the dimensionally reduced 4D theory is GR 
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coupled to Maxwell. Allowing the size of the circle to become dy-
namical gives rise to an additional massless scalar field in 4D, and 
to avoid conflict with observations this must be given a mass, or 
stabilised in some other way.

The Kaluza–Klein mechanism gives a geometrically compelling 
unification of gravity with electromagnetism. Also, as pointed out 
by Kaluza, it relates the quantum of electric charge to the size of 
the compact extra dimension. The Kaluza–Klein mechanism can be 
generalised to describe non-Abelian gauge fields. A comprehensive 
review on KK is e.g. [15].

Let us return to our story. We claimed that 4D GR arises as the 
dimensional reduction of the theory (4) of 3-forms in 7D. Unlike 
the KK case, no unification is achieved here, the reduced theory is 
pure gravity. Also unlike KK, gravity in 4D arises from a 7D theory 
of a very different sort — the theory (4) is a dynamical theory of 
3-forms, not metrics. While it may be amusing that 4D GR admits 
a lift to a theory of such a different nature as (4), is this a useful 
perspective on 4D gravity?

Now comes what we believe is the most interesting physics 
point about our construction. As we will show, the dimensionally 
reduced theory is GR with non-zero cosmological constant, and the 
value of the cosmological constant is directly related to the size of 
the S3. As the 5D Kaluza–Klein story makes the electric charge a 
dynamically determinable quantity, at least in principle, via some 
“spontaneous compactification” mechanism, in our setup the 4D 
cosmological constant becomes in principle determinable by the 
dynamics of the extra dimensions.

Thus, our 7D lift of 4D GR makes the 4D cosmological con-
stant a dynamical object. Having said this, we must also say that 
in this letter we limit ourselves to just demonstrating the relation 
between the radius of S3 and �. No attempt at studying the dy-
namics of the extra dimensions (and thus predicting �) will be 
made. Still, this should be kept in mind as one of the motivations 
for our construction, in addition to those described in the begin-
ning of this text.

After these motivational remarks, we are ready to describe the 
dimensional reduction. We phrase the discussion that follows in 
terms of real objects. In this case the dimensionally reduced theory 
is the Riemannian signature GR. All objects can also be complexi-
fied, in this case one obtains complexified GR. The subtler issue of 
reality conditions relevant for the Lorentzian signature theory will 
be treated elsewhere.

To carry out the dimensional reduction, we need to assume that 
the 3-form C in 7D is “independent” of 3 of the 7 coordinates. The 
appropriate for our purposes way of doing this is to assume that 
we have the group SU(2) that acts on M freely. This gives M
the structure of an SU(2) principal bundle over a 4-dimensional 
base M . Our considerations here are local, over a region in M . 
We parametrise fibre points as g ∈ SU(2), with the group action 
on the fibre being the right action of SU(2) on itself. Denote by 
m = g−1dg the Maurer–Cartan one-forms on SU(2). These forms 
transform covariantly under the right action of SU(2) on itself. 
To establish further notations, let A be an SU(2) connection on 
the base M , i.e. a 2 × 2 anti-Hermitian matrix valued one-form 
on M , and let A = g−1Ag be its lift into the total space of the 
bundle. Then W = m + A is the connection one-form in the to-
tal space of the bundle. Simple standard computation shows that 
F := dW + W W is a 2-form that is purely horizontal F = g−1Fg , 
where F = dA + AA is the curvature of the connection one-form on 
the base. Here and in what follows, for brevity, we omit the wedge 
product symbol.

A general SU(2) invariant 3-form on X can be written as C =
Tr(φm3 + Am2 + Bm) + c. Here φ ∈ �0(M), c ∈ �3(M), while A, B
are lifts to the total space of the bundle of Lie algebra valued 1-
and 2-forms on the base M respectively. Note that none of the 35 
components of C has been lost here, as a simple count of com-
ponents in φ, A, B, c shows. The above parametrisation of C is 
however not the one most suited for computations. We note that 
the term quadratic in m can always be eliminated by shifting m by 
a Lie algebra valued 1-form. This also redefines B, c. This suggests 
we parametrise

C = −2 Tr

(
1

3
φ3W 3 + φW B

)
+ c. (6)

Here W = m + A is a connection in the total space of the bun-
dle. Geometrically, an SU(2) invariant 3-form C in the total space 
of an SU(2) bundle over M defines a connection by declaring the 
horizontal vector fields to be those that are in the kernel of the 
1-form iξV iηV C for arbitrary vertical vector fields ξV , ηV . In (6) we 
simply chose to parametrise the 3-form C by this connection. The 
parametrisation (6) is most suited for practical computations. Nu-
merical prefactors are for future convenience.

A simple computation then gives

dC = −2 Tr
(
φ2dφW 3 + (φ3 F + φB)W 2 (7)

+ (dφB + φdA B)W + φF B
) + dc.

Here dA B = g−1(dB + AB − BA)g is the lift to the bundle of the 
covariant derivative of Lie algebra-valued 2-form B with respect to 
the connection A. Another simple computation using some trace 
identities gives

1

2

∫
M

CdC =
∫

SU(2)

−2

3
Tr(m3) (8)

×
∫
M

−2 Tr(φ4BF + (φ2/2)BB) + φ3dc.

We learn that the dimensional reduction of the first, topological 
term in (4), modulo the prefactor equal to the volume of SU(2), 
is the so-called BF theory with a �-term, coupled to the scalar 
and 3-form fields. We find this result interesting in its own right. 
The dimensional reduction of the topological theory is topological. 
Thus, if there is no second term in (4), varying with respect to c
gives φ = const , and we recover the usual Lagrangian of the topo-
logical BF theory with the � term.

Let us now understand the dimensional reduction of the second 
term in (4). This is a no-derivative term, so it only changes the “po-
tential” for the φ, B, c fields. In this paper we will set φ = const
and c = 0. The complete dimensional reduction is carried out in 
[14]. Setting the size of the extra dimensions to a constant corre-
sponds to φ = const . At the same time, it is clear from (8) that 
the 3-form field c is “conjugate” to φ and so setting this field to 
constant justifies setting c to zero.

To compute the volume form corresponding to (6) (with c = 0) 
we need to write this 3-form in SO(3) notations. This is achieved 
by decomposing all matrix-valued fields in terms of the SU(2) gen-
erators τ i = −(i/2)σ i , where σ i are the usual Pauli matrices. So, 
we write W = W iτ i etc. This gives

C = φ3

6
ε i jk W i W j W k + φW i Bi . (9)

The metric gC and thus the volume form volC are then easiest 
computed by putting this C into its canonical form. As the canon-
ical form we take

C = 1

6
ε i jkeie jek + ei
i . (10)

Here 
i is the basis of anti-self-dual 2-forms
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1 = e45 − e67, 
2 = e46 − e75, 
3 = e47 − e56.

The notation here is eab = eaeb , with wedge product implied. It is 
then easy to check that for C in its canonical form (10), the metric 
defined by C via (2) is ds2

C = ∑7
a=1(ea)2.

To compute the metric for (9) we need to rewrite it in 
the canonical form (10). This is done by choosing a convenient 
parametrisation of Bi fields. To establish this parametrisation, we 
note that the triple of 2-forms Bi defines a metric on the base 
in which these forms are anti-self-dual (ASD). This is the Urban-
tke metric [16]. In fact, a simple calculation with the formula (2)
shows that the Urbantke formula

g
(ξ,η)vol
 = −1

6
ε i jkiξ


i ∧ iη
 j ∧ 
k (11)

arises as the metric on the base from (2), with C in its canonical 
form (10). This clearly points towards a 7-dimensional origin of the 
Urbantke formula. The 2-forms Bi can then always be parametrised 
as

Bi = √
X

ij

 j, (12)

where one uses an arbitrary branch of the square root of a sym-
metric matrix Xij , and two-forms 
i are orthonormal 
i ∧ 
 j ∼
δi j . Here 
i is an orthonormal basis of ASD 2-forms for the metric 
defined (via Urbantke formula) by Bi . The matrix Xij is defined as 
that of the wedge products of Bi . We have Bi ∧ B j = −2Xijvol
 , 
where vol
 is the volume form of the metric whose ASD 2-forms 
are 
i . Substituting the parametrisation (12) into (9) we see that 
the 3-form can be written in the following way

C = ρ

(
1

6
ε i jkeie jek + ei
i

)
, (13)

with

ρ = (det(X))1/4 , ei = φ

ρ

√
X

ij
W j. (14)

This puts C into a form that is a multiple of the canonical. The 
metric gC is then ρ2/3 time the metric for which the above ea is 
the frame. This gives

ds2
C = φ2W i Xij

(det(X))1/3
W j + (det(X))1/6ds2


. (15)

The volume form for this metric is

volC = φ3

6
ε i jk W i W j W k(det(X))1/3vol
. (16)

We now put all pieces together and write the dimensionally 
reduced 4D Lagrangian, which is (4) on the ansatz (6) (with c = 0), 
divided by the volume of the fibre. We have

L4D = φ4 Bi F i + φ2

2
Bi Bi + 3φ3(det(X))1/3vol
. (17)

This is a Lagrangian of the type “BF theory plus a potential for 
the B field”. From general considerations in [17] we know that 
this is a 4D gravity theory, in the sense that the only degrees of 
freedom it describes are, as in GR, the two polarisations of the 
graviton. We also know [18] that for sufficiently small Weyl cur-
vatures (i.e. sufficiently low energy) any such theory of gravity 
reduces to GR.

We would now like to quantify the regime in which the above 
theory reduces to GR. To this end, let us rewrite the last term in 
(17) by introducing two auxiliary fields. We have

6(det(X))1/3vol
 =̂ − Hij Bi B j − 2μ(det(H) − 1)vol
,
where the meaning of the hat symbol over the equality sign is “on-
shell”. Indeed, varying the right-hand-side with respect to Hij we 
get Xij = μ det(H)(H−1)i j . The condition det(H) = 1 imposed by 
the Lagrange multiplier μ then sets μ = (det(X))1/3. Substituting 
the resulting solution Hij = (det(X))1/3(X−1)i j into the first term 
we reproduce the left-hand-side.

Using the above way of writing the last term in (17) we can 
rewrite the effective 4D Lagrangian as follows

L4D/φ4 = Bi F i − 1

2
Mij Bi B j (18)

− 2μ(det(I+ φ2M) − φ3)vol
.

Here we defined a new matrix Mij so that φH = I + φ2M , and 
redefined the Lagrange multiplier μ. The key point now is that the 
constraint det(I + φ2M) = const , when expanded in powers of M , 
approximates the constraint Tr(M) = const , and this is known to 
give General Relativity in its Plebanski formulation [4,5].

For readers lost in the sequence of field redefinitions per-
formed to achieve (18) we describe in words the origin of all 
the fields. The field φ is the scalar field parametrising the size 
of the extra dimensional S3 in the 3-form (6). The 2-form field 
Bi is also explicitly present in (6) as B = g−1 Biτ i g . The object 
F i := dAi + (1/2)ε i jk A j Ak is the curvature of the SO(3) connection 
Ai defined by C , with W from (6) given by W = m + g−1 Aiτ i g . 
The auxiliary fields Mij and μ where introduced in such a way 
that their elimination by their algebraic field equations produces 
the dimensional reduction of the “potential term”, i.e. the last term 
in (4). The volume form vol
 is defined by Bi via formulas (12)
and (11).

We now claim that (18) describes Riemannian signature GR, 
plus higher order corrections immaterial in the regime of not too 
high Weyl curvatures. To see this, let us remind the reader the Ple-
banski Lagrangian [4]

L′
Pleb = M2

p

(
Bi F i − 1

2

(

 i j + �

3
δi j

)
Bi B j

)
. (19)

Here M2
p = 1/8πG is the Planck mass, G is the Newton’s, and �

is the cosmological constant. Here Bi is a dimensionless field that 
describes the metric (via Urbantke formula). We now absorb the 
Planck mass so as to make Bi (and thus the metric) dimensionful. 
The dimensionful metric measures distances in units of the Planck 
length. Thus, we redefine Bi → Bi/M2

p, 
 → M2
p
, � → M2

p�.

L′′
Pleb = Bi F i − 1

2

(

 i j + �

3
δi j

)
Bi B j . (20)

The new 
, � are dimensionless. The object 
 is the (anti-self-
dual part of) the Weyl curvature, measured in Planck units. So, it 
satisfies 
 
 1 in all situations in which GR has been tested, or 
can be trusted.

To exhibit close similarly to (18) we further rewrite the Pleban-
ski Lagrangian by introducing an auxiliary field μ to impose the 
constraint that 
 i j is tracefree. Thus, we write

LPleb = Bi F i − 1

2
Mij Bi B j − 2μ(Tr(M) − �)vol
. (21)

The only difference between this Lagrangian and (18), apart from 
the overall factor, is that the constraints imposed on the auxiliary 
matrix Mij are different.

To quantify the difference, we parametrise the matrix Mij via

Mij = 
 i j + �

3
δi j. (22)

Here 
 i j is the tracefree part of Mij and �(
) is the function 
to be found by imposing the constraint obtained by varying the 
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Lagrangian with respect to μ. Thus, in the case of GR in Plebanski 
formalism the constraint simply states that � is a constant — the 
cosmological constant. In the case of the theory (18) one obtains �
as a non-trivial function of 
 i j instead. This is the parametrisation 
in which this class of 4D gravity theories was discovered in [18]. 
For (18) the constraint gives

(
1 + �φ2

3

)3

− 3

2

(
1 + �φ2

3

)
φ4Tr(
2) (23)

+ φ6det(
) = φ3.

We can use this as an equation to solve for � in terms of the 
tracefree part. Under assumption that 
 
 1 and to order 
2 the 
solution is
�(
)

3
= φ − 1

φ2
+ φ

2
Tr(
2) + O (
3). (24)

It is now clear that (18) is the theory of the same type as (20), 
the only difference being that � is not a constant, but a func-
tion �(
) given by (24). However, for 
 
 1 the dependence of 
�(
) on 
 in (24) can be neglected and �(
) becomes a con-
stant. This shows that the theory (18) is indistinguishable from GR 
in its form (21) in all situations where GR has been tested and/or 
can be trusted. Note that the O (
2) term in (24) is neglected as 
compared to 
 i j term in (22), not as compared to the constant, 
which can be small. Detailed study of effects of modification of 
GR such as (24) on e.g. the spherically symmetric solution can be 
found in [19].

The above argument can be rephrased as follows. The theory (4)
or (18) is a classical theory with no scale in it. The metric that the 
field Bi determines measures distances that are dimensionless. As 
(24) shows, this theory behaves as GR with non-zero dimension-
less cosmological constant (φ − 1)/φ2 for small 
 
 1 values of 
the dimensionless Weyl curvature. To compare this with the usual 
GR in which the distances are dimensionful, one needs to intro-
duce a scale into theory (18). Alternatively one can redefine all GR 
fields using some scale to make GR quantities dimensionless, as 
we have done in the passage from (19) to (21). This scale can be 
chosen to be the Planck scale, and then the theory (18) will be 
indistinguishable from GR for curvatures smaller than Planckian.

Thus, choosing the scale for identifying (18) with GR to be the 
Planck scale, the dimensionless � in (24) becomes the cosmolog-
ical constant measured in Planck units, and is the extraordinary 
small number � ∼ 10−120 that embodies the cosmological con-
stant problem. Our theory (18) gives small cosmological constant 
for values of radius of compactification φ close to unity. This must 
hold to extraordinary high accuracy

φ − 1 = �

3M2
p
, (25)

where we now reinstated the Planck mass so that this is the usual 
dimensionful �, and omitted higher order terms. In (24) one can 
also get small � for large φ, but this gives large GR modifications 
as in this case the Tr(
2) term in (24) can no longer be ignored.

There are several open questions that need to be addressed to 
convert the model studied here into a realistic theory. First and 
foremost, one must find a dynamical mechanism for driving the 
compactification radius φ to unity to produce a small cosmological 
constant. Similar issue is present in the usual Kaluza–Klein sce-
narios where one needs to provide a mechanism for spontaneous 
compactification.

We note, however, that the situation in theory (4) is some-
what better than in the usual KK setup. In the latter case, apart 
from the case of compactification on S1, the pure gravity the-
ory in 4 + D dimensions usually does not have solutions of the 
form of the product of Minkowski spacetime and (compact) inter-
nal manifolds. For this reason one usually extends the pure gravity 
theory in 4 + D dimensions with extra fields, e.g. by considering 
the Einstein–Yang–Mills system. The stress–energy tensor of these 
extra fields then allows for solutions of the required product form, 
see e.g. [20], Section 3. Probably the most famous compactifica-
tion mechanism is that due to Freund and Rubin [21], where the 
3-form field of the 11D supergravity is doing the job. In contrast, 
the theory (4) admits the solution that is the S3 fibration over S4, 
see [14] for an explicit description. Thus, at least there is a solution 
of (4) of the desired type without having to introduce extra fields. 
However, the cosmological constant for the S3 fibration over S4

solution is too large, see [14]. This is similar to the situation with 
the Freund–Rubin solution.

Thus, a compactification mechanism that would result in an 
appropriately small cosmological constant is a very serious open 
issue for our setup. It is possible that the only way forward is to 
add other fields. We then remark that there is a very natural ex-
tension of the theory (4) that adds forms of all odd degrees. This is 
the theory that appeared in [12], formula (29). It would be inter-
esting to study 4D compactifications of this more general theory. 
We hope to analyse this in the future.

Another open problem of the present approach is that of cou-
pling to matter. Again, a natural way to proceed is suggested by 
supergravity. One does not couple supergravity to extra fields, one 
simply studies what the modes already present become when 
viewed from the 4D perspective. In particular, when compactifying 
on a coset manifold all modes related to isometries of the inter-
nal space are known to be important. Indeed, recall that the gauge 
group that arises in the KK compactification is the group of isome-
tries of the internal manifold, and its dimension may be larger 
than the dimension of the internal space itself. In this paper we 
have considered a compactification on a group manifold, but only 
retained half of the relevant isometries by considering the invari-
ant dimensional reduction ansatz. It is clear that additional fields 
will arise by enlarging the ansatz by taking into account all the 
isometries. In this case, however, one must be careful about the is-
sue of consistent truncation, see e.g. [22] for a clear description of 
all the issues arising. We leave a study of the dimensional reduc-
tion on S3 viewed as a coset S3 = SO(4)/SO(3) to future research.

Third, there is a question of how to describe Lorentzian sig-
nature metrics using this formalism. To do this one must make 
the 3-form C complex-valued, and then impose some appropriate 
reality conditions. Similar issues exist in all Plebanski-related for-
mulations. We postpone their resolution to future work.

Finally, to avoid confusion, we would like to say that our 
present use of G2 structures (3-forms in 7D) is different from what 
one can find in the literature on Kaluza–Klein compactifications of 
supergravity. In our approach a 3-form is not an object that ex-
ist in addition to the metric — it is the only object that exist. The 
metric, and in particular the 4D metric, is defined by the 3-form 
via (2). Also, in the supergravity context a 7D manifold with a G2
structure is used for compactifying the 11D supergravity down to 
4D. In contrast, we compactify from 7D to 4D.
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