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abstract

By studying already known extrema of non-semi-simple Inonu-Wigner contraction CSO(p, q)+

and non-compact SO(p, q)+(p+ q = 8) gauged N = 8 supergravity in 4-dimensions developed
by Hull sometime ago, one expects there exists nontrivial flow in the 3-dimensional boundary
field theory. We find that these gaugings provide first-order domain-wall solutions from direct
extremization of energy-density.

We also consider the most general CSO(p, q, r)+ with p + q + r = 8 gauging of N = 8
supergravity by two successive SL(8,R) transformations of the de Wit-Nicolai theory, that is,
compact SO(8) gauged supergravity. The theory found earlier has local SU(8)×CSO(p, q, r)+

gauge symmetry as well as local N = 8 supersymmetry. The gauge group CSO(p, q, r)+ is
spontaneously reduced to its maximal compact subgroup SO(p)+ × SO(q)+ × U(1)+r(r−1)/2.
The T-tensor we obtain describes a two-parameter family of gauged N = 8 supergravity from
which one can construct A1 and A2 tensors. The effective nontrivial scalar potential can be
written as the difference of positive definite terms. We examine the scalar potential for critical
points at which the expectation value of the scalar field is SO(p)+×SO(q)+×SO(r)+ invariant.
It turns out that there is no new extra critical point. However, we do have flow equations and
domain-wall solutions for the scalar fields are the gradient flow equations of the superpotential
that is one of the eigenvalues of A1 tensor.
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1 Introduction

One of the interesting issues in recent research is the domain wall(DW)/quantum field the-

ory(QFT) correspondence initiated by [1] between supergravity, in the near horizon region of

the corresponding supergravity brane solution, compactified on domain wall spacetimes that

are locally isometric to Anti-de Sitter(AdS) space but different from it globally and quan-

tum(nonconformal) field theories describing the internal dynamics of branes and living on the

boundary of such spacetimes. DW/QFT correspondence was motivated by the fact that the

AdS metric in horospherical coordinates is a special case of the domain wall metric [2, 3]. R-

symmetry of the supersymmetric QFT on the boundary of domain worldvolume should match

with the gauge group of the corresponding gauged supergravity. Compact gaugings are not the

only ones for extended supergravities but there exists a rich structure of non-compact and non-

semi-simple gaugings (Note that the unitarity property is preserved since in all extrema of scalar

potential, non-compact gauge symmetry is reduced to some residual compact subgroup). Such

a theory plays a fundamental role in the description of the DW/QFT correspondence as the

maximally compact gauged supergravity has played in the AdS/conformal field theory(CFT)

duality [4, 5, 6] that is a correspondence between certain compact gauged supergravities and

certain conformal field theories. It would be interesting to identify the appropriate non-compact

and non-semi-simple gauged supergravities corresponding to each choice of brane configuration.

One of the questions we addressed was whether the maximal supergravity theories with

non-compact gauge groups can be obtained from higher dimensional theory. N = 8 gauged

supergravity theories have been constructed in 4-dimensions with gauge groups SO(p, 8 − p)

where p = 0, 1, 2, 3, and 4 or with non-semi-simple contractions of these gauge groups [7, 8, 9,

10, 11, 12, 13, 14]. In 7-dimensions, N = 4 gauged supergravity theories have been constructed

with gauge group SO(p, 5 − p) with p = 0, 1, 2 [15]. In five-dimensions there exist gauged

N = 8 supergravity theories with gauge groups SO(p, 6 − p) with p = 0, 1, 2, 3 or SU(3, 1)

[16]. Although odd-dimensional gauged supergravity theories do not appear to allow gaugings

of non-semi-simple contractions, some researchers have attempted to resolve the difficulties in

five-dimensions [17, 18]. It has been shown that the SO(p, q) gaugings and their non-semi-simple

contractions can be obtained from the appropriate higher dimensional supergravity theories.

The spheres used to compactify the SO(p) gaugings are replaced by hyperboloids for the non-

compact SO(p, q) gaugings and generalized cylinders for the non-semi-simple contractions [14].

Since embedding or consistent truncation of gauged supergravity is known to characterize

S7 compactification of eleven-dimensional supergravity1, we also are interested in the domain-

1 By generalizing compactification vacuum ansatz to the nonlinear level, solutions of eleven-dimensional
supergravity were obtained directly from the scalar and pseudo-scalar expectation values at various critical
points of theN = 8 supergravity potential [19]. They reproduced all known Kaluza-Klein solutions of the eleven-
dimensional supergravity: round S

7 [20], SO(7)−-invariant, parallelized S
7 [21], SO(7)+-invariant vacuum
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wall solution in four-dimensional gauged supergravity. In [28], a renormalization group flow

from N = 8, SO(8) invariant UV fixed point to N = 2, SU(3)× U(1) invariant IR fixed point

was found by studying the de Wit-Nicolai potential which is invariant in the SU(3) × U(1)

group. For this interpretation it was crucial to know the form of superpotential that was

encoded in the structure of the T-tensor of the theory. Very recently, the lift to M-theory of

the solution described in [28] was constructed [27](See also [29]). Moreover, it was natural and

illuminating to ask whether one can construct the most general superpotential for critical points

in four-dimensional N = 8 gauged supergravity: 1) SU(3)-invariant sectors, 2) SO(5)-invariant

sectors and 3) SO(3)× SO(3)-invariant sector [30]. In order to find and study BPS domain-

wall solutions by minimization of the energy-functional, one has to reorganize it into complete

squares. Then one should expect that the scalar potential takes the form of squares of physical

quantities. One important feature of the de Wit-Nicolai d = 4,N = 8 supergravity is that the

scalar potential can be written as the difference of two positive square terms. Together with

kinetic terms this implies that one may construct the energy-functional in terms of complete

squares.

The other gaugings of N = 8 supergravity could be obtained in the same way the SO(8)

gauging. One could proceed in the same way as the de Wit-Nicolai theory by changing the

supersymmetry transformations and adding them to the Lagrangian. Contrary to N = 4

supergravity in four or seven dimensions, as a result of the complicated nonlinear tensorial

structure, it is necessary to prove that the modified A1 and A2 tensors satisfy a number of

rather involved and lengthy quantities as in [31], to demonstrate the supersymmetry of the

theory. However, in [7, 8, 9, 10, 11, 12, 13, 14], an indirect and simple method which uses some

results known in the de Wit-Nicolai theory was found to generate different gaugings from SO(8)

compact-gauged supergravity theory in such a way that one obtains the full nonlinear structure

automatically and is guaranteed gauge invariance and supersymmetry. The first step was to

construct a real, self-dual anti-symmetric SO(p)+ × SO(q)+-invariant four-form tensor using

both the generator of SL(8,R) and SO(8) Γ matrices. Next, it was necessary to describe the

projectors that project the SO(8) Lie algebra onto its subalgebras in terms of a four-form tensor

in order to provide a convenient way to deal explicitly with the SL(8,R) transformation. Then

exhaustive manipulations of the invariance of four-form tensor were crucial for the existence

of those gaugings and finiteness of coupling constant-dependent, covariant derivative terms as

we take the infinity limit of some real parameter. Then we possess an explicit form for the

[22], SU(4)−-invariant vacuum [23], and a supersymmetric one with G2 invariance. Among them, round S
7-

and G2-invariant vacua are stable, while SO(7)±-invariant ones are known to be unstable [24]. In [25, 26]
three dimensional conformal field theories were classified by using AdS/CFT correspondence. In particular,
researchers [27] have studied the SU(3) × U(1) critical point, from the point of higher dimensional analysis,
which does not belong to the classification [19] but is a supersymmetric critical point of four-dimensional gauged
supergravity.
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T-tensor in terms of the standard parametrization of the scalar coset space.

In this paper, in section 2, we analyze known vacua of four-dimensional N = 8 non-compact

and non-semi-simple gauged supergravity developed by Hull [7, 8, 9, 10, 11, 12, 13, 14]. We

claim no originality for most of the results presented in sections 2.1-2.3, although our derivations

are hopefully illuminating. What we will do is to find out

• a superpotential from given T-tensor for known gauged supergravity theory and

• BPS domain-wall solutions from an energy-functional written in terms of complete squares.

In section 3, we will consider most general gaugings CSO(p, q, r)+ initiated by Hull where p+

q+r = 8 by using two successive SL(8,R) transformations on the compact gauged supergravity.

What we will do is to find

• a T-tensor in SU(8)-basis,

• a superpotential and a scalar potential from our findings of T-tensor and

• domain-wall solutions.

In section 4, we present our main results. In appendices, we present some details which are

necessary for the calculations in sections 2 and 3.

2 Domain Wall from SO(p)+ × SO(q)+ Sectors of N = 8

Supergravity

Let us consider an ungauged supergravity theory with N local Majorana supersymmetries,

4 ≤ N ≤ 8 given by Cremmer-Julia theory [32] who constructed it by dimensionally reducing

11-dimensional supergravity. Recall that since a Majorana spinor in four-dimensions has four

real components, the total number of supercharges for the maximal N = 8 theory becomes 32.

Note that there is no scalar field in the graviton multiplet for N < 4. If the maximum spin

is to be two, the number N can not be larger than 8. The scalar fields lie in a coset space

G/H where G is some non-compact group and H its maximal compact subgroup. Group H is

a local symmetry of the whole action while group G is a global symmetry of the equations of

motion only(not the action) because it acts on the spin-1 fields through duality transformations.

However, there exists a non-compact subgroup L of G, which is a global(rigid) symmetry of

the action. One can gauge subgroup K of the global symmetry group L of the action where

the dimension of K cannot exceed the number of vector fields in the model. To gauge the

theory, one adds minimal Yang-Mills couplings for K both to the Lagrangian L0, which is

the Lagrangian of the ungauged theory, and to the supersymmetry transformation rules of the

ungauged theory with the vector fields of the theory acting as gauge connections. One should

add coupling constant dependent terms to both the action and supersymmetry transformation

laws in such a way that local supersymmetry is restored and gauge invariance is maintained.
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Then one obtains a theory with Lagrangian L = L0 + Lg where Lg consists of minimal gauge

couplings with coupling constant g, fermionic bilinear terms proportional to g, and a scalar

potential proportional to g2. The minimal couplings and scalar potential break the symmetry

G of the equations of motion and the symmetry L of the action down to K while leaving the

local symmetry H unchanged. Then the gauge theory has both H ×K local gauge symmetry

and N -extended local supersymmetry.

The ungauged N = 8 supergravity(in this paper, we restrict ourselves to N = 8 theory)

has a symmetry G × H = E7global × SU(8)local of the equations of motion where the 28

vectors correspond to a global Abelian symmetry between particles. Motivated by the fact that

realistic theories of fundamental interactions are based on local, non-Abelian symmetries, de

Wit and Nicolai [33, 31] gauged the subgroup K = SO(8) of (the L = SL(8,R) subgroup of)

E7 that is a global symmetry of L0, and obtained a theory with a local K×H = SO(8)×SU(8)

symmetry. The gauge group K ⊂ L is a local symmetry: L → L under K while the remainder

L\K of the non-compact group L is a global symmetry of L0 but not of Lg:L → L′ = L0 +L′
g

under L\K. In other words, acting with L\K changes the gauge covariantizations, fermion

bilinear terms, and scalar potential in Lg while keeping the L0 unaffected. This is an invertible

field-redefinition for finite value of t which appears in (1) that leads to an equivalent theory,

invariant under the local supersymmetries and local gauge symmetry.

The contraction procedure involves a sequence of change of basis transformations depending

on the parameter [34]. Although the transformation becomes singular in the zero limit of a

parameter, the Lie bracket exists and is well defined in this singular limit. The original and

contracted algebras are not isomorphic. Note that non-singular changes of bases can never

lead to new algebras because under such a transformation the new structure constant tensor

possesses exactly as much information as the original. Let us consider a sequence of non-singular

elements E(ξ) of L with ξ real parameter and E(1) = 1, and an identity transformation, whose

limit point E(0) is singular and not in L. As long as E(ξ) remains nonsingular(ξ 6= 0), the

structure constants have the usual tensor properties. Acting on the Lagrangian with E(ξ)

yields a sequence of Lagrangian:L → L′(ξ) = L0 + Lg
′(ξ). If one also rescales the coupling

constant g to an ξ-dependent one through g → g′(ξ) for some choices of the sequence E(ξ) in

L, the limit of Lg
′(ξ) as ξ → 0(≡ Lg

′(0)) exists and is well defined(the new structure constants

characterize a Lie algebra) so that L′(0) = L0 + Lg
′(0) gives the Lagrangian for a gauge-

invariant supersymmetric theory. The gauge group corresponding to L′(0) is not K = SO(8)

itself but an Inonu-Wigner [35] contraction of K denoted by CSO(p, q)+ with p + q = 8

[10, 11]. A new(different from the de Wit-Nicolai compact gauged supergravity theory) gauging,

inequivalent to the original one, is obtained by a singular, noninvertible field redefinition. One

can also continue the Lagrangian L′(ξ) to negative values of ξ. In this case, L′(−1) is the

Lagrangian for another gauging and the gauge group is non-compact SO(p, q)+ with p+ q = 8
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[10, 11].

In section 2.1, starting with the action of L = SL(8,R) element on the de Wit-Nicolai

theory, we present a superpotential which is an eigenvalue of A1 tensor, that is, a partially

contracted T-tensor. In section 2.2, with explicit ξ-dependence on the T-tensor, one recovers

more general scalar potetential which will be reduced to the one in section 2.1 when we put

ξ = 0 and obtains a more general superpotential. In section 2.3, we present other cases,

CSO(p, q)+ and SO(p, q)+ gaugings where p = 6, 5, 4, 3, 2, 1 and q = 8 − p and review their

critical points in a scalar potential. In section 2.4, we construct a domain-wall solution from an

energy-functional. Finally in section 2.5, as an aside, we will concentrate on the construction

of a scalar potential for the vacuum expectation value given in terms of real, anti-self-dual(not

self-dual), totally anti-symmetric tensor. The parametrization for this singlet-space is invariant

under the SO(p)− × SO(q)− where p+ q = 8.

2.1 Superpotential in CSO(7, 1)+ = ISO(7)+ Gauging [7]

Following the procedure we have introduced, the action of the non-compact part of SL(8,R),

L\K, on the theory can be used to other gauged N = 8 supergravity. Let us consider the

acting with the L = SL(8,R) ⊂ E7(+7) element

E(t) = exp

(
0 tX+IJKL

tX+
IJKL 0

)
, (1)

on the de Wit-Nicolai theory where t is a real parameter proportional to − ln ξ where ξ was

introduced before and X+IJKL is some real and self-dual totally antisymmetric tensor that

satisfies

X+IJKL = X
+
IJKL =

η

24
ǫIJKLMNPQX+MNPQ.

Since E(t) is in the real SL(8,R) subgroup of E7(+7), the ungauged Cremmer-Julia action L0

remains unchanged but the g-dependent part Lg is modified nontrivially(changes the minimal

couplings and rotates the A1 and A2 tensors into one another). This gives one-parameter

family of Lagrangian related to the de Wit-Nicolai theory(t = 0 where E(0) = 1, identity

transformation, or equivalently ξ = 1 and E(ξ = 1) = 1) by the SL(8,R) field-redefinition

given by E(t). For all finite values of t, this yields a theory which is equivalent to the de

Wit-Nicolai theory by field-redefinition. However, a different gauging might be found in the

limit t → ∞(equivalent to ξ → 0) if it exists. For many choices of the four-form X+IJKL, the

limit does not exist. The simplest and special choice for which this limit exists [7] is2

X+IJKL = Y IJKL +
η

24
ǫIJKLMNPQY MNPQ, (2)

2 We emphasize that the way we have chosen X+IJKL here is different from the one in [30] in the sense that
in [30] the SU(2) matrix of SU(8) appears in the last 2× 2 block diagonal. However, in this paper, we take it
as the first 2× 2 block diagonal matrix. The nonzero-component of X+IJKL is either 1/2 or −1/2 as in [7].
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where

Y IJKL =
1

2

(
δIJKL
1 2 3 4 + δIJKL

1 2 5 6 + δIJKL
1 2 7 8 + δIJKL

1 3 7 5 + δIJKL
1 3 6 8 + δIJKL

1 4 5 8 + δIJKL
1 4 6 7

)
.

Here η = +1 for SO(7)+-invariant X+IJKL and δIJKL
MNPQ has 1 when I, J,K and L form an

even permutation of M,N, P,Q and −1 when they form an odd permutation of M,N, P,Q and

vanishes. We will come to the case in which η = −1 later in section 2.5 which holds for SO(7)−-

invariant X−IJKL. The four-form tensor X+IJKL is closely related to the torsion parallelizing

seven-sphere S7 [24, 21, 36, 37, 38] and invariant under the SO(7)+-subgroup of SO(8). Turning

on the vacuum expectation value proportional to X+IJKL in the de Wit-Nicolai theory gives

rise to spontaneous symmetry breaking of SO(8) into SO(7)+. Regarded as 28 × 28 matrices,

X+IJKL has 21 eigenvalues of −1 and 7 eigenvalues of +3. Introducing the projector P+ into

the 21-dimensional eigenspace(P+ projects the generators of SO(8) onto those of SO(7)+ while

P− projects the generators of SO(8) into the remainder SO(8)\SO(7)+), 3 they are given in

terms of X+IJKL

P IJKL
+ =

3

4

(
δIJKL − 1

3
X+IJKL

)
,

and4

P IJKL
− = δIJKL − P IJKL

+ =
1

4

(
δKL
IJ +X+IJKL

)
.

Therefore, one has

X+IJKL = −P+IJKL + 3P−IJKL. (3)

One can easily check that the projectors have the following properties5 which will be used

throughout this paper

P 2
± = P±, P±P∓ = 0.

Here the product P 2
± is that of 28 × 28 matrices, (P 2

±)
IJKL = P IJMN

± PMNKL
± . The 28 SO(8)

generators ΛIJ are projected onto a 21-dimensional subspace by P+, Λ
IJ
+ = P IJKL

+ ΛKL and this

subspace is the Lie algebra for the SO(7)+-subgroup of SO(8); in other words, the subgroup

stabilizes a right-handed side SO(8) spinor(See the appendix B). Similarly, the remaining 7

generators are generated by ΛIJ
− = P IJKL

− ΛKL.

3 Note that although the subscript minus sign in P− is nothing to do with the anti-self dual part SO(7)− of
SO(8), we will follow the same notation as in the previous literature [7]. In section 2.5, we take those projectors
as P1 and P2.

4 δIJKL is defined as δIJKL = 1
2!2!

(
δIKδJL − δILδ

J
K − δJKδIL + δJLδ

I
K

)
= 1

2

(
δIKδJL − δILδ

J
K

)
.

5In terms of X+IJKL, we have the following relation,
(
δIJKL − 1

3X
+IJKL

) (
δKL
IJ +X+IJKL

)
= 0.
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The change of the minimal couplings under supersymmetry gives a net change of the action

under an infinitesimal local supersymmetry that can be parametrized by a T-tensor [7]. An

expression for the T-tensor, T ′ jkl
i can be obtained by realizing that a variation of AIJ

µ leads to

a variation of the SU(8)-connection B j
µi

T ′ jkl
i =

(
ukl

IJ + vklIJ
) [

MIJKL

(
u KM
im ujm

LM − vimKMvjmLM
)

+N KLMN
IJ

(
vimKLu

jm
MN − u KL

im vjmMN
)]

(4)

where MIJKL and N KLMN
IJ are defined in terms of projectors

MIJKL = P+IJKL +
1

2
P−IJKL,

N KLMN
IJ =

1

2
P

IJ [K
− [P δ

L]
Q]

(
P PQMN
− − P PQMN

+

)
.

The supersymmetry of the theory is restored by adding L′
g to the ungauged action L0 and

to the supersymmetry transformation rules where A1, A2 tensors, that appear in L′
g, have a

functional dependence on the scalar field but with T ′ tensor. That is, for example,

A′ ij
1 = − 4

21
T ′ ijm
m , A′ ijk

2l = −4

3
T

′ [ijk]
l . (5)

The parametrization for the SO(7)+-singlet space6 that is an invariant subspace under a par-

ticular SO(7)+ subgroup of SO(8) becomes

φIJKL = 4
√
2sX+

IJKL

where s is a real scalar field.

Therefore, 56-beins V(x) can be written as a 56×56 matrix whose elements are the function

of scalar s by exponentiating the vacuum expectation value φIJKL. On the other hand, 28-

beins u KL
ij and vijKL are elements of this V(x). One can explicitly construct 28-beins u KL

ij

and vijKL in terms of scalar s and they are given in the appendix E (60). Now the complete

expression for A′
1 and A′

2 tensors are given in terms of s using (4) and (5). It turns out from (5)

that A′
1 tensor has a single real eigenvalue, z1 with degeneracies 8 and has the following form

A′ ij
1 = diag (z1, z1, z1, z1, z1, z1, z1, z1) , z1 =

7

8
es. (6)

Similarly, A′
2 tensor can be obtained from the triple product of u KL

ij and vijKL fields, that is,

from (5). They can be written as

A′ jkl
2i =

1

4
esX+ijkl. (7)

6The 35-dimensional fourth rank self-dual antisymmetric tensor representation of SO(8) splits into the
SO(7)+ representation 35 → 27+ 7+ 1 where the singlet 1 is nothing but SO(7)+-invariant tensor X+IJKL.
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Finally, the scalar potential together with new A′
1 and A′

2 tensors can be written, by combining

all the components of A′
1, A

′
2 tensors, as [7, 9]

V7,1,ξ=0 = −g2
(
3

4
|A′ ij

1 |2 − 1

24
|A′ jkl

2i |2
)
= −35

8
g2e2s (8)

which implies that there is no SO(7)+-invariant critical point of potential by differentiating

this scalar potential with repect to a field s. The eigenvalue z1 provides a superpotential which

will be analyzed in detail in section 2.3-2.4. The scalar potential can be written as

V7,1,ξ=0 = g2
[
2

7
(∂sz1)

2 − 6z21

]
= g2

[
4(∂s̃z1)

2 − 6z21
]

where s̃ =
√
14s. The theory [7] constitutes a gauging of the 28-dimensional, non-compact

ISO(7)+ symmetry of the Cremmer-Julia action L0. The theory has N = 8 local supersym-

metry and H ×Kξ=0,p=7,q=1 = SU(8)× ISO(7)+ local gauge symmetry where ISO(7)+ is the

isometry group of Euclidean 7 space, R7. In the symmetric gauge the diagonal SO(7)+ sub-

group is manifest. The non-compact gauged N = 8 supergravity theories can be obtained by

compactification of 11-dimensional supergravity on hyperboloids of a constant negative curva-

ture. The contracted version corresponds to a limit in which the hyperboloid degenerates to

an infinite cylinder [14]. Thus, the ISO(7)+ theory corresponds to a compactification on the

cylinder S6×R1 that can be replaced by S6×S1 because the near-horizon limit of the D2-brane

is different from that of M2-brane [1]. As near-horizon limits of the k torus T k reduction of the

M2-brane, one expects that the corresponding theory is CSO(8− k, k)+ gauged N = 8, d = 4

supergravity.

2.2 Superpotential in Non-compact SO(7, 1)+ Gauging [8]

A suitable one-parameter family (that cannot be more than 28-dimensional) where ξ is a real

parameter of 28-dimensional subgroups of L = SL(8,R) each parametrized by some real anti-

symmetric generator, is generated with nonzero ξ. The commutation relations of the generators

are given in the previous subsection and the only difference is that there exists another nonzero

commutator. Then the 21 Λ+ generate SO(7)+ group in which the seven linearly independent

Λ− transforms as a 7 representation. When ξ > 0, the algebra is that of SO(8) and normal-

ization is obtained when ξ = 1. When ξ < 0, one obtains SO(7, 1)+, the normalization being

obtained when ξ = −1. When ξ = 0, it gives ISO(7)+ as done previously. Then the one

parameter family of gauged N = 8 supergravities can be described by inserting ξ-dependent

terms where the T-tensor is given by [8]

T ′ jkl
i (ξ) = T jkl

i − (1− ξ)
(
ukl

IJ + vklIJ
)

×
[
1

2
P IJKL
−

(
u KM
im ujm

LM − vimKMvjmLM
)

8



+N KLMN
IJ

(
vimKLu

jm
MN − u KL

im vjmMN
)]

. (9)

When ξ = 1, one gets the de Wit-Nicolai model with SU(8)×SO(8) gauge symmetry. When

ξ = 0, one has SU(8)× ISO(7)+ gauge symmetry. Moreover, when ξ = −1, a different theory

with SU(8)×SO(7, 1)+ gauge symmetry was obtained. All the ξ < 0 theories are equivalent to

ξ = −1 model related to the SL(8,R) transformation and all the ξ > 0 theories are equivalent

to ξ = 1 de Wit-Nicolai theory related to the SL(8,R) transformation. Moreover, the ξ = 0

theory was obtained by limiting either ξ > 0 or ξ < 0 models, under which SO(8) or SO(7, 1)+

is transformed from an Inonu-Wigner contraction to ISO(7)+. As we have done before, we can

describe 28-beins in terms of s. It turns out that the A′
1 tensor has a single eigenvalue z1 with a

multiplicity of 8 which will provide a superpotential of a scalar potential and has the following

form generalizing (6)

A′ ij
1 = diag (z1, z1, z1, z1, z1, z1, z1, z1) , z1 =

1

8

(
7es + ξe−7s

)
. (10)

Additionally, we can construct an A′
2 tensor generalizing (7) which is the combination of the

triple product of 28 beins, as given in

A′ jkl
2i =

1

4

(
es − ξe−7s

)
X+ijkl. (11)

Therefore, the scalar potential generalizing (8) in the SO(7)+-invariant direction by summing

all the components of A′
1 and A′

2 tensors and counting the degeneracies correctly is given by

[8, 9]

V7,1,ξ = −g2
(
3

4
|A′ ij

1 |2 − 1

24
|A′ jkl

2i |2
)
=

1

8
g2
(
−35e2s − 14ξe−6s + ξ2e−14s

)
.

This can be written as a superpotential:V7,1,ξ = g2
[
2
7
(∂sz1)

2 − 6z21
]
= g2 [4(∂s̃z1)

2 − 6z21 ] where

s̃ =
√
14s. It is easily determined that there are no SO(7)+-invariant critical points. The

theory [8] has N = 8 local supersymmetry and H ×Kξ=−1,p=7,q=1 = SU(8) × SO(7, 1)+ local

gauge symmetry. SO(7, 1)+ gauge symmetry is broken down to its compact subgroup.

2.3 Superpotential in Other CSO(p, q)+ and SO(p, q)+ Gaugings [10,

11]

Starting from the SO(8) gauging, the ISO(7)+ and SO(7, 1)+ gaugings were obtained by

exploiting the transformations generated by the SO(7)+-invariant fourth rank antisymmetric

tensor. Now if one uses the SO(p)+ × SO(8 − p)+-invariant fourth rank tensor to generate

transformations, one expects an SO(p, 8−p)+ gauging and a gauging of a certain contraction of

SO(p, 8−p)+ about its compact subgroup SO(p)+ [10, 11]. Let us consider the SO(p)+×SO(q)+

9



invariant generator of SL(8,R),

Xab =

(
α1p×p 0

0 β1q×q

)

with

αp+ βq = 0, p+ q = 8

where 1p×p is the p×p identity matrix. The embedding of this SL(8,R) in E7 is such that Xab

corresponds to the 56 × 56 E7 generator which is a non-compact SO(p)+ × SO(q)+ invariant

element of the SL(8,R) subalgebra of E7
(

0 X+IJKL

X+
IJKL 0

)
,

where the real, self-dual totally anti-symmetric SO(p)+ × SO(q)+ invariant four-form tensor

X+
IJKL can be written in terms of a symmetric, trace-free, 8×8 matrix with SO(8) right-handed

spinor indices, Xab using SO(8) Γ matrices(See appendix B)

X+
IJKL = −1

8
(ΓIJKL)

ab Xab (12)

where ΓIJKL = Γ[IΓJΓKΓL] and an arbitrary SO(8) generator LIJ acts in the right-handed

spinor representation by (LIJΓIJ)
ab. When p = 7 and q = 1, this expression of (12) through Γ

matrix coincides exactly with the one in (2). We also present (12) explicitly in Appendix A for

various p and q.

Regarded as a 28 × 28 matrix, X+IJKL has eigenvalues α, β and γ = (α + β)/2 with

degeneracies dα, dβ and dγ respectively. Let it be recalled that SO(7)+-invariant four-form

tensor has eigenvalues of −1 and +3. The eigenvalues and eigenspaces of the SO(p)+×SO(q)+

invariant tensor are summarized in Table 1, including the case of (p, q) = (7, 1). By introducing

projectors as done in previous cases, Pα, Pβ and Pγ onto corresponding eigenspaces, we have a

28× 28 matrix equation that generalizes (3) to arbitrary p and q

X+IJKL = αP IJKL
α + βP IJKL

β + γP IJKL
γ .

Projector Pα(Pβ) projects the SO(8) Lie algebra onto its SO(p)+(SO(q)+) subalgebra while Pγ

does onto the remainder SO(8)/(SO(p)+ × SO(q)+).

p q α β γ = (α+ β)/2 dα = p(p− 1)/2 dβ = q(q − 1)/2 dγ = pq |X+|2
7 1 −1 7 3 21 0 7 84
6 2 −1 3 1 15 1 12 36
5 3 −1 5/3 1/3 10 3 15 20
4 4 −1 1 0 6 6 16 12
3 5 −1 3/5 −1/5 3 10 15 36/5
2 6 −1 1/3 −1/3 1 15 12 4
1 7 −1 1/7 −3/7 0 21 7 12/7

10



Table 1. Eigenvalues and eigenspaces of the SO(p)+ × SO(q)+ invariant tensor, X+ where

|X+|2 = dα|α|2 + dβ|β|2 + dγ|γ|2. We have taken this table from [10]. In [39], they displayed

the signature of the Killing-Cartan form by writing the numbers n+, n− and n0 of its positive,

negative and zero eigenvalues. Here we identify dα + dβ with n+ and dγ with n−.

Then the ξ-dependent T-tensor [10, 11] has a much more complicated expression that gen-

eralizes (9)

T ′ jkl
i (ξ) = T jkl

i − (1− ξ)
(
ukl

IJ + vklIJ
)

×
[(

P IJKL
β +

1

2
P IJKL
γ

)(
u KM
im ujm

LM − vimKMvjmLM
)

+P IJRS
γ ZKLMN

RS

(
−vimKLu

jm
MN + u KL

im vjmMN
)]

(13)

where we introduce the new quantity ZMN
IJKL

ZMN
IJKL =

1

2

[
(Pα − Pβ)IJMP PNPKL

γ − P IJMP
γ (Pα − Pβ)NPKL

]
. (14)

The 28-beins u KL
ij and vijKL are given in Appendix E and the projectors P IJKL

σ (σ = α, β, γ)

are given in Appendix F. This T ′ tensor [10] defines new A′
1 and A′

2 tensors. These models will

have N = 8 local supersymmetry and local SU(8)×Kξ,p,q invariance. The gauge groups are

SO(7, 1)+, SO(6, 2)+, SO(5, 3)+ and SO(4, 4)+,

when ξ = −1(t = iπ/(α− β)). When ξ = 0(t = ∞) there exist the inhomogeneous groups

CSO(7, 1)+ = ISO(7)+, CSO(6, 2)+, CSO(5, 3)+, CSO(4, 4)+,

CSO(3, 5)+, CSO(2, 6)+ and CSO(1, 7)+.

Any other choice of ξ > 0(ξ < 0) gives a model equivalent to the SO(8)(SO(p, q)+) gauging by

field-redefinition. The gauge symmetry Kξ,p,q is broken down to its maximal compact subgroup

or some subgroup thereof. There are three inequivalent distinct gaugings. From the expression

(13) one gets a single eigenvalue z1 with degeneracies 8 which has the following form

A′ ij
1 = diag (z1, z1, z1, z1, z1, z1, z1, z1) , z1 =

1

8

(
pes + qξe−

p
q
s
)

(15)

which include all the cases p, q and ξ and generalize (10). Similarly, one can construct A′
2

generalizing (11)

A′ jkl
2i =

q

4

(
es − ξe−

p
q
s
)
X+ijkl. (16)

11



Finally the Kξ,p,q-invariant scalar potential as a function of p, q, ξ and s by counting the degen-

eracies correctly can be written as7

V = −g2
(
3

4
|A′ ij

1 |2 − 1

24
|A′ jkl

2i |2
)

= −g2
(
3

4
× 8×

(
1

8

(
pes + qξe−

p
q
s
))2

− 1

24
×
(
q

4

(
es − ξe−

p
q
s
)
|X+ijkl|

)2
)

with

|X+|2 = 1

2
p(p− 1)|α|2 + 1

2
q(q − 1)|β|2 + pq|γ|2.

The potentials Vp,q,ξ for the Kξ,p,q gauging are given by [11]

V7,1,ξ =
1

8
g2
(
−35e2s − 14ξe−6s + ξ2e−14s

)
,

V6,2,ξ = −3g2
(
e2s + ξe−2s

)
,

V5,3,ξ = −3

8
g2
(
5e2s + 10ξe−2s/3 + ξ2e−10s/3

)
,

V4,4,ξ = −g2
(
e2s + 4ξ + ξ2e−2s

)
,

V3,5,ξ = −3

8
g2
(
e2s + 10ξe2s/5 + 5ξ2e−6s/5

)
,

V2,6,ξ = −3g2ξ
(
e2s/3 + ξe−2s/3

)
,

V1,7,ξ =
1

8
g2
(
e2s − 14ξe6s/7 − 35ξ2e−2s/7

)
. (17)

Of course, the potential V7,1,ξ is identical to the one in previous sections 2.1 and 2.2 and is

obtained by putting p = 7 and q = 1 into the general expression of a scalar potential. Note

that for ξ = −1, the potentials for the SO(p, q)+ gauging and the SO(q, p)+ gauging coincide

with each other due to the fact that the potential Vp,q,ξ can be obtained from Vq,p,ξ by rescaling

s → −ps/q. However, this is not true for ξ = 0 because Vp,q,ξ=0 6= Vq,p,ξ=0.

From the above effective non-trivial scalar potential one expects that the superpotential W

maybe encoded in either the A′
1 or A

′
2 tensors. It turns out that the eigenvalue of the A

′
1 tensor

z1 provides a superpotential and one can check that the scalar potential can be written in terms

of a superpotential as follows, observed newly in this paper

Wp,q(ξ; s) = z1 =
1

8

(
pes + qξe−

p
q
s
)
=

1

8

(
pe
√

q
2p

s̃ + qξe−
√

p
2q

s̃
)
,

Vp,q(ξ; s) = g2
[
2q

p
(∂sWp,q(ξ; s̃))

2 − 6Wp,q(ξ; s̃)
2

]

= g2
[
4 (∂s̃Wp,q(ξ; s̃))

2 − 6Wp,q(ξ; s̃)
2
]

(18)

7 It is known [12] that for finite real t, the T-tensor can be obtained from the old one, de Wit-Nicolai T-tensor

by replacing V with VE(t)−1 and scaling by a factor of eαt:T ′ jkl
i (V) = eαtT jkl

i (VE(t)−1). This can be used
to give a simple calculation of the potential in the SO(p)+ × SO(q)+ invariant direction in the space of scalar
field.
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where s̃ =
√

2p
q
s. The scalar potential has critical points at 1) critical points of superpotential

and at 2) points for which superpotential satisfies some differential equation. By differentiating

W with respect to field s, one finds that there are no critical points of superpotential corre-

sponding to supersymmetric critical points except the trivial critical point which has N = 8

supersymmetry and whose cosmological constant Λ = −6g2 for which W = 1. The other crit-

ical points of scalar potential yield nonsupersymmetric vacua that may or may not be stable.

The superpotential has the following values at the various critical points.

Gauge symmetry N p q = 8− p ξ s W V
SO(8) 8 any any 1 0 1 −6g2

SO(7)+ × SO(1)+ 0 7 1 1 −1
8
ln 5 3

2
× 5−1/8 −2 × 53/4g2

SO(5)+ × SO(3)+ 0 5 3 −1 −3
8
ln 3 −1

2
× 3−3/8 2× 31/4g2

SO(4)+ × SO(4)+ 0 4 4 −1 0 0 2g2

SO(3)+ × SO(5)+ 0 3 5 −1 5
8
ln 3 1

2
× 3−3/8 2× 31/4g2

SO(2)+ × U(1)+15 0 2 6 0 any es/4 0

SO(1)+ × SO(7)+ 0 1 7 1 7
8
ln 5 3

2
× 5−1/8 −2 × 53/4g2

Table 2. Summary of various critical points [11] in the context of superpotential observed in this

paper first : Gauge symmetry, supersymmetry, vacuum expectation value of field, superpoten-

tial and cosmological constants. For SO(3)+ × SO(5)+ case, one can check it by the change of

variable of SO(5)+×SO(3)+ case, s → −3s/5 that corresponding potential of SO(3)+×SO(5)+

is obtained while by change of variable, s → −s/7, the potential of SO(1)+ × SO(7)+ can be

found from SO(7)+ × SO(1)+ case. Although the corresponding superpotential of these two

cases may be different from the original ones, the scalar potentials are the same.

• SO(8) case: N = 8

By differentiating the scalar potential with respect to real scalar field s, there exists a

solution of s = 0 when ξ = 1 for all possible values of p and q. This is nothing but de Wit-

Nicolai’s SO(8)-invariant critical point and vacuum, which is fully supersymmetric(because in

this case, ∂sW |s=0 = 0 implying that V = −6g2W 2. In other words, |W | =
√
−V/6g2. All the

eight eigenvalues of the A′
1 tensor give rise to the number of supersymmetries) and hence are

stable. All the scalar potential Vp,q,ξ becomes −6g2 when s = 0 for ξ = 1.

• SO(7)+ × SO(1)+ case: N = 0

This is exactly the SO(7)+-invariant critical point of the SO(8) theory. As in Table 2, it

has no supersymmetry and is unstable.

• SO(5)+ × SO(3)+ case: N = 0

In this case, the value of the scalar potential gives a positive cosmological constant where

the eigenvalue of the A′
1 tensor is −1

2
× 3−3/8 and the A′

2 tensor has a value of 2 × 35/8X+ijkl.

It is known to be unstable.
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• SO(4)+ × SO(4)+ case: N = 0

At this critical point, the value of the scalar potential gives a positive cosmological constant

where the A′
1 tensor vanishes and the A′

2 tensor has a value of 4X+ijkl. It is known to be

unstable. The positivity of the cosmological constant from the analysis of 11-dimensional field

equations for SO(5, 3)+ and SO(4, 4)+ theories was confirmed in [14].

• SO(2)+ × U(1)+15 case: N = 0

When ξ = 0, the potential vanishes implying that for any value of s, there exists a zero

cosmological constant critical point. In addition, the potential is also flat in the SO(2)+ ×
SO(6)+-invariant direction. Nonetheless, global SO(6)+ symmetry remains unbroken by the

vacuum. In this case, the eigenvalue of the A′
1 tensor is equal to es/4 and the A′

2 tensor is

3esX+ijkl.

2.4 Domain Wall in CSO(p, q)+ and SO(p, q)+ Gaugings [10, 11]

Let us begin with the resulting Lagrangian of the scalar-gravity sector by explicitly determining

the scalar kinetic terms appearing in the action in terms of s. The scalar kinetic term is

− 1
96

∣∣∣A ijkl
µ

∣∣∣
2
where the generalized g-dependent A ijkl

µ can be obtained

A ijkl
µ = −2

√
2
(
uij

IJ∂µv
klIJ − vijIJ∂µu

kl
IJ

)

+4
√
2(1− ξ)gAµIJ

[(
P IJKL
β +

1

2
P IJKL
γ

) (
−uij

KMvklLM + vijKMukl
LM

)

+P IJRS
γ ZKLMN

RS

(
uij

KLu
kl
MN − vijKLvklMN

)]
. (19)

By taking the product of A IJKL
µ and its complex conjugation and taking into account the

multiplicity with vanishing AµIJ , we arrive at the following expression for (p, 8 − p) where

p = 7, 6, 5, 4, 3, 2, 1

− 1

96

∣∣∣A IJKL
µ

∣∣∣
2
= − (7, 3, 5/3, 1, 3/5, 1/3, 1/7)∂µs∂µs.

Let us define a new variable s̃, in order to have usual canonical kinetic terms, normalized by

1/2, as

s̃ =

√
2p

q
s.

Therefore, the resulting Lagrangian of scalar-gravity sector takes the form:

∫
d4x

√−g
(
1

2
R− 1

2
∂µs̃∂µs̃− Vp,q(ξ; s̃)

)
, (20)

together with (17) where s replaced by s̃. Having established the holographic duals of both

supergravity critical points, and examined small perturbations around the corresponding fixed
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point field theories, one can proceed the supergravity description. The supergravity scalar

whose vacuum expectation value leads to the new critical point tells us what relevant operators

in the dual field theory would drive a flow to the fixed point in the IR. To construct the kink

corresponding to the supergravity description of the nonconformal (in special case: RG) flow

from one scale to two other connecting critical points in d = 3 field theories, the form of a 3d

Poincare invariant metric breaking the full conformal group invariance takes the form [40]:

ds2 = e2A(r)ηµνdx
µdxν + e2B(r)dr2, ηµν = (−,+,+), (21)

characteristic of space-time with a domain wall where r is the coordinate transverse to the

wall(can be interpreted as an energy scale) and A(r) is the scale factor in the four-dimensional

metric.

Our interest in domain wall space-times arises from their relevance to dual field theories.

The distance from horizon U = ∞ corresponds to long distance in the bulk(UV in the dual

field theory) and U = 0(near horizon corresponds to short distances in the bulk(IR in the dual

field theory). We are looking for “interpolating” solutions. We will show how supergravity can

provide a description of the entire flow from the maximal supersymmetric UV theory to the IR

fixed point. With the above ansatz (21) the equations of motion for the scalars and the metric

from (20) read

∂2
rA− ∂rA∂rB +

3

2
(∂rA)

2 +
1

4
(∂rs̃)

2 +
1

2
e2BVp,q,ξ = 0,

∂2
r s̃+ 3∂rA∂r s̃− ∂rB∂r s̃− e2B∂s̃Vp,q,ξ = 0. (22)

By substituting the domain-wall ansatz (21) into the Lagrangian (20), the energy-density

E[A, s̃] [41], with the integration by parts on the term of ∂2
rA, per unit area transverse to

r-direction is given by

E[A, s̃] = −
∫ ∞

−∞
dre3A+B

[
−3e−2B

(
2(∂rA)

2 + ∂2
rA− ∂rA∂rB

)
− 1

2
e−2B (∂rs̃)

2 − Vp,q,ξ(s̃)
]
.

We are looking for a nontrivial configuration along r-direction in order to find out the first-

order differential equations satisfying the domain-wall, let us rewrite and reorganize the energy-

density by complete squares plus others due to usual squaring-procedure as follows:

E[A, s̃] =
1

2

∫ ∞

−∞
dre3A+B

[
−6

(
e−B∂rA +

√
2gWp,q(ξ; s̃)

)2
+
(
e−B∂r s̃− 2

√
2g∂s̃Wp,q(ξ; s̃)

)2

12
√
2ge−BWp,q(ξ; s̃)∂rA + 4

√
2ge−B∂rWp,q(ξ; s̃)

]

where superpotential Wp,q(ξ; s̃) is given by (18). Then one can easily check the last two terms

in the above can be combined as 4
√
2g∂r(e

3AWp,q(ξ; s̃)). Therefore, one arrives at

1

2

∫ ∞

−∞
dre3A+B

[
−6

(
e−B∂rA +

√
2gWp,q(ξ; s̃)

)2
+
(
e−B∂r s̃− 2

√
2g∂s̃Wp,q(ξ; s̃)

)2]
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+2
√
2g
(
e3AWp,q(ξ; s̃)

)
|∞−∞.

Finally, we find BPS bound, inequality of the energy-density

E[A, s̃] ≥ 2
√
2g
(
e3A(∞)Wp,q(ξ; s̃)(∞)− e3A(−∞)Wp,q(ξ; s̃)(−∞)

)
. (23)

Then E[A, s̃] is extremized by the following so-called BPS domain-wall solutions. The first

order differential equations for the scalar field are the gradient flow equations of a superpotential

defined on a restricted slice of the scalar manifold and simply related to the potential of gauged

supergravity on this slice. The equations describing the flow are then

∂rs̃ = ±2
√
2eBg∂s̃Wp,q(ξ; s̃),

∂rA = ∓
√
2eBgWp,q(ξ; s̃). (24)

There exists a supersymmetry [41, 42] of the background with a nonvanishing metric and

a single scalar field, for each spinor satisfying the Killing spinor condition. The background

satisfying (24) preserve half the supersymmetry. It is straightforward to verify that any solutions

s̃(r), A(r) of (24) satisfy the gravitational and scalar equations of motion given by the second

order differential equations (22). Embedding or consistent truncation means that the flow is

entirely determined by the equations of motion of supergravity in four-dimensions and any

solution of the truncated theory can be lifted to a solution of untruncated theory [43]. Using

(24), the monotonicity [44] of ∂rA which is related to the local potential energy of the kink

leads to ∂2
rA ≤ 0 when B is constant. Note that the value of superpotential at either end of a

kink may be thought of as determining the topological sector. The analytic solutions of (24)

for (p, q) = (4, 4) when B is a constant become

s̃(r) =
√
2 log



√
ξ
(e
√

2ξg(c−r) − 1)

(e
√

2ξg(c−r) + 1)


 , A(r) =

(
1 +

√
2ξg

)
c+ log

[
2 sinh

√
2ξg(r − c)

]

where c is some constant. For other values of (p, q), the analytic solutions exist only for ξ = 0.

2.5 SO(7)− Invariant Sector from SO(8) Gauging

The four-form tensor8 X−IJKL is invariant under the SO(7)− subgroup of SO(8). Turning

on the vacuum expectation value proportional to X−IJKL in the de Wit-Nicolai theory gives

rise to spontaneous symmetry breaking SO(8) into SO(7)−. Regarded as a 28 × 28 matrix,

X−IJKL has 21 eigenvalues of 1 and 7 eigenvalues of −3. Introducing the projector P1 onto the

8The SL(8,R) does act on the vector potential and is generated by the SO(8) and self-dual part. The
remainder of E7 including the anti-self-dual part does not act on the vector potentials but does act on the field
strengths. Therefore, contrary to the self-dual case we have discussed in previous sections, the anti-self-dual
case does not act on the vector potential. We thank C.M. Hull for pointing out this to us.
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21-dimensional eigenspace(P1 projects the generators of SO(8) onto those of SO(7)− while P2

projects the generators of SO(8) onto the remainder SO(8)\SO(7)−), they are given in terms

of X−IJKL

P IJKL
1 =

3

4

(
δIJKL +

1

3
X−IJKL

)
,

P IJKL
2 = δIJKL − P IJKL

1 =
1

4

(
δKL
IJ −X−IJKL

)
.

One can easily check that they satisfy

P 2
1 = P1, P 2

2 = P2, P1P2 = P2P1 = 0.

The 28 SO(8) generators ΛIJ are projected onto a 21-dimensional subspace by P1, ΛIJ
1 =

P IJKL
1 ΛKL and this subspace is the Lie algebra for the SO(7)− subgroup of SO(8); in other

words, the subgroup stabilizes a left-handed SO(8) spinor(See the appendix B). The remaining

7 generators are ΛIJ
2 = P IJKL

2 ΛKL. The usual commutation relations for SO(8) are given in

terms of ΛIJ
1 and ΛIJ

2 .

Viewed as a 28×28 matrix, X−IJKL has eigenvalues α, β and γ = (α+β)/2 with degenera-

cies dα, dβ and dγ respectively(For the explicit construction of X−IJKL see the Appendix A).

The eigenvalues and eigenspaces of the SO(p)−×SO(q)− invariant tensor are summarized sim-

ilarly. By introducing projectors as done in previous cases, Pα, Pβ and Pγ onto corresponding

eigenspaces, we have a 28×28 matrix equation to arbitrary p and q. The parametrization for the

SO(p)−×SO(q)−-singlet space that is invariant subspace under a particular SO(p)−×SO(q)−

subgroup of SO(8) becomes

φIJKL = 4
√
2isX−

IJKL

where s is a real scalar field. Note the presence of imaginary number i. As in the previous

consideration, the A′
1 tensor we obtained is a single complex eigenvalue with degeneracies 8

A′ ij
1 = diag (z1, z1, z1, z1, z1, z1, z1, z1) ,

z1 =
1

16
(1 + i)

(
pes + qe−

p
q
s
)
+

1

16
(1− i)

(
pe−s + qe

p
q
s
)
. (25)

For the A′
2 tensor we get

A′ jkl
2i =

p

8

[
(1 + i)

(
e−

p
q
s − es

)
+ (1− i)

(
e

p
q
s − e−s

)]
X−ijkl.

Therefore, we are now ready to calculate the full expression of a scalar potential and it turns

out

V7,1 =
1

16
g2e−14s

(
1 + e4s

)5 (
1− 5e4s + e8s

)
,
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V6,2 = −3g2e−2s
(
1 + e4s

)
,

V5,3 = − 3

16
g2e−10s/3

(
1 + e4s/3

)5
,

V4,4 = −g2
(
4 + e−2s + e2s

)
,

V3,5 = − 3

16
g2e−2s

(
1 + e4s/5

)5
,

V2,6 = −3g2e−2s/3
(
1 + e4s/3

)
,

V1,7 =
1

16
g2e−2s

(
1 + e4s/7

)5 (
1− 5e4s/7 + e8s/7

)
.

Note that the potential Vp,q can be obtained from Vq,p by rescaling s → ps/q. The eigenvalue

of the A′
1 tensor z1 provides a superpotential and one can check that the scalar potential can

be written in terms of superpotential:

Wp,q(s) = |z1|,

Vp,q(s) = g2
[
2q

p
(∂sWp,q(s))

2 − 6Wp,q(s)
2

]
= g2

[
4 (∂s̃Wp,q(s))

2 − 6Wp,q(s)
2
]

where s̃ =
√

2p
q
s and z1 is given by (25). The kinetic terms are equivalent to the previous

cases. In this case, there are no such first order differential equations for either a flow between

SO(8) fixed point and SO(7)− × SO(1)− fixed point or a flow between SO(8) and SO(1)− ×
SO(7)−, contrary to the previous SO(p)+ × SO(q)+ embedding case. The superpotential has

the following values at the two critical points.

Gauge symmetry N p q = 8− p s W V
SO(8) 8 any any 1 0 −6g2

SO(7)− × SO(1)− 0 7 1 1
2
ln 1

2
(±1 +

√
5) 3×53/4

8
−25

√
5

8
g2

SO(1)− × SO(7)− 0 1 7 7
2
ln 1

2
(±1 +

√
5) 3×53/4

8
−25

√
5

8
g2

Table 3. Summary of critical points in the context of superpotential : symmetry group, su-

persymmetry, vacuum expectation values of field, superpotential, and cosmological constants.

For either case, it is exactly SO(7)−-invariant critical point of the SO(8) theory. It has no

supersymmetry and is unstable.

3 Domain Wall from SO(p)+×SO(q)+×SO(r)+ Sectors of

N = 8 Supergravity

Let us consider a sequence of non-singular elements E(ξ) of L = SL(8,R) with ξ real parameter

and E(1) = 1, identity transformation, whose limit point E(0) is singular and not in L. As long

as E(ξ) remains nonsingular(ξ 6= 0), the structure constants have the usual tensor properties.
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Acting on the Lagrangian with E(ξ) yields a sequence of Lagrangian:L → L′(ξ) = L0 +Lg
′(ξ).

If one also rescales the coupling constant g by a ξ-dependent one through g → g′(ξ) for some

choices of the sequence E(ξ) in L, a limit of Lg
′(ξ) exists and is well defined. One can continue

the Lagrangian L′(ξ) to negative values of ξ. In this case, L′(−1) is the Lagrangian for different

gauging and the gauge group is non-compact SO(p, q + r)+ with p + q + r = 8 which will be

discussed in section 3.2. One continues to consider a sequence of non-singular elements F (ζ)

of L with ζ real parameter and F (1) = 1, identity transformation, whose limit point F (0) is

singular and not in L. As long as F (ζ) remains nonsingular(ζ 6= 0), the structure constants

have the usual tensor properties. Acting on the Lagrangian L′ with F (ζ) yields a sequence of

Lagrangian:L′ → L′′(ζ) = L0 + Lg
′′(ζ, ξ). If one also rescales the coupling constant g′ by a

ζ-dependent one through g′ → g′′(ζ) for some choices of the sequence F (ζ) in L, the limit of

Lg
′′(ζ) exists as ζ → 0 so that L′′(ζ = 0) = L0 + Lg

′′(ζ = 0) gives the Lagrangian. The gauge

group corresponding to L′′(ζ = 0, ξ = −1) is an Inonu-Wigner contraction of Kξ,ζ,p,q,r denoted

by CSO(p, q, r)+ with p + q + r = 8 [11].

In section 3.1, we start with the most general gaugings which generalize previous considera-

tions by introducing two parameters, ξ and ζ . The gauging denoted by CSO(p, q, r)+ preserves

a metric with p positive eigenvalues, q negative eigenvalues and r zero eigenvalues. In section

3.2, by analyzing two successive SL(8,R) transformations(repeating twice) in the context of

SO(p, q + r)+ and SO(p + q, r)+ gaugings, we discover a T ′ tensor which depends on these

two parameters, ξ and ζ . As done in previous sections, the A1 and A2 tensors can be easily

determined by realizing that 56-beins are product of each 56-bein for each parametrization

of the singlet-space. In section 3.3 it turns out that one has a scalar potential which can be

written as a superpotential in very simple form and in section 3.4, we find the domain-wall

solutions. In section 3.5, by starting with SO(p)+ × SO(q)+ × SO(r)+ invariant generator of

SL(8,R) directly, one can construct the projectors corresponding to this invariant four-form

tensor, which we will compare with the approach given in section 3.2-3.4.

3.1 Non-semi-simple and Non-compact Gaugings [11]

It is possible to gauge the 28-dimensional subgroup Kξ,ζ,p,q,r of L = SL(8,R) whose algebra

[Λab,Λcd]ξ,ζ = Λadηbc − Λacηbd − Λbdηac + Λbcηad,

ηab =




1p×p 0 0
0 ξ1q×q 0
0 0 ξζ1r×r


 , p+ q + r = 8

where a, b = 1, · · · , 8 and Λab = −Λba.

• When (ξ, ζ) = (1, 1), this leads to the algebra of SO(8) and the de Wit-Nicolai gauging is

recovered. When (ξ, ζ) = (1, 0) it will give CSO(p+ q, r)+ algebra which was discussed in the
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previous section and the maximal compact subgroup is SO(p+ q)+ × U(1)+r(r−1)/2. Moreover,

when (ξ, ζ) = (1,−1), one gets SO(p + q, r)+ algebra which was already considered and the

maximal compact subgroup is SO(p+ q)+ × SO(r)+.

•When (ξ, ζ) = (−1, 1), it will give non-compact SO(p, q+r)+ gauging whose maximal compact

subgroup is SO(p)+ × SO(q + r)+. When (ξ, ζ) = (−1, 0), it gives a certain non-semi-simple

algebra of the Inonu-Wigner contraction of SO(8) about its SO(p, q)+ subgroup, denoted by

CSO(p, q, r)+ [11]. The maximal compact subgroup is SO(p)+×SO(q)+×U(1)+r(r−1)/2. Note

that CSO(p, q, 1)+ = ISO(p, q)+, the inhomogeneous group. For (ξ, ζ) = (−1,−1), one gets

SO(p+ r, q)+ algebra.

• When ξ = 0, it gives Inonu-Wigner contraction CSO(p, q+r)+ which was already considered.

The CSO(p, q, r)+ gauging initiated by Hull which preserves a metric with p positive eigen-

values, q negative eigenvalues and r zero eigenvalues can be obtained by group contractions of

SO(8) as follows. One decomposes each SO(8) generator Λ into the part Λ(α) in the SO(p)+

sub-algebra, the part Λ(β) in the SO(q)+ sub-algebra, the part Λ(γ) in the SO(r)+ sub-algebra,

and the remainders Λ(δ),Λ(λ), and Λ(ρ) where Λ = Λ(α) + Λ(β) + Λ(γ) + Λ(δ) + Λ(λ) + Λ(ρ). See

also the discussion around in (32). One performs the rescaling as

Λ → Λ(α) + ξ
(
Λ(β) + ζΛ(γ) +

√
ζΛ(ρ)

)
+
√
ξ
(
Λ(δ) +

√
ζΛ(λ)

)
.

The rescaled algebra can be represented as

[Λ(α),Λ(α)] ≈ Λ(α), [Λ(α),Λ(δ)] ≈ Λ(δ), [Λ(α),Λ(λ)] ≈ Λ(λ),

[Λ(β),Λ(β)] ≈ ξΛ(β), [Λ(β),Λ(δ)] ≈ ξΛ(δ), [Λ(β),Λ(ρ)] ≈ ξΛ(ρ),

[Λ(γ),Λ(γ)] ≈ ξζΛ(γ), [Λ(γ),Λ(ρ)] ≈ ξζΛ(ρ), [Λ(γ),Λ(λ)] ≈ ξζΛ(λ),

[Λ(δ),Λ(δ)] ≈ ξΛ(α) + Λ(β), [Λ(δ),Λ(ρ)] ≈ ξΛ(λ), [Λ(δ),Λ(λ)] ≈ Λ(ρ),

[Λ(ρ),Λ(ρ)] ≈ ξζΛ(β) + ξΛ(γ), [Λ(ρ),Λ(λ)] ≈ ξζΛ(δ), [Λ(λ),Λ(λ)] ≈ ξζΛ(α) + Λ(γ),

with other commutators vanishing. By taking the contraction, ζ → 0, the SO(r)+ subgroup

generated by Λ(γ) collapses to an abelian group U(1)+r(r−1)/2 and the maximal compact sub-

group of CSO(p, q, r)+ is SO(p)+ × SO(q)+ × U(1)+r(r−1)/2. The generators Λ(γ) commute

all the generators except appearing on the right hand sides of [Λ(λ),Λ(λ)] and [Λ(ρ),Λ(ρ)]. The

methods described in previous section will be used to obtain a CSO(p, q, r)+ gaugings.

3.2 T-tensor in CSO(p, q, r)+ Gaugings [11]

The CSO(p, q, r)+ gaugings can be obtained by acting on the SO(p, q+r)+ gauging first. Some

idea in this direction was already given in the paper of [14]. Let us consider the SO(p)+ ×
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SO(q + r)+ invariant generator of SL(8,R) we have discussed in previous section,

Xab =

(
α1p×p 0

0 β1(q+r)×(q+r)

)
(26)

with

αp+ β(q + r) = 0, p+ q + r = 8. (27)

Regarded as a 28 × 28 matrix, real, self-dual totally anti-symmetric SO(p)+ × SO(q + r)+-

invariant four-form tensor X+IJKL
t has eigenvalues α, β and γ = (α + β)/2 with degeneracies

dα, dβ and dγ respectively. The eigenvalues and eigenspaces of the SO(p)+ × SO(q + r)+

invariant tensor are summarized in Table 1. By introducing projectors, Pα,t, Pβ,t and Pγ,t onto

corresponding eigenspaces, we have a 28×28 matrix equation. Projector Pα,t(Pβ,t) projects the

SO(8) Lie algebra onto its SO(p)+(SO(q+ r)+) subalgebra while Pγ,t does onto the remainder

SO(8)/(SO(p)+×SO(q+r)+). Note that q over there is replaced by q+r here. The projectors

can be constructed from X+IJKL
t . The combination gAIJ

µ in the minimal couplings will be finite

as t → ∞ if g is rescaled to

g(t) = geαt

for constant α which we have chosen as −1 so that

g(t)AIJ
µ (t) = g

(
AIJ

µ(α) + e(α−β)tAIJ
µ(β) + e(α−γ)tAIJ

µ(γ)

)

= g
(
AIJ

µ(α) + ξAIJ
µ(β) +

√
ξAIJ

µ(γ)

)
, (28)

where ξ = e(α−β)t as before. One finds that on taking the limit t → ∞(ξ → 0) one obtains a

gauging with gauge group contraction of SO(8) about its SO(p)+ subgroup. If, instead, one

analytically continues to t = iπ/(α− β), one obtains a gauging of SO(p, q + r)+.

Let us consider the additional, second SL(8,R) transformation using the SO(p + q)+ ×
SO(r)+ invariant generator of SL(8,R),

Xab =

(
α′1(p+q)×(p+q) 0

0 β ′1r×r

)
(29)

with

α′(p+ q) + β ′r = 0, p+ q + r = 8. (30)

Regarded as a 28 × 28 matrix, real, self-dual totally anti-symmetric SO(p + q)+ × SO(r)+-

invariant four-form tensor X+IJKL
s has eigenvalues α′, β ′ and γ′ = (α′+β ′)/2 with degeneracies

dα′ , dβ′ and dγ′ respectively. The eigenvalues and eigenspaces of the SO(p + q)+ × SO(r)+
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invariant tensor are summarized in Table 1. By introducing projectors, Pα′,s, Pβ′,s and Pγ′,s

onto corresponding eigenspaces, we have a 28 × 28 matrix equation. Projector Pα′,s(Pβ′,s)

projects the SO(8) Lie algebra onto its SO(p+ q)+(SO(r)+) subalgebra while Pγ′,s does onto

the remainder SO(8)/(SO(p + q)+ × SO(r)+). Note that p over there is replaced by p + q

here. The projectors can be constructed from X+IJKL
s similarly. The combination gAIJ

µ in the

minimal couplings will be finite as s → ∞ if g is rescaled to

g(s) = geα
′s

for some constant α′(taken as −1) so that by acting [exp(−sX+
s )]

IJKL on the right hand side

of (28)

g(s, t)AIJ
µ (s, t) = g

(
P IJKL
α′,s + e(α

′−β′)sP IJKL
β′,s + e(α

′−γ′)sP IJKL
γ′,s

)

×
(
AKL

µ(α) + e(α−β)tAKL
µ(β) + e(α−γ)tAKL

µ(γ)

)

= g
(
AIJ

µ(α′α) + ξAIJ
µ(α′β) +

√
ξAIJ

µ(α′γ) + ζξAIJ
µ(β′β) +

√
ζξAIJ

µ(γ′β) +
√
ζξAIJ

µ(γ′γ)

)

where ζ = e(α
′−β′)s as before. Here we used the fact that

Pβ′,sPα,t = Pβ′,sPγ,t = Pγ′,sPα,t = 0 (31)

which can be shown by the explicit expression of projectors given in Appendix F and we denote

the simplified notations for AIJ
µ(σ′σ), where σ′ = α′, β ′, γ′, σ = α, β, γ as follows:

AIJ
µ(α′α) ≡ (Pα′,sPα,t)

IJMN AMN
µ , AIJ

µ(α′β) ≡ (Pα′,sPβ,t)
IJMN AMN

µ ,

AIJ
µ(α′γ) ≡ (Pα′,sPγ,t)

IJMN AMN
µ , AIJ

µ(β′β) ≡ (Pβ′,sPβ,t)
IJMN AMN

µ ,

AIJ
µ(γ′β) ≡ (Pγ′,sPβ,t)

IJMN AMN
µ , AIJ

µ(γ′γ) ≡ (Pγ′,sPγ,t)
IJMN AMN

µ .

Now we can think of the product of these projectors, P IJKL
σ′,s PKLMN

σ,t , as a single projector.

Therefore, let us define them, to satisfy the usual property of projectors, as

Pα′,sPα,t ≡ Pα, Pα′,sPβ,t ≡ Pβ, Pα′,sPγ,t ≡ Pδ,

Pβ′,sPβ,t ≡ Pγ, Pγ′,sPβ,t ≡ Pρ, Pγ′,sPγ,t ≡ Pλ. (32)

We will see that δ = (α + β)/2, λ = (α + γ)/2 and ρ = (β + γ)/2 and α and β are re-

lated to α’s in (27) and (30). Projector Pα(Pβ)[Pγ] projects the SO(8) Lie algebra onto its

SO(p)+(SO(q)+)[SO(r)+] subalgebra while Pδ(Pλ)[Pρ] projects onto the remainder

SO(8)

SO(p)+ × SO(q)+

(
SO(8)

SO(p)+ × SO(r)+

)[
SO(8)

SO(q)+ × SO(r)+

]
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which will be discussed in next section 3.5. One obtains these projectors explicitly from the

relation (32) where the projectors in SO(p)+×SO(q)+-invariant sector are given in the appendix

F. In terms of these new projectors, one can write the combination g(s, t)AIJ
µ (s, t) as

AIJ
µ(α) + ξ

(
AIJ

µ(β) + ζAIJ
µ(γ) +

√
ζAIJ

µ(ρ)

)
+
√
ξ
(
AIJ

µ(δ) +
√
ζAIJ

µ(λ)

)
. (33)

By expanding g(t, s)D(Aµ, ξ, ζ) with respect to both t and s, there exist many terms that seem

to diverge as t → ∞ or s → ∞. However, by exploiting some identities of the generators given

in appendix D, it implies that those divergent terms vanish identically and therefore a limit of

t → ∞ or s → ∞ exists.

By simplifying the expressions appearing in g(t, s)D(Aµ, ξ, ζ), one gets, for example, the

first 28× 28 block diagonal terms given by

A(α)µ + PαA(δ)µPδ + PδA(δ)µPβ + PλA(δ)µPρ + PλA(λ)µPγ ++PαA(λ)µPλ + PδA(λ)µPρ

+ξ
(
A(β)µ + PδA(δ)µPα + PβA(δ)µPδ + PρA(δ)µPλ + PβA(ρ)µPρ + PδA(ρ)µPλ

+PρA(ρ)µPγ

)
+ ξζ

(
A(γ)µ + PρA(ρ)µPβ + PλA(ρ)µPδ + PγA(ρ)µPρ + PλA(λ)µPα

+PρA(λ)µPδ + PγA(λ)µPλ

)
(34)

where we used the properties between projectors and vector fields:

PαA(ρ)µPα = PγA(δ)µPγ = PβA(λ)µPβ = 0.

One can prove that (34) becomes the one we have considered for SO(p, q + r)+ gauging when

ζ = 1 by combining ξ-dependent terms with ξζ-dependent terms9 and removing the projectors

Pσ′,s(σ
′ = α′, β ′, γ′) with (32) under the extensive manipulation of properties of projectors. On

the other hand, when ξ = 1, it becomes the one in SO(p + q, r)+ gauging by combining the

ξ, ζ-independent terms with ξ-depedent terms and removing the projectors Pσ,t(σ = α, β, γ).

In this case, we can write it similarly10.

Collecting all other terms by simplifying other three 28× 28 blocks we get

g(t, s)D(Aµ, ξ, ζ) = gD(Aµ)

9 When ζ = 1, (34) becomes,

A(α)µ + Pα,tA(γ)µPγ,t + Pγ,tA(γ)µPβ,t + ξ
(
A(β)µ + Pβ,tA(γ)µPγ,t + Pγ,tA(γ)µPα,t

)
.

10 When ξ = 1, (34) becomes

A(α′)µ + Pα′,sA(γ′)µPγ′,s + Pγ′,sA(γ′)µPβ′,s + ζ
(
A(β′)µ + Pβ′,sA(γ′)µPγ′,s + Pγ′,sA(γ′)µPα′,s

)
.
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−(1− ξ)g


 A(β)µ +

1
2

(
A(δ)µ + A(ρ)µ

)
, ZMN

(ρ)IJKLA
MN
(ρ)µ − ZMN

(δ)IJKLA
MN
(δ)µ

ZMN
(ρ)IJKLA

MN
(ρ)µ − ZMN

(δ)IJKLA
MN
(δ)µ , A(β)µ +

1
2

(
A(δ)µ + A(ρ)µ

)



−(1− ξζ)g


 A(γ)µ +

1
2

(
A(λ)µ + A(ρ)µ

)
, ZMN

(λ)IJKLA
MN
(λ)µ − ZMN

(ρ)IJKLA
MN
(ρ)µ

ZMN
(λ)IJKLA

MN
(λ)µ − ZMN

(ρ)IJKLA
MN
(ρ)µ , A(γ)µ +

1
2

(
A(λ)µ + A(ρ)µ

)



where ZMN
(σ)IJKL are quadratic forms of projectors

ZMN
(δ)IJKL =

1

2

[
(Pα − Pβ)IJMP PNPKL

δ − P IJMP
δ (Pα − Pβ)NPKL

−
(
PρIJMPP

NPKL
λ − PλIJMPP

NPKL
ρ

)]
, (35)

and ZMN
(λ)IJKL can be written by performing the change of the above indices in (35) as α →

γ, β → α, δ → λ, ρ → δ, λ → ρ and ZMN
(ρ)IJKL which can be expressed by changing the indices in

(35) as α → β, β → γ, δ → ρ, ρ → λ, λ → δ. Then our SU(8) T ′ tensor encoding the structure

of the scalar sector of the N = 8 supergravity can be read off and one arrives at the final

complicated expression:

T ′ jkl
i (ξ, ζ) = T jkl

i − (1− ξ)
(
ukl

IJ + vklIJ
)

×
[(

P IJKL
β +

1

2

(
P IJKL
δ + P IJKL

ρ

)) (
u KM
im ujm

LM − vimKMvjmLM
)

+
(
P IJRS
δ ZKLMN

(δ)RS − P IJRS
ρ ZKLMN

(ρ)RS

) (
−vimKLu

jm
MN + u KL

im vjmMN
)]

− (1− ξζ)
(
ukl

IJ + vklIJ
)

×
[(

P IJKL
γ +

1

2

(
P IJKL
λ + P IJKL

ρ

)) (
u KM
im ujm

LM − vimKMvjmLM
)

+
(
P IJRS
ρ ZKLMN

(ρ)RS − P IJRS
λ ZKLMN

(λ)RS

) (
−vimKLu

jm
MN + u KL

im vjmMN
)]

. (36)

Let us examine the structure of T ′-tensor11. When ξ = 1, it consists of ζ-independent part

plus ζ-dependent part. One can prove that by plugging Pσ(σ = α, β, γ, δ, λ, ρ) into the product

of Pσ′,s(σ
′ = α′, β ′, γ′) and Pσ,t(σ = α, β, γ). According to (32), the expressions of projectors

proportional to 1−ζ are identical to those in (13) for SO(p+q)+×SO(r)+-invariant sector. On

the other hand, when ζ = 1, the above (36) will consist of ξ-independent part plus ξ-dependent

part. By substituting Pσ(σ = α, β, γ, δ, λ, ρ) back into Pσ′,s(σ
′ = α′, β ′, γ′) and Pσ,t(σ = α, β, γ).

According to (32), the expressions of projectors proportional to 1 − ξ are the same as those

in (13) for SO(p)+ × SO(q + r)+-invariant sector. Therefore, the expressions of projectors

proportional to 1 − ξ in (36) are the difference between the one in (p, q + r) and the one in

(p + q, r). One can easily see that the expressions of projectors proportional to 1− ξζ in (36)

11 It is more convenient to use the SL(8,R) basis in order to compare operators in the dual CFT. This is
nothing but a triality rotation of the SU(8) basis we have considered in which the two representations of SO(8)
are converted to each other using gamma matrices. In an SL(8,R) basis, the expression of T-tensor was already
given as Eq. (21) in [11].
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are the one in (p + q, r). This implies that one can use the projectors in (36) for those in

SO(p)+ × SO(q)+ invariant sector. Alternatively, one can exploit those projectors from (48)

directly.

When (ξ, ζ) = (1, 1), this leads to the algebra of SO(8) and one obtains de Wit-Nicolai

gauging with SU(8) × SO(8) gauge symmetry. When (ξ, ζ) = (1, 0) one has CSO(p + q, r)+

algebra with SU(8) × CSO(p + q, r)+ gauge symmetry. Moreover, when (ξ, ζ) = (1,−1), one

gets SO(p+q, r)+ algebra with SU(8)×SO(p+q, r)+ gauge symmetry. When (ξ, ζ) = (−1, 1), it

will give non-compact SO(p, q+r)+ gauging with SU(8)×SO(p, q+r)+ gauge symmetry. When

(ξ, ζ) = (−1, 0), it yields a nontrivial non-semi-simple algebra of the Inonu-Wigner contraction

of SO(8) about its SO(p, q)+ subgroup, denoted by CSO(p, q, r)+ with SU(8)×CSO(p, q, r)+

gauge symmetry. For (ξ, ζ) = (−1,−1), one gets SO(p+ r, q)+ algebra with gauge symmetry

SU(8)×SO(p+ r, q)+. Finally, when ξ = 0, it gives Inonu-Wigner contraction CSO(p, q+ r)+

with gauge symmetry SU(8)×CSO(p, q+ r)+. The gauge group will be spontaneously broken

to its maximal compact subgroup.

3.3 Superpotential and Scalar Potential in CSO(p, q, r)+ Gaugings
[11]

The parametrization for the SO(p)+×SO(q)+×SO(r)+-singlet space that is invariant subspace

under a particular SO(p)+ × SO(q)+ × SO(r)+ subgroup of SO(8) becomes

φIJKL = 4
√
2
(
mX+

IJKL,s + nX+
IJKL,t

)

where m,n are two real scalar fields. The two scalar fields parametrize an SO(p)+×SO(q)+×
SO(r)+-invariant subspace of the full scalar manifold E7(7)/SU(8). The 56-beins V can be

written as a 56 × 56 matrix by exponentiating the vacuum expectation value φIJKL. One can

construct 28-beins u KL
ij and vijKL in terms of scalars m,n explicitly, which can be given in

terms of the products of u KL
ij,t , vijKL,t, u

KL
ij,s and vijKL,s, as given in the Appendix E12. Now

the full expression for A′
1 and A′

2 tensors are given in terms of m,n using (5) and (36) with T ′

tensor.

V(x) = exp




0 − 1
2
√
2
φIJPQ

− 1
2
√
2
φ
MNKL

0




12One can express u KL
IJ and vIJKL in terms of sum of product of 4× 4 matrices as follows:

u KL
IJ = diag (u1,tu1,s + v1,tv1,s, u2,tu2,s + v2,tv2,s, u3,tu3,s + v3,tv3,s,

u4,tu4,s + v4,tv4,s, u5,tu5,s + v5,tv5,s, u6,tu6,s + v6,tv6,s, u7,tu7,s + v7,tv7,s) ,

vIJKL = diag (u1,tv1,s + v1,tu1,s, u2,tv2,s + v2,tu2,s, u3,tv3,s + v3,tu3,s,

u4,tv4,s + v4,tu4,s, u5,tv5,s + v5,tu5,s, u6,tv6,s + v6,tu6,s, u7,tv7,s + v7,tu7,s)

where each ui,t and ui,s corresponds to seven 4× 4 block diagonal matrices for u KL
IJ,t and u KL

IJ,s respectively as

in Appendix E and vi,t and vi,s for vIJKL,t and vIJKL,s respectively. Their complex conjugations hold similarly.
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= exp




0 − 1
2
√
2
φIJPQ,t

− 1
2
√
2
φ
MNKL,t

0


× exp




0 − 1
2
√
2
φIJPQ,s

− 1
2
√
2
φ
MNKL,s

0




=

(
u IJ
ij,t vijKL,t

vklIJt ukl
KL,t

)
×
(

u IJ
ij,s vijKL,s

vklIJs ukl
KL,s

)
=

(
u IJ
ij vijKL

vklIJ ukl
KL

)
(37)

where φIJKL,s = 4
√
2mX+

IJKL,s and φIJKL,t = 4
√
2nX+

IJKL,t, which commute each other. It

turns out from (36) that the A′
1 tensor has a single real eigenvalue, z1, with degeneracies 8 that

has the following form

A′ij
1 = diag(z1, z1, z1, z1, z1, z1, z1, z1),

z1 =
1

8

(
pem+n + qem− p

(q+r)
nξ + re−

p+q
r

m− p
(q+r)

nξζ
)
. (38)

It is now straightforward to verify that this yields (15) for (p + q, r) gauging when ξ = 1 and

n = 0. However, when ζ = 1 and m = 0 it becomes (15) for (p, q + r) gauging. In particular

the superpotential, W , for the flow is found as one of the eigenvalues of the this symmetric

tensor. Additionally, we can construct the A′
2 tensor from (36) which are the combinations of

the triple product of 28-beins as given in

A′ jkl
2i =

1

4
(q + r)em

(
en − ξe−

p
q+r

n
)
X+ijkl

t +
1

4
rξe−

p
q+r

n
(
em − ζe−

p+q
r

m
)
X+ijkl

s

= em(A2,t)
jkl

i + ξe−
p

q+r
n(A2,s)

jkl
i (39)

where (A2,t)
jkl

i is the same as the one (16) for SO(p)+ × SO(q + r)+ sector and (A2,s)
jkl

i for

SO(p + q)+ × SO(r)+. Moreover X+ijkl
t is

∑
σ=α,β,γ σPσ,t while X+ijkl

s is
∑

σ′=α′,β′,γ′ σ′Pσ′,s
13.

Finally the Kξ,ζ,p,q,r-invariant scalar potential as a function of p, q, r, ξ, ζ and m,n by combining

all the components can be written as

Vp,q,r(ξ, ζ ;m,n) = −g2
(
3

4
|A′ ij

1 |2 − 1

24
|A′ jkl

2i |2
)

13 One can prove A′
1 and A′

2 can be obtained by analytic continuation. The T ′ tensor we obtained is

T ′ jkl
i (E(−n) × F (−m), ξ, ζ). By considering only the SL(8,R) transformation by ξ, this can be reduced to

eαtT ′ jkl
i (E(t + n)−1 × F (−m), 0, ζ). Moreover, this becomes eα(t−n)T ′ jkl

i (E(t)−1 × F (−m), e(α−β)n, ζ). Now

we arrive at the following intermediate expression: e−αnT ′ jkl
i (1×F (−m), ξe(α−β)n, ζ). Next we apply SL(8,R)

transformation by ζ. Then by doing a similar procedure we arrive at the final expression:

T ′ jkl
i (E(−n)× F (−m), ξ, ζ) = e−α′me−αnT ′ jkl

i (1, ξe(α−β)n, ζe(α
′
−β′)m).

At the origin, φIJKL = 0,V = 1, the T ′ tensor is from (36)

T ′ jkl
i (1, ξ, ζ) =

3

2
[1− (1− ξ)a−1

1 − ξ(1 − ζ)a−1
2 ]δklij − 3

2
(1− ξ)a−1

1 X ijkl
t − 3

2
ξ(1 − ζ)a−1

2 X ijkl
s . (40)

Finally we possess all the information of T ′ jkl
i (E(−n)×F (−m), ξ, ζ) because by transforming ξ → ξe(α−β)n, ζ →

ζe(α
′
−β′)m as in (40) we get T ′ jkl

i (1, ξe(α−β)n, ζe(α
′
−β′)m). From this, one can obtain A′

1 tensor which is
4
21T

′ jkl
i (E(−n) × F (−m), ξ, ζ). It turns out that it coincides with the one in (38). We used the numerical

values: α′ = −1 = α, β = p
q+r

, β′ = p+q
r

and a1 = p
q+r

+ 1, a2 = p+q
r

+ 1. Additionally, we have checked that

A′ jkl
2,i = − 4

3T
′ [jkl]
i (E(−n)× F (−m), ξ, ζ) is identical to the one in (39).
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=
1

1536
e−

2(p+q)m
r

− 2pn
q+r

(
V1 + V2ξ + V3ξζ + V4ξ

2 + V5ξ
2ζ + V6ξ

2ζ2
)

where we introduce intermediate functions Vi’s as the coefficients of the ξ and ζ

V1 = e
16m
r

+ 16n
q+r p

(
p2(q + r) + (−2 + q + r)(q + r)2

+2p(−72 + q2 − r + r2 + q(−1 + 2r)
)
,

V2 = −2e
16m
r

+ 8n
q+r pq

(
144 + p2 + q2 + 2q(−1 + r)− 2r + r2 + 2p(−1 + q + r)

)
,

V3 = −2e
8m
r

+ 8n
q+r pr

(
144 + p2 + q2 + 2q(−1 + r)− 2r + r2 + 2p(−1 + q + r)

)
,

V4 = e
16m
r q

(
p3 + q2r + (−2 + r)r2 + p2(−2 + 2q + 3r) + 2q(−72− r + r2)

+p(q2 + r(−4 + 3r) + q(−2 + 4r))
)
,

V5 = −2e
8m
r qr

(
144 + p2 + q2 + 2q(−1 + r)− 2r + r2 + 2p(−1 + q + r)

)
,

V6 = r
(
p3 + q3 + 2q2(−1 + r)− 144r + q(−2 + r)r + p2(−2 + 3q + 2r)

+p(3q2 + 4q(−1 + r) + (−2 + r)r)
)
.

By looking at the form of scalar potential, it is easy to see that Vr,q,p(ξ = −1, ζ = −1;m,n)

can be obtained from Vp,q,r(ξ = −1, ζ = −1;− r
p+q

n,− q+r
p
m). Under the change of real fields,

they are equivalent to each other. Moreover, the potential Vr,q,p(ξ = −1, ζ = 1;m,n) can be

obtained from Vp,q,r(ξ = 1, ζ = −1;− r
p+q

n,− q+r
p
m). On this basis, the kinetic terms are not

the usual ones but there exists a cross term, ∂µm∂µn which makes it difficult to find first-order

differential equations for domain-wall solutions. Now we have to change the basis for which one

has usual kinetic terms. We calculated all the quantities for 21 possible cases of CSO(p, q, r)+

gaugings and summarized them in Appendix G:kinetic terms in terms of old fields14, change of

variables, superpotential, and scalar potential as new fields. From the results in Appendix G,

one can describe a superpotential and scalar potential in terms of new real scalar fields m̃ and

14 One can generalize the kinetic terms (19) of SO(p)+ × SO(q)+-invariant sector to write down

A ijkl
µ = −2

√
2
(
uij

IJ∂µv
klIJ − vijIJ∂µu

kl
IJ

)

+4
√
2(1− ξ)gAµIJ

[(
P IJKL
β +

1

2

(
P IJKL
δ + P IJKL

ρ

))(
−uij

KMvklLM + vijKMukl
LM

)

+
(
P IJRS
δ ZKLMN

(δ)RS − P IJRS
ρ ZKLMN

(ρ)RS

)(
uij

KLu
kl
MN − vijKLvklMN

)]

+4
√
2(1− ξζ)gAµIJ

[(
P IJKL
γ +

1

2

(
P IJKL
λ + P IJKL

ρ

))(
−uij

KMvklLM + vijKMukl
LM

)

(
P IJRS
ρ ZKLMN

(ρ)RS − P IJRS
λ ZKLMN

(λ)RS

)(
uij

KLu
kl
MN − vijKLvklMN

)]
.

Of course, in this case we put AIJ
µ to zero because we are interested in the scalar plus gravity parts of the

Lagrangian.
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ñ that are related to the old fields m and n as follows:

m = −
r
√
pq(p+ q)

4q(p+ q)
m̃−

√
2r(p+ q)

2(p+ q)
ñ, n =

(q + r)
√
pq(p+ q)

4pq
m̃.

Then in terms of new fields the superpotential can be written as

Wp,q,r(ξ, ζ ; m̃, ñ) =
1

8

(
pe

2
√

q
p(p+q)

m̃+
√

r
2(p+q)

ñ
+ qe

−2
√

p
q(p+q)

m̃−
√

r
2(p+q)

ñ
ξ + re

√
p+q
2r

ñξζ
)
, (41)

and the supergravity potential is then given by

Vp,q,r(ξ, ζ ; m̃, ñ) = g2
[
4 (∂m̃Wp,q,r(ξ, ζ ; m̃, ñ))2 + 4 (∂ñWp,q,r(ξ, ζ ; m̃, ñ))2

−6Wp,q,r(ξ, ζ ; m̃, ñ)2
]
. (42)

Note that the coefficients, 4 and 4, in the first and second terms in the above are a simple

generalization of (18) for two scalar fields.

The superpotential has the following values at the various critical points in Table 4.

• The first row corresponds to the maximal supersymmetric case of de Wit-Nicolai’s SO(8)-

invariant trivial critical point.

• The second row corresponds to the SO(7)+-invariant critical point of the SO(8) theory

that is equivalent to the second one in Table 2. We find Vr,q,p(ξ = 1, ζ = 1;m,n) = Vp,q,r(ξ =

1, ζ = 1;− r
p+q

n,− q+r
p
m). This means that by a change of variables, the solutions of (p, q, r) =

(4, 1, 3), (5, 1, 2), (6, 1, 1) are obtained from (p, q, r) = (3, 1, 4), (2, 1, 5), (1, 1, 6), respectively.

• The third row is the gauging of CSO(p + q, r)+ = CSO(2, 6)+ that corresponds to the

sixth in Table 2.

• The fourth row implies SO(p + q, r)+ = SO(5, 3)+ that corresponds to negative super-

potential, being equivalent to the third one in Table 2, or SO(p + q, r)+ = SO(3, 5)+ that

corresponds to positive superpotential, being equal to the fifth in Table 2. In each case, the

potentials are the same, although the superpotentials are different at the critical points.

• The fifth row implies SO(p + q, r)+ = SO(4, 4)+, being equivalent to the fourth one in

Table 2.

• For the sixth row one has SO(p, q+ r)+ = SO(3, 5)+ gauging with positive superpotential

and SO(p, q + r)+ = SO(5, 3)+ with negative superpotential. According to the symmetry

betwen the potential, one can see that all the critical points in this row can be obtained from

those in fourth row: Vr,q,p(ξ = −1, ζ = 1;m,n) = Vp,q,r(ξ = 1, ζ = −1;− r
p+q

n,− q+r
p
m). This

implies that within a given class with the same scalar potential, these solutions are coming

from the same critical point in the fourth row but are viewed along different directions in scalar

space.

• For the seventh row, we have SO(p, q + r)+ = SO(4, 4)+ gauging. Additionally, in this

case, all the critical points are similarly obtained from those in the fifth row. These solutions
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are coming from the same critical point in the fifth row but are viewed along different directions

in scalar space.

• For the eighth row, one has either SO(p + r, q)+ = SO(5, 3)+ gaugings with negative

superpotential or SO(p+ r, q)+ = SO(3, 5)+ with positive superpotential.

• In the ninth row SO(p+ r, q)+ = SO(4, 4)+ gauging.

• Finally the last row corresponds to CSO(p, q + r)+ = CSO(2, 6)+ gauging.

For the eighth and ninth rows we have the following symmetry in the potential: Vr,q,p(ξ =

−1, ζ = −1;m,n) = Vp,q,r(ξ = −1, ζ = −1;− r
p+q

n,− q+r
p
m). In other words, the solu-

tions corresponding to (p, q, r) = (2, 5, 1), (3, 3, 2), (4, 3, 1) can be obtained from (p, q, r) =

(1, 5, 2), (2, 3, 3), (1, 3, 4) respectively in the eighth row. Similarly, in the ninth row the solution

of (p, q, r) = (1, 4, 3) is related to (p, q, r) = (3, 4, 1).

3.4 Domain Wall in CSO(p, q, r)+ Gaugings [11]

The resulting Lagrangian of scalar-gravity sector takes
∫

d4x
√−g

(
1

2
R− 1

2
∂µm̃∂µm̃− 1

2
∂µñ∂µñ− Vp,q,r(ξ, ζ ; m̃, ñ)

)
. (43)

With the ansatz (21) the equations of motion for the scalars and metric read

∂2
rA− ∂rA∂rB +

3

2
(∂rA)

2 +
1

4
(∂rm̃)2 +

1

4
(∂rñ)

2 +
1

2
e2BVp,q,r(ξ, ζ ; m̃, ñ) = 0,

∂2
r m̃+ 3∂rA∂rm̃− ∂rB∂rm̃− e2B∂m̃Vp,q,r(ξ, ζ ; m̃, ñ) = 0,

∂2
r ñ+ 3∂rA∂rñ− ∂rB∂rñ− e2B∂ñVp,q,r(ξ, ζ ; m̃, ñ) = 0. (44)

By plugging the domain-wall ansatz (21) into the Lagrangian (43), the energy-density per

unit area transverse to r-direction with the integration by parts on the term of ∂2
rA can be

expressed similarly and after rewriting and recombining the energy-density by summation of

complete squares plus other terms, one gets

E[A, m̃, ñ] =
1

2

∫ ∞

−∞
dre3A+B

[
−6

(
e−B∂rA+

√
2gWp,q,r(ξ, ζ ; m̃, ñ)

)2

+
(
e−B∂rm̃− 2

√
2g∂m̃Wp,q,r(ξ, ζ ; m̃, ñ)

)2
+
(
e−B∂rñ− 2

√
2g∂ñWp,q,r(ξ, ζ ; m̃, ñ)

)2

+12
√
2ge−BWp,q,r(ξ, ζ ; m̃, ñ)∂rA+ 4

√
2ge−B∂rWp,q,r(ξ, ζ ; m̃, ñ)

]
.

By recognizing that the last two terms can be written as 4
√
2g∂r(e

3AWp,q,r(ξ, ζ ; m̃, ñ)) we arrive

at

1

2

∫ ∞

−∞
dre3A+B

[
−6

(
e−B∂rA+

√
2gWp,q,r(ξ, ζ ; m̃, ñ)

)2

+
(
e−B∂rm̃− 2

√
2g∂m̃Wp,q,r(ξ, ζ ; m̃, ñ)

)2
+
(
e−B∂rñ− 2

√
2g∂ñWp,q,r(ξ, ζ ; m̃, ñ)

)2]

+2
√
2g
(
e3AWp,q,r(ξ, ζ ; m̃, ñ)

)
|∞−∞.
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Therefore, one finds the energy-density bound

E[A, m̃, ñ] ≥ 2
√
2g
(
e3A(∞)Wp,q,r(ξ, ζ ; m̃, ñ)(∞)− e3A(−∞)Wp,q,r(ξ, ζ ; m̃, ñ)(−∞)

)
.

This E[A, m̃, ñ] is extremized by domain-wall solutions and the first-order differential equations

for the scalar fields one finds are the gradient flow equations of the superpotential (41):

∂rm̃ = ±2
√
2eBg∂m̃Wp,q,r(ξ, ζ ; m̃, ñ),

∂rñ = ±2
√
2eBg∂ñWp,q,r(ξ, ζ ; m̃, ñ),

∂rA = ∓
√
2eBgWp,q,r(ξ, ζ ; m̃, ñ). (45)
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N p q r ξ ζ m n W V
8 any any any 1 1 0 0 1 −6g2

1 1 6 3
4
ln 5 −7

8
ln 5

2 1 5 5
8
ln 5 −3

4
ln 5

0 3 1 4 1 1 1
2
ln 5 −5

8
ln 5 3

2
× 5−1/8 −2 × 53/4g2

4 1 3 3
8
ln 5 −1

2
ln 5

5 1 2 1
4
ln 5 −3

8
ln 5

6 1 1 1
8
ln 5 −1

4
ln 5

0 1 1 6 1 0 any 0 em/4 0

1 2 5 5
8
ln 3 1

2
× 3−3/8

1 4 3 −3
8
ln 3 −1

2
× 3−3/8

0 2 1 5 1 −1 5
8
ln 3 0 1

2
× 3−3/8 2× 31/4g2

2 3 3 −3
8
ln 3 −1

2
× 3−3/8

3 2 3 −3
8
ln 3 −1

2
× 3−3/8

4 1 3 −3
8
ln 3 −1

2
× 3−3/8

1 3 4
0 2 2 4 1 −1 0 0 0 2g2

3 1 4

3 1 4 5
8
ln 3 1

2
× 3−3/8

3 2 3 5
8
ln 3 1

2
× 3−3/8

0 3 3 2 −1 1 0 5
8
ln 3 1

2
× 3−3/8 2× 31/4g2

3 4 1 5
8
ln 3 1

2
× 3−3/8

5 1 2 −3
8
ln 3 −1

2
× 3−3/8

5 2 1 −3
8
ln 3 −1

2
× 3−3/8

4 1 3
0 4 2 2 −1 1 0 0 0 2g2

4 3 1

1 3 4 1
2
ln 3 −7

8
ln 3 −1

2
× 3−3/8

1 5 2 −1
4
ln 3 7

8
ln 3 1

2
× 3−3/8

0 2 3 3 −1 −1 3
8
ln 3 −3

4
ln 3 −1

2
× 3−3/8 2× 31/4g2

2 5 1 −1
8
ln 3 3

4
ln 3 1

2
× 3−3/8

3 3 2 1
4
ln 3 −5

8
ln 3 −1

2
× 3−3/8

4 3 1 1
8
ln 3 −1

2
ln 3 −1

2
× 3−3/8

1 4 3
0 3 4 1 −1 −1 0 0 0 2g2

2 4 2
2 1 5
2 2 4

0 2 3 3 0 1, 0,−1 any any em+n/4 0
2 4 2
2 5 1

Table 4. Summary of various critical points in the context of superpotential : supersymmetry,

vacuum expectation values of fields, superpotential and cosmological constants. There is no
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SO(p)+×SO(q)+×U(1)+r(r−1)/2 critical point of potential for ξ = −1 and ζ = 0. The nontrivial

CSO(p, q, r)+ gauging in this section does not provide any new extra critical points.

It is easy to check whether solutions m̃(r), ñ(r) and A(r) of (45) satisfy the gravitational

and scalar equations of motion in the second order differential equations (44). The analytic

solutions of (45) for ξ = 0 when B is a constant become

m̃(x) = −
2q
(√

2r
p+q

c1 + 2 log
[
g(8q+pr)x+c2

4
√
2(p+q)

])

√
q

p(p+q)
(8q + pr)

,

ñ(x) =
8q
√

r
p+q

c1 −
√
2pr log

[
g(8q+pr)x+c2

4
√
2(p+q)

]

√
r

(p+q)
(8q + pr)

A(x) = c1 +
p(p+ q) log

[
g(8q+pr)x+c2

4
√
2(p+q)

]

8q + pr

where we change variable r into x in order not to confuse it with the integer r and c1 and c2 are

constant. One expects to have nontrivial analytic solutions for nonzero ξ for particular (p, q, r)

and ζ , as in section 2. In particular, for CSO(1, 1, 6)+ gauging where we fix ξ = −1 and ζ = 0,

we have

m̃(x) =
2

7

(
−
√
3c1 +

√
2 log

(
tan

[
−7gx+ c2

4
√
2

]))
,

ñ(x) =
2

14

(
4c1 +

√
6 log

(
tan

[
−7gx+ c2

4
√
2

]))
,

A(x) =
1

7

(
7c1 tan

[
−7gx+ c2

4
√
2

]
+ 1

)
log

(
1

2
sin

[
−7gx+ c2

2
√
2

])
.

Similarly, one also has an analytic solution of CSO(3, 3, 2)+ gauging where ξ = −1 and ζ = 0.

3.5 CSO(p, q, r)+ Gaugings from SO(8) Gaugings

Thus far, the values of p, q and r are greater than or equal to 1. If we allow those values to have

zero, then one can classify them as follows: 1) CSO(p, 0, 0)+ = SO(p)+, 2) CSO(p, q, 0)+ =

SO(p, q)+, 3) CSO(p, 0, r)+ = CSO(p, r)+, and 4) CSO(p, q, r)+. In this section, we take a

different route from previous the case. Some idea in this direction was already given in the

paper of [14]. Let us consider the SO(p)+×SO(q)+×SO(r)+ invariant generator of SL(8,R),

Xab =




α1p×p 0 0
0 β1q×q 0
0 0 γ1r×r


 (46)

with

αp+ βq + γr = 0, p+ q + r = 8
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where 1p×p is p × p identity matrix. The embedding of this SL(8,R) in E7 is such that Xab

corresponds to the 56× 56 E7 generator which is a non-compact SO(p)+ × SO(q)+ × SO(r)+

invariant element of the SL(8,R) subalgebra of E7

(
0 X+IJKL

X+
IJKL 0

)
,

where the real, self-dual totally anti-symmetric SO(p)+×SO(q)+×SO(r)+ invariant four-form

tensor X+
IJKL can be written in terms of a symmetric, trace-free, 8 × 8 matrix with SO(8)

right-handed spinor indices, Xab using SO(8) Γ matrices(See Appendix B)

X+
IJKL = −1

8
(ΓIJKL)

ab Xab (47)

where ΓIJKL = Γ[IΓJΓKΓL] and an arbitrary SO(8) generator LIJ acts in the right-handed

spinor representation by (LIJΓIJ)
ab. One can show that X+IJKL (47) can be decomposed into

X+IJKL
t and X+IJKL

s :

X+IJKL = X+IJKL
t +X+IJKL

s

where the real, self-dual totally anti-symmetric SO(p)+×SO(q+r)+ invariant four-form tensor

X+IJKL
t was expressed in the previous subsection as Γ matrices with (26) and SO(p + q)+ ×

SO(r)+ invariant four-form tensor X+IJKL
s with (29). Moreover, α and β in (46) consist of αt

that was defined as (26) and (27)(we replace α by αt) and αs as (29) and (30). We also replace

α′ with αs. Therefore we have

α = αt + αs, β = αs −
p

q + r
αt.

Regarded as a 28 × 28 matrix, X+IJKL has eigenvalues α, β, γ, δ = (α + β)/2, λ = (α +

γ)/2, ρ = (β+γ)/2 with degeneracies dα, dβ, dγ, dδ, dλ and dρ respectively. The eigenvalues and

eigenspaces of the SO(p)+ × SO(q)+ × SO(r)+ invariant tensor are summarized in Table 5.

By introducing projectors, Pα, Pβ, Pγ, Pδ, Pλ and Pρ onto corresponding eigenspaces, we have a

28× 28 matrix equation

X+IJKL =
∑

σ=α,β,γ,δ,λ,ρ

σP IJKL
σ .

Projector Pα(Pβ)[Pγ] projects the SO(8) Lie algebra onto its SO(p)+(SO(q)+)[SO(r)+] subal-

gebra while Pδ(Pλ)[Pρ] projects onto the remainder SO(8)
SO(p)+×SO(q)+

( SO(8)
SO(p)+×SO(r)+

)[ SO(8)
SO(q)+×SO(r)+

].

The projectors can be constructed from X+IJKL,

Pσ =
∏

σ′ 6=σ

1

(σ′ − σ)

(
σ′δMN

IJ −X+IJMN
)
, for σ = α, β, γ, δ, λ, ρ (48)
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and it is easily checked that they satisfy

P 2
σ = Pσ, PσPσ′ = 0(σ 6= σ′) where σ, σ′ = α, β, γ, δ, λ, ρ. (49)

Then using the relation obtained by the properties of projectors above

[
exp(−sX+

s )
]IJKL [

exp(−tX+
t )
]KLMN

=
∑

σ′=α′,β′,γ′

e−σ′sP IJKL
σ′

∑

σ=α,β,γ

e−σtPKLMN
σ

one gets

g(s, t)AIJ
µ (s, t) ≡ geαteα

′s
[
exp(−sX+

s )
]IJKL [

exp(−tX+
t )
]KLMN

AMN
µ

= geαteα
′s

∑

σ′=α′,β′,γ′

e−σ′sP IJKL
σ′,s

∑

σ=α,β,γ

e−σtPKLMN
σ,t AMN

µ

which will be the same as (33) together with AIJ
µ(σ) ≡ P IJKL

σ AKL
µ for σ = α, β, γ, δ, λ, ρ. In

this section, the main difference with the previous section is that we started with projectors

directly constructed from SO(p)+ × SO(q)+ × SO(r)+ invariant four-form tensor. Of course,

these projectors are very complicated expressions because they are fifth power of X+IJKL or

δKL
IJ given in (48). In the previous section, according to (32), we identified the product of

projectors in SO(p, q + r)+ and SO(p+ q, r)+ with a single projector (48) in this section.

4 Conclusion

In summary,

• the main results in section 2 is described by (24). There are BPS domain-wall solutions

interpolating between a maximally supersymmetric SO(8) critical point and various nonsuper-

symmetric ones.

• The analytic solution is available for only p = q = 4 with general ξ. For ξ = 0, we

also have solutions for general (p, q). That is, for SO(4, 4)+ and CSO(p, 8 − p)+ gaugings

where p = 1, · · · , 7 there exist analytic solutions. Among these gaugings, only SO(4, 4)+ and

CSO(2, 6)+ cases contain critical points according to Table 2. Note that the presence of domain-

wall solutions do not have any critical points.

• In section 3, the crucial part is to obtain a T-tensor as found in (36). Although it is

rather complicated and involved, all the components of a T-tensor can be obtained from the

information on both the projectors and 28-beins established by SO(p)+ × SO(q)+ × SO(r)+-

singlet space. The only nontrivial gauging comparable to that in Section 2 corresponds to both

ξ = −1 and ζ = 0 that gives rise to CSO(p, q, r)+ gauging. The other values of ξ and ζ gave

us the previous gaugings discussed in Section 2.

• Finally, we arrived at (41) and (42) that is a general expression, our new findings, for two

scalar fields as the one (18) for one scalar field.
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• Moreover, similar domain-wall solutions are described by (45). Although the scalar po-

tential for this case looks different from the case of SO(p)+ × SO(q)+, the structure of the

critical points are reduced to those in SO(p)+ × SO(q)+-invariant sector. We emphasize that

although CSO(p, q, r)+ gaugings(in this case ξ = −1 and ζ = 0) do not have any critical points

analyzed in section 3.3, they do have domain wall solutions and even possess analytic solutions

for particular (p, q, r) combinations.

p q r α β γ δ λ ρ dα dβ dγ dδ dλ dρ |X+|2
1 1 6 −2 6/7 10/21 −10/7 −16/21 −4/21 0 0 15 1 6 6 64/7
1 2 5 −2 −6/7 26/35 −10/7 −22/35 −2/35 0 1 10 2 5 10 432/35
2 1 5 −2 −2/3 14/15 −4/3 −8/15 2/15 1 0 10 2 10 5 96/5
1 3 4 −2 −6/7 8/7 −10/7 −3/7 1/7 0 3 6 3 4 12 120/7
2 2 4 −2 −2/3 2 −4/3 0 2/3 1 1 6 4 8 8 32
3 1 4 −2 −2/5 8/5 −6/5 −1/5 3/5 3 0 6 3 12 4 168/5
1 4 3 −2 −6/7 38/21 −10/7 −2/21 10/21 0 6 3 4 3 12 176/7
2 3 3 −2 −2/3 2 −4/3 0 2/3 1 3 3 6 6 9 32
3 2 3 −2 −2/5 34/15 −6/5 2/15 14/15 3 1 3 6 9 6 208/5
4 1 3 −2 0 8/3 −1 1/3 4/3 6 0 3 4 12 3 56
1 5 2 −2 −6/7 22/7 −10/7 4/7 8/7 0 10 1 5 2 10 288/7
2 4 2 −2 −2/3 10/3 −4/3 2/3 4/3 1 6 1 8 4 8 48
3 3 2 −2 −2/5 18/5 −6/5 4/5 8/5 3 3 1 9 6 6 288/5
4 2 2 −2 0 4 −1 1 2 6 1 1 8 8 4 72
5 1 2 −2 2/3 14/3 −2/3 4/3 8/3 10 0 1 5 10 2 96
1 6 1 −2 −6/7 50/7 −10/7 18/7 22/7 0 15 0 6 1 6 624/7
2 5 1 −2 −2/3 22/3 −4/3 8/3 10/3 1 10 0 10 2 5 96
3 4 1 −2 −2/5 38/5 −6/5 14/5 18/5 3 6 0 12 3 4 528/5
4 3 1 −2 0 8 −1 3 4 6 3 0 12 4 3 120
5 2 1 −2 2/3 26/3 −2/3 10/3 14/3 10 1 0 10 5 2 144
6 1 1 −2 2 10 0 4 6 15 0 0 6 6 1 192

Table 5. Eigenvalues and eigenspaces of the SO(p)+ × SO(q)+ × SO(r)+ invariant tensor,

X+ where |X+|2 =
∑

σ=α,β,γ,δ,λ,ρ dσ|σ|2. The degeneracies are given in dα = p(p − 1)/2, dβ =

q(q − 1)/2, dγ = r(r − 1)/2, dδ = pq, dλ = pr and dρ = qr. In [39], they displayed the signature

of the Killing-Cartan form by writing the numbers n+, n− and n0 of its positive, negative and

zero eigenvalues. Here we identify dα + dβ with n+, dδ with n− and dγ + dλ + dρ with n0.

Recently, 11-dimensional embedding [27, 45] of supersymmetric vacua of compact-gauged

supergravity was found. For solutions with varying scalars(due to the r-dependence of vacuum

expectation values), the ansatz for the field strength was more complicated. In this direction

it was crucial to know about the 11-dimensional analog of superpotential, so-called geometric

superpotential, in order to achieve the M-theory lift of the RG flow. Provided that the r-

dependence of the vevs is controlled by the RG flow equations, an exact solution to the 11-
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dimensional Einstein-Maxwell equations was obtained. As mentioned in the introduction, the

11-dimensional origin of SO(p, q)+ and CSO(p, q)+ gaugings was found in [14] for constant

scalars. In this paper, we describe explict r-dependence on the vevs by domain-wall solutions.

It is natural to ask whether 11-dimensional embedding of various vacua we have considered of

non-compact and non-semi-simple gauged supergravity can be obtained. In a recent paper [46],

the metric on the 7-dimensional internal space and domain wall in 11-dimensions was found.

However, they did not provide an ansatz for an 11-dimensional three-form gauge field. It would

be interesting to study the geometric superpotential, 11-dimensional analog of superpotential

we have obtained. We expect that the nontrivial r-dependence of vevs makes Einstein-Maxwell

equations consistent not only at the critical points but also along the supersymmetric RG flow

connecting two critical points.

In [38], all critical points of the scalar potential of the N = 8 supergravity with SO(8) gauge

symmetry that break the local SO(8) down to a solution with symmetry that is at least some

specified subgroup of SO(8) were found. One considers only those scalars which are singlets of

that subgroup and searches critical points of the potential restricted to be a function only of the

singlets. Schurr’s lemma tells us that any critical point of restricted potential will be a critical

point of the original complete scalar potential. Then the problem of finding critical points of

the potential is reduced to the simpler one of finding critical points of the restricted potential

which is a singlet sector. In this paper, we applied similar techniques to the non-compact and

non-semi-simple gauged supergravities and the subgroup is to be SO(p)+ × SO(q)+ for the

SO(p, q)+ gaugings and CSO(p, q)+ gaugings while that will be SO(p)+ × SO(q)+ × SO(r)+

for the CSO(p, q, r)+ gaugings.

In [38], the specified subgroup H was taken to be SU(3) for SO(8) gauged supergravity.

One can think of the H subgroup as a compact subgroup of SO(p, q)+ gauged model because

this is necessary to the validity of Schurr’s lemma. When 56-beins commute the SL(8,R)

transformation E(t), it is rather easy to calculate the scalar potential. However, it may hap-

pen that for the noncommutativity of 56-beins V and E(t), it will be rather complicated to

find the scalar potential because of the presence of additional Baker-Hausdorff terms appear-

ing in the calculations of exponentials of matrices. According to [13], it was found that no

G2-invariant critical points exist for SO(7, 1)+ gauging, no SU(3)-invariant critical points for

SO(6, 2)+ gauging and a SO(5)-invariant critical point with positive cosmological constant,

and no supersymmetry for SO(5, 3)+ gauging. It would be interesting to investigate whether

there exist any critical points of the potential restricted to the H-singlet sector for the most

general CSO(p, q, r)+ gaugings we have considered in this paper. Here group H is a compact

subgroup of this model.
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5 Appendix A: Four-form (Anti)Self-dual Tensors in 28×
28 Matrices

Let us consider the SO(p)− × SO(q)− invariant generator of SL(8,R),

Xȧḃ =

(
α1p×p 0

0 β1q×q

)
with αp+ βq = 0, p+ q = 8,

where 1p×p is a p× p identity matrix. The embedding of this SL(8,R) in E7 is such that Xȧḃ

corresponds to the 56× 56 E7 generator with X−IJKL

(
0 X−IJKL

X−
IJKL 0

)
,

where the real, anti-self-dual totally anti-symmetric tensor X−IJKL is given by the following

form through the Γ̃ matrix

X−
IJKL = −1

8

(
Γ̃IJKL

)ȧḃ
Xȧḃ (50)

where Γ̃IJKL = Γ̃[I Γ̃J Γ̃KΓ̃L] as in section 2.5 and an arbitrary SO(8) generator LIJ acts in

the left-handed spinor representation(See Appendix B for this representation) by (LIJ Γ̃IJ)
ȧḃ.

When p = 7 and q = 1, one can see that this expression of (50) through Γ̃ matrix coincides

exactly with the one in section 2.6 or X−IJKL
7,1 presented below explicitly.

We have seen real (anti) self-dual tensors in the SU(8)-basis through Γ matrices in (12) and

(50). Now one can express them as the following forms which will be a useful and illuminating

description, viewed as a 28× 28 matrix representation, after doing the Γ matrix algebra

X±IJKL
p,q = Y IJKL

p,q +
η

24
ǫIJKLMNPQY MNPQ

p,q ,

where self-duality + corresponds to η = 1 and anti-self-duality − corresponds to η = −1 and

Y IJKL
p,q tensors are given for each p and q in

Y IJKL
7,1 =

1

2

(
δIJKL
1 2 3 4 + δIJKL

1 2 5 6 + δIJKL
1 2 7 8 + δIJKL

1 3 7 5 + δIJKL
1 3 6 8 + δIJKL

1 4 5 8 + δIJKL
1 4 6 7

)
,

Y IJKL
6,2 =

1

2

(
δIJKL
1 2 3 4 + δIJKL

1 2 5 6 + δIJKL
1 2 7 8

)
,

Y IJKL
5,3 =

1

6

(
3δIJKL

1 2 3 4 + δIJKL
1 2 5 6 + δIJKL

1 2 7 8 + δIJKL
1 5 3 7 + δIJKL

1 3 6 8 + δIJKL
1 5 4 8 + δIJKL

1 6 4 7

)
,

Y IJKL
4,4 =

1

2
δIJKL
1 2 3 4,

Y IJKL
3,5 =

1

10

(
3δIJKL

1 2 3 4 + δIJKL
1 5 2 6 + δIJKL

1 2 7 8 + δIJKL
1 3 5 7 + δIJKL

1 3 6 8 + δIJKL
1 4 5 8 + δIJKL

1 6 4 7

)
,

Y IJKL
2,6 =

1

6

(
δIJKL
1 2 3 4 + δIJKL

1 5 2 6 + δIJKL
1 2 7 8

)
,

Y IJKL
1,7 =

1

14

(
δIJKL
1 2 3 4 + δIJKL

1 5 2 6 + δIJKL
1 2 7 8 + δIJKL

1 3 5 7 + δIJKL
1 3 6 8 + δIJKL

1 5 4 8 + δIJKL
1 4 6 7

)
.
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Actually the case of X±IJKL
5,3 can be identified with SO(5)±-singlets among six scalars [47]

when restricted to equal real parameters(φIJKL depends on only three real parameters because

of SO(3)± rotation).

6 Appendix B: SO(8) Γ Matrices and Its Representations

The 28 SO(8) generators are denoted by ΛMN where M,N = 1, 2, · · · , 8 and they can be

decomposed into ΛMN = (Λmn,Λm1). Here Λmn = −Λnm where m,n = 2, 3, · · · , 8 are the 21

generators of SO(7). Then the 8 × 8 SO(7) gamma matrices satisfy {Γm,Γn} = −2δmn and

the generators act on the 8-dimensional spinor representation of SO(7) by 1
4
ΛmnΓmn. Then the

16× 16 SO(8) gamma matrices have the following form, γMN = diag((ΓMN)
ab, (Γ̃MN)

ȧḃ) where

ΓMN = Γ̃MN = Γmn, M,N = 2, 3, · · · , 8, ΓM1 = −Γ̃M1 = Γm

and a, b are right-handed spinor indices and ȧ, ḃ are left-handed spinors. The SO(8) has three

different eight-dimensional representations: the vector representation 8v generated by ΛMN ,

the right-handed spinor representation 8s generated by 1
4
ΛmnΓmn, and the left-handed spinor

representation 8c generated by 1
4
ΛmnΓ̃mn. This induces three inequivalent SO(7) subgroups

of SO(8). That is, the stability group of the vector, SO(7) is generated by ΛMN , M,N =

2, 3, · · · , 8, the stabilizer of a right -handed spinor, SO(7)+ is generated by ΛMNΓMN , and the

stabilizer of a left-handed spinor, SO(7)− is generated by ΛMN Γ̃MN . The SO(7)+-singlet under

the branching rule of 35-dimensional fourth rank self-dual antisymmetric tensor representation

of SO(8) into SO(7)+ corresponds to the SO(7)+-invariant tensor X+IJKL given in Section 2.3.

Moreover, we present explicit realizations of Γ matrices we are using here as follows [48, 32]:

Γ2 =

(
α3 0
0 −α3

)
,Γ3 =

(
α2 0
0 −α2

)
,Γ4 =

(
α1 0
0 −α1

)
,

Γ5 =

(
0 1
−1 0

)
,Γ6 =

(
0 −β3

−β3 0

)
,Γ7 =

(
0 β2

β2 0

)
,Γ8 =

(
0 β1

β1 0

)
,

where αi’s and βi’s are given in terms of usual 2× 2 Pauli matrices σi’s

α1 =

(
0 σ1

−σ1 0

)
, α2 =

(
0 −σ3

σ3 0

)
, α3 =

(
iσ2 0
0 iσ2

)
,

β1 =

(
0 iσ2

iσ2 0

)
, β2 =

(
0 1
−1 0

)
, β3 =

(
−iσ2 0
0 iσ2

)
.
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7 Appendix C: Some Identities between Invariant Gen-

erators and Projectors in SO(p)+ × SO(q)+ Sectors

For any SO(p)+ × SO(q)+ generator ΛIJ
(α), the invariance of X+IJKL under the SO(p)+ implies

E(t)−1

(
Λ(α) 0
0 Λ(α)

)
E(t) =

(
Λ(α) 0
0 Λ(α)

)
,

which is equivalent to

[Pα,Λ(α)] = [Pβ,Λ(α)] = [Pγ ,Λ(α)] = 0.

Similarly, the invariance of X+IJKL under the SO(q)+ implies

E(t)−1

(
Λ(β) 0
0 Λ(β)

)
E(t) =

(
Λ(β) 0
0 Λ(β)

)
,

which will lead to vanishing of commutators between Pα,β,γ and Λ(β)

[Pα,Λ(β)] = [Pβ ,Λ(β)] = [Pγ ,Λ(β)] = 0.

One gets the following identities

PαΛ(α)Pγ = PβΛ(α)Pγ = PαΛ(β)Pγ = PβΛ(β)Pγ = 0,

PγΛ(α)Pα = PγΛ(α)Pβ = PγΛ(β)Pα = PγΛ(β)Pβ = 0,

PβΛ(α)Pα = PβΛ(β)Pα = PαΛ(α)Pβ = PαΛ(β)Pβ = 0. (51)

Moreover, one gets for the SO(8)/(SO(p)+ × SO(q)+) generator Λ(γ)

PαΛ(γ)Pα = PβΛ(γ)Pα = PαΛ(γ)Pβ = PβΛ(γ)Pβ = PγΛ(γ)Pγ = 0. (52)

With 1 = Pα + Pβ + Pγ, the combinations of (52) will give us

PαΛ(γ)Pγ = PαΛ(γ), PγΛ(γ)Pα = Λ(γ)Pα,

PβΛ(γ)Pγ = PβΛ(γ), PγΛ(γ)Pβ = Λ(γ)Pβ . (53)

By combining the first(second) and third(fourth) relations of (53) respectively and using (52)

it is easily checked that

(Pα + Pβ) Λ(γ) = Λ(γ)Pγ , Λ(γ) (Pα + Pβ) = PγΛ(γ).
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8 Appendix D: Some Identities between Invariant Gen-

erators and Projectors in SO(p)+×SO(q)+×SO(r)+ Sec-

tors

For any SO(p)+×SO(q)+×SO(r)+ generator ΛIJ
(α), the invariance of X

+IJKL under the SO(p)+

implies

E(t)−1

(
Λ(α) 0
0 Λ(α)

)
E(t) =

(
Λ(α) 0
0 Λ(α)

)
,

which is equivalent to

[Pσ,Λ(α)] = 0 for σ = α, β, γ, δ, λ, ρ.

Similarly, the invariance of X+IJKL under the SO(q)+ implies

E(t)−1

(
Λ(β) 0
0 Λ(β)

)
E(t) =

(
Λ(β) 0
0 Λ(β)

)
,

which will lead to

[Pσ,Λ(β)] = 0 for σ = α, β, γ, δ, λ, ρ.

Similarly, the invariance of X+IJKL under the SO(r)+ implies

E(t)−1

(
Λ(γ) 0
0 Λ(γ)

)
E(t) =

(
Λ(γ) 0
0 Λ(γ)

)
,

which will lead to

[Pσ,Λ(γ)] = 0 for σ = α, β, γ, δ, λ, ρ.

Using the relations (49), one gets the following identities

PσΛ(α)Pσ′ = PσΛ(β)Pσ′ = PσΛ(γ)Pσ′ = 0, for σ, σ′ = α, β, γ, δ, λ, ρ σ 6= σ′.

Moreover, one gets for the SO(8)/(SO(p)+ × SO(q)+) generator ΛIJ
(δ)

PαΛ(δ)Pσ = 0, σ = α, β, γ, λ, ρ

PβΛ(δ)Pσ = 0, σ = α, β, γ, λ, ρ

PγΛ(δ)Pσ = 0, σ = α, β, δ, λ, ρ

PδΛ(δ)Pσ = 0, σ = γ, δ, λ, ρ

PλΛ(δ)Pσ = 0, σ = α, β, γ, δ, λ

PρΛ(δ)Pσ = 0, σ = α, β, γ, δ, ρ. (54)
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With 1 =
∑

σ=α,β,γ,δ,λ,ρ Pσ, the combinations of (54) will give us

PαΛ(δ)Pδ = PαΛ(δ), PβΛ(δ)Pδ = PβΛ(δ), PγΛ(δ)Pγ = PγΛ(δ),

PδΛ(δ)Pα = Λ(δ)Pα, PδΛ(δ)Pβ = Λ(δ)Pβ, PλΛ(δ)Pρ = PλΛ(δ),

PρΛ(δ)Pλ = PρΛ(δ). (55)

Moreover, one gets for the SO(8)/(SO(p)+ × SO(r)+) generator ΛIJ
(λ)

PαΛ(λ)Pσ = 0, σ = α, β, γ, δ, ρ

PβΛ(λ)Pσ = 0, σ = α, γ, δ, λ, ρ

PγΛ(λ)Pσ = 0, σ = α, β, γ, δ, ρ

PδΛ(λ)Pσ = 0, σ = α, β, γ, δ, λ

PλΛ(λ)Pσ = 0, σ = β, δ, λ, ρ

PρΛ(λ)Pσ = 0, σ = α, β, γ, λ, ρ. (56)

With 1 =
∑

σ=α,β,γ,δ,λ,ρ Pσ, the combinations of (56) will give us

PαΛ(λ)Pλ = PαΛ(λ), PβΛ(λ)Pβ = PβΛ(λ), PγΛ(λ)Pλ = PγΛ(λ),

PδΛ(λ)Pρ = PδΛ(λ), PλΛ(λ)Pα = Λ(λ)Pα, PλΛ(λ)Pγ = Λ(λ)Pγ,

PρΛ(λ)Pδ = PρΛ(λ). (57)

Moreover, one gets for the SO(8)/(SO(q)+ × SO(r)+) generator ΛIJ
(ρ)

PαΛ(ρ)Pσ = 0, σ = β, γ, δ, λ, ρ

PβΛ(ρ)Pσ = 0, σ = α, β, γ, δ, λ

PγΛ(ρ)Pσ = 0, σ = α, β, γ, δ, λ

PδΛ(ρ)Pσ = 0, σ = α, β, γ, δ, ρ

PλΛ(ρ)Pσ = 0, σ = α, β, γ, λ, ρ

PρΛ(ρ)Pσ = 0, σ = α, δ, λ, ρ. (58)

With 1 =
∑

σ=α,β,γ,δ,λ,ρ Pσ, the combinations of (58) will give us

PαΛ(ρ)Pα = PαΛ(ρ), PβΛ(ρ)Pα = PβΛ(ρ), PγΛ(ρ)Pρ = PγΛ(ρ),

PδΛ(ρ)Pλ = PδΛ(ρ), PλΛ(ρ)Pδ = PλΛ(ρ), PρΛ(ρ)Pγ = Λ(ρ)Pγ ,

PρΛ(ρ)Pβ = Λ(ρ)Pβ. (59)

Using (55), (57) and (59) it is easily checked that

(Pα + Pβ) Λ(δ) = Λ(δ)Pδ, Λ(δ) (Pα + Pβ) = PδΛ(δ), (Pα + Pγ) Λ(λ) = Λ(λ)Pλ,
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Λ(λ) (Pα + Pγ) = PλΛ(λ), (Pβ + Pγ) Λ(ρ) = Λ(ρ)Pρ, Λ(ρ) (Pβ + Pγ) = PρΛ(ρ),

PγΛ(δ) = Λ(δ)Pγ , PλΛ(δ) = Λ(δ)Pρ, PρΛ(δ) = Λ(δ)Pλ,

PβΛ(λ) = Λ(λ)Pβ, PδΛ(λ) = Λ(λ)Pρ, PρΛ(λ) = Λ(λ)Pδ,

PαΛ(ρ) = Λ(ρ)Pα, PδΛ(ρ) = Λ(ρ)Pλ, PλΛ(ρ) = Λ(ρ)Pδ.

9 Appendix E: 28-beins uIJKL and vIJKL for Each Invari-

ant Sector

The 28-beins u KL
IJ and vIJKL fields can be obtained by exponentiating the vacuum expectation

values φIJKL. The nonzero components of those have the following seven 4× 4 block diagonal

matrices respectively

u KL
IJ = diag (u1, u2, u3, u4, u5, u6, u7) ,

vIJKL = diag (v1, v2, v3, v4, v5, v6, v7) .

Each hermitian submatrix is a 4× 4 matrix and we denote antisymmetric indices explicitly for

convenience. For simplicity, we make an empty space corresponding to lower triangle elements.

We also denote ε+ = 1(self-dual), ε− = i(anti-self-dual) and η = 1 corresponding to self-dual

case or −1 anti-self dual case. We write down here each hermitian matrices.

• SO(7)± × SO(1)± Invariant Sectors:

u1 =




[12] [34] [56] [78]
[12] A ηB ηB ηB
[34] A B B
[56] A B
[78] A



, u2 =




[13] [24] [57] [68]
[13] A −ηB −ηB ηB
[24] A B −B
[57] A −B
[68] A



,

u3 =




[14] [23] [58] [67]
[14] A ηB ηB ηB
[23] A B B
[58] A B
[67] A



, u4 =




[15] [26] [37] [48]
[15] A −ηB ηB −ηB
[26] A −B B
[37] A −B
[48] A



,

u5 =




[16] [25] [38] [47]
[16] A ηB −ηB −ηB
[25] A −B −B
[38] A B
[47] A



, u6 =




[17] [28] [35] [46]
[17] A −ηB −ηB ηB
[28] A B −B
[35] A −B
[46] A



,
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u7 =




[18] [27] [36] [45]
[18] A ηB ηB ηB
[27] A B B
[36] A B
[45] A



, v1 = −ε±




[12] [34] [56] [78]
[12] F ηG ηG ηG
[34] F G G
[56] F G
[78] F



,

v2 = −ε±




[13] [24] [57] [68]
[13] F −ηG −ηG ηG
[24] F G −G
[57] F −G
[68] F



, v3 = −ε±




[14] [23] [58] [67]
[14] F ηG ηG ηG
[23] F G G
[58] F G
[67] F



,

v4 = −ε±




[15] [26] [37] [48]
[15] F −ηG ηG −ηG
[26] F −G G
[37] F −G
[48] F



, v5 = −ε±




[16] [25] [38] [47]
[16] F ηG −ηG −ηG
[25] F −G −G
[38] F G
[47] G F



,

v6 = −ε±




[17] [28] [35] [46]
[17] F −ηG −ηG ηG
[28] F G −G
[35] F −G
[46] F



, v7 = −ε±




[18] [27] [36] [45]
[18] F ηG ηG ηG
[27] F G G
[36] F G
[45] F



,

(60)

where

A = cosh3 s, B = cosh s sinh2 s,

F = sinh3 s, G = sinh s cosh2 s.

From now on, we do not include the index pairs into the 4×4 matrices ui and vi, for simplicity.

For example, when we write u2 = u3 below, this implies that although the indices they possess

are different, the corresponding matrix elements are identical.

• SO(6)± × SO(2)± Invariant Sectors:

u1 =




A ηB ηB ηB
A B B

A B
A


 , u2 = C14×4 = u3 = u4 = u5 = u6 = u7,

v1 = −ε±




F ηG −ηG ηG
F G G

F −G
F


 ,
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v2 = ε±




0 ηH 0 0
0 0 0

0 H
0


 = −v3 = v4 = −v5 = v6 = −v7

where

A = cosh3 s, B = cosh s sinh2 s, C = cosh s,

F = sinh3 s, G = sinh s cosh2 s, H = sinh s.

• SO(5)± × SO(3)± Invariant Sectors:

u1 =




A ηB ηC ηC
A C C

A B
A


 , u2 =




A −ηB −ηC ηC
A C −C

A −B
A


 ,

u3 =




A ηB −ηC −ηC
A −C −C

A B
A


 , u4 =




D ηE −ηE −ηE
D −E −E

D E
D


 ,

u5 =




D −ηE ηE −ηE
D −E E

D −E
D


 , u6 =




D ηE ηE ηE
D E E

D E
D


 ,

u7 =




D −ηE −ηE ηE
D E −E

D −E
D


 , v1 = −ε±




F ηG −ηH −ηH
F −H −H

F G
F


 ,

v2 = −ε±




F −ηG ηH −ηH
F −H H

F −G
F


 , v3 = −ε±




F ηG ηH ηH
F H H

F G
F


 ,

v4 = ε±




I ηJ −ηJ −ηJ
I −J −J

I J
I


 , v5 = ε±




I −ηJ ηJ −ηJ
I −J J

I −J
I


 ,

v6 = ε±




I ηJ ηJ ηJ
I J J

I J
I


 , v7 = ε±




I −ηJ −ηJ ηJ
I J −J

I −J
I


 ,

where

A =
(
−1 + 2 cosh

(
2s

3

))
cosh3

(
s

3

)
, B = cosh (s) sinh2

(
s

3

)
,
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C =
(
2 cosh

(
s

3

)
+ cosh (s)

)
sinh2

(
s

3

)
, D = cosh3

(
s

3

)
,

E = cosh
(
s

3

)
sinh2

(
s

3

)
, F =

(
1 + 2 cosh

(
2s

3

))
sinh3

(
s

3

)
,

G = cosh2
(
s

3

)
sinh (s) , H =

1

4

(
sinh

(
s

3

)
− sinh

(
5s

3

))
,

I = sinh3
(
s

3

)
, J =

1

4

(
sinh

(
s

3

)
+ sinh (s)

)
.

• SO(4)± × SO(4)± Invariant Sectors:

u1 = A14×4 = u2 = u3, u4 = u5 = u6 = u7 = 14×4,

v1 = −ε±




0 ηB 0 0
0 0 0

0 B
0


 = −v2 = v3, v4 = v5 = v6 = v7 = 0,

where

A = cosh s, B = sinh s.

• SO(3)± × SO(5)± Invariant Sectors:

u1 =




A −ηB ηC −ηC
A −C C

A −B
A


 , u2 =




A ηB −ηC −ηC
A −C −C

A B
A


 ,

u3 =




A −ηB −ηC ηC
A C −C

A −B
A


 , u4 =




D ηE −ηE −ηE
D −E −E

D E
D


 ,

u5 =




D −ηE −ηE ηE
D E −E

D −E
D


 , u6 =




D −ηE ηE −ηE
D −E E

D −E
D


 ,

u7 =




D ηE ηE ηE
D E E

D E
D


 , v1 = ε±




F −ηG ηH −ηH
F −H H

F −G
F


 ,

v2 = ε±




F ηG −ηH −ηH
F −H −H

F G
F


 , v3 = ε±




F −ηG −ηH ηH
F H −H

F −G
F


 ,
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v4 = −ε±




I ηJ −ηJ −ηJ
I −J −J

I J
I


 , v5 = −ε±




I −ηJ −ηJ ηJ
I J −J

I −J
I


 ,

v6 = −ε±




I −ηJ ηJ −ηJ
I −J J

I −J
I


 , v7 = −ε±




I ηJ ηJ ηJ
I J J

I J
I


 ,

where

A =
(
−1 + 2 cosh

(
2s

5

))
cosh3

(
s

5

)
, B = cosh

(
3s

5

)
sinh2

(
s

5

)
,

C =
1

4

(
cosh (s)− cosh

(
s

5

))
, D = cosh3

(
s

5

)
,

E = cosh
(
s

5

)
sinh2

(
s

5

)
, F =

(
1 + 2 cosh

(
2s

5

))
sinh3

(
s

5

)
,

G = cosh2
(
s

5

)
sinh

(
3s

5

)
, H =

1

4

(
sinh (s)− sinh

(
s

5

))
,

I = sinh3
(
s

5

)
, J = cosh2

(
s

5

)
sinh

(
s

5

)
.

All these functions of s can be obtained from those in SO(5)± × SO(3)± by replacing s with

3s/5 and using the properties of hyperbolic functions. For example, each C that seems to look

different is the same by a simple change of variable.

• SO(2)± × SO(6)± Invariant Sectors:

u1 =




A −ηB ηB −ηB
A −B B

A −B
A


 , u2 = C14×4 = u3 = u4 = u5 = u6 = u7,

v1 = ε±




F −ηG ηG −ηG
F −G G

F −G
F


 ,

v2 = ε±




0 ηH 0 0
0 0 0

0 H
0


 = −v3 = −v4 = v5 = v6 = −v7,

where

A = cosh3
(
s

3

)
, B = cosh

(
s

3

)
sinh2

(
s

3

)
, C = cosh

(
s

3

)
,

F = sinh3
(
s

3

)
, G = sinh

(
s

3

)
cosh2

(
s

3

)
, H = sinh

(
s

3

)
.
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All these functions of s can be obtained from those in SO(6)± × SO(2)± by replacing s with

s/3.

• SO(1)± × SO(7)± Invariant Sectors:

u1 =




A −ηB ηB −ηB
A −B B

A −B
A


 = u3 = u4, u2 =




A ηB −ηB −ηB
A −B −B

A B
A


 = u6,

u5 =




A ηB ηB ηB
A B B

A B
A


 , u7 =




A −ηB −ηB ηB
A B −B

A −B
A


 ,

v1 = ε±




F −ηG ηG −ηG
F −G G

F −G
F


 = v3 = v4, v2 = ε±




F ηG −ηG −ηG
F −G −G

F G
F


 = v6,

v5 = ε±




F ηG ηG ηG
F G G

F G
F


 , v7 = ε±




F −ηG −ηG ηG
F G −G

F −G
F


 ,

where

A = cosh3
(
s

7

)
, B = cosh

(
s

7

)
sinh2

(
s

7

)
,

F = sinh3
(
s

7

)
, G = sinh

(
s

7

)
cosh2

(
s

7

)
.

All these functions of s can be obtained from those in SO(7)± × SO(1)± by replacing s with

s/7.

10 Appendix F: Projectors of SO(p)+×SO(q)+ Sectors in

28× 28 Matrices

The projectors P IJKL
σ,p,q (σ = α, β, γ) of SO(p)+ × SO(q)+-invariant sectors can be obtained

explicitly. We list P IJKL
α,p,q and P IJKL

β,p,q only because P IJKL
γ,p,q can be obtained from those:P IJKL

γ,p,q =

1− P IJKL
α,p,q − P IJKL

β,p,q .

P IJKL
α,7,1 = diag (F1, F2, F1, F3, F4, F2, F1) ,

P IJKL
β,7,1 = 0,

P IJKL
α,6,2 = diag (F1, F9, F10, F9, F10, F9, F10) ,
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P IJKL
β,6,2 = diag (F5, 0, 0, 0, 0, 0, 0) ,

P IJKL
α,5,3 = diag (F10, F9, F10, F8, F7, F5, F6) ,

P IJKL
β,5,3 = diag (F5, F6, F8, 0, 0, 0, 0) ,

P IJKL
α,4,4 = diag (F10, F9, F10, 0, 0, 0, 0) ,

P IJKL
β,4,4 = diag (F9, F10, F9, 0, 0, 0, 0) ,

P IJKL
α,3,5 = diag (F7, F8, F6, 0, 0, 0, 0) ,

P IJKL
β,3,5 = diag (F9, F10, F9, F8, F6, F7, F5) ,

P IJKL
α,2,6 = diag (F7, 0, 0, 0, 0, 0, 0) ,

P IJKL
β,2,6 = diag (F3, F10, F9, F9, F10, F10, F9) ,

P IJKL
α,1,7 = 0,

P IJKL
β,1,7 = diag (F3, F4, F3, F3, F1, F4, F2) ,

where the 4× 4 block diagonal matrices Fi’s are

F1 =
1

8




3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


 , F2 =

1

8




3 1 1 −1
1 3 −1 1
1 −1 3 1
−1 1 1 3


 ,

F3 =
1

8




3 1 −1 1
1 3 1 −1
−1 1 3 1
1 −1 1 3


 , F4 =

1

8




3 −1 1 1
−1 3 1 1
1 1 3 −1
1 1 −1 3


 ,

F5 =
1

8




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , F6 =

1

8




1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1


 ,

F7 =
1

8




1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1


 , F8 =

1

8




1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1


 ,

F9 =
1

4




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 , F10 =

1

4




1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1


 .

11 Appendix G: Kinetic Terms, Superpotential and Po-

tential in SO(p)+ × SO(q)+ × SO(r)+ Sectors

We list here 1) the kinetic terms in terms of original variables, m and n, 2) new variables, m̃

and ñ in order to have usual canonical expression of kinetic terms, 3) superpotential in terms
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of new fields, and 4) scalar potential in SO(p)+ × SO(q)+ × SO(r)+ sectors. In all cases, the

scalar potential can be expressed in terms of superpotential as (42). In this revised version,

we list only six cases due to space limitations and refer to the original version in the hep-th

archive for remaining cases.

• SO(1, 7)+ → SO(2, 6)+ → CSO(1, 1, 6)+:

K1,1,6(m,n) = −1

3
∂µm∂µm− 2

7
∂µm∂µn− 1

7
∂µn∂µn,

m = −3
√
2

4
m̃−

√
6

2
ñ,

n =
7
√
2

4
m̃,

W1,1,6(ξ, ζ ; m̃, ñ) =
1

8
e−

2
√

2m̃+
√

6ñ
2

(
e2

√
2m̃ + ξ + 6e

√
2m̃+ 2

√
6

3
ñξζ

)
,

V1,1,6(ξ, ζ ; m̃, ñ) =
1

8
e−2

√
2m̃−

√
6ñ
(
e4

√
2m̃ − 2e2

√
2ñξ − 12e3

√
2m̃+ 2

√
6

3
ñξζ + ξ2

−12e
√
2m̃+ 2

√
6

3
ñξ2ζ − 24e2

√
2m̃+ 4

√
6

3
ñζ2ξ2

)
.

There exists a SO(7)+-invariant critical point of SO(8) theory for ξ = 1 and ζ = 1 and a

SO(2)+ × SO(6)+-invariant critical point for ξ = 1 and ζ = 0.

• SO(1, 7)+ → SO(3, 5)+ → CSO(1, 2, 5)+:

K1,2,5(m,n) = −3

5
∂µm∂µm− 2

7
∂µm∂µn− 1

7
∂µn∂µn,

m = −5
√
6

24
m̃− 5

√
6

6
ñ,

n =
7
√
6

8
m̃,

W1,2,5(ξ, ζ ; m̃, ñ) =
1

8
e−

2
√

6m̃+
√
30ñ

6

(
e
√
6m̃ + 2ξ + 5e

√
6

3
m̃+ 4

√
30

15
ñξζ

)
,

V1,2,5(ξ, ζ ; m̃, ñ) =
1

8
e−

√
6

3
m̃−

√
30
3

ñ
(
e

5
√

6
3

m̃ − 4e
2
√

6
3

ñξ − 10e
√
6m̃+ 4

√
30

15
ñξζ − 20e

4
√

30
15

ñξ2ζ

−15e
√

6
3
m̃+ 8

√
30

15
ñξ2ζ2

)
.

There exists an SO(3)+ × SO(5)+-invariant critical point for ξ = 1 and ζ = −1.

• SO(1, 7)+ → SO(4, 4)+ → CSO(1, 3, 4)+:

K1,3,4(m,n) = −∂µm∂µm− 2

7
∂µm∂µn− 1

7
∂µn∂µn,

m = −
√
3

6
m̃−

√
2

2
ñ,

n =
7
√
3

6
m̃,
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W1,3,4(ξ, ζ ; m̃, ñ) =
1

8
e−

2
√

3m̃+3
√

2ñ
6

(
e

4
√

3
3

m̃ + 3ξ + 4e
√

3
3
m̃+

√
2ñξζ

)
,

V1,3,4(ξ, ζ ; m̃, ñ) =
1

8

(
e2

√
3m̃−

√
2ñ − 6e

2
√

3
3

m̃−
√
2ñξ − 8e

√
3m̃ξζ − e−

2
√

3
3

m̃−
√
2ñξ2

−24e−
√

3
3
m̃ξ2ζ − 8e

√
2ñξ2ζ2

)
.

There exists an SO(4)+ × SO(4)+-invariant critical point for ξ = 1 and ζ = −1, and an

SO(5)+ × SO(3)+-invariant critical point for ξ = −1 and ζ = −1.

• SO(1, 7)+ → SO(5, 3)+ → CSO(1, 4, 3)+:

K1,4,3(m,n) = −5

3
∂µm∂µm− 2

7
∂µm∂µn− 1

7
∂µn∂µn,

m = −3
√
5

40
m̃−

√
30

10
ñ,

n =
7
√
5

8
m̃,

W1,4,3(ξ, ζ ; m̃, ñ) =
1

8
e−

2
√

5m̃+
√
30ñ

10

(
e
√
5m̃ + 4ξ + 3e

√
5

5
m̃+ 4

√
30

15
ñξζ

)
,

V1,4,3(ξ, ζ ; m̃, ñ) =
1

8
e−

2
√

5m̃+
√
30ñ

5

(
e2

√
5m̃ − 8e

√
5m̃ξ − 6e

6
√

5
5

m̃+ 4
√

30
15

ñξζ − 8ξ2

−24e−
√

5
5
m̃+ 4

√
30

15
ñξ2ζ − 3e

2
√

5
5

m̃+ 8
√

30
15

ñξ2ζ2
)
.

There exists an SO(5)+×SO(3)+-invariant critical point for ξ = 1 and ζ = −1, and a SO(4)+×
SO(4)+-invariant critical point for ξ = −1 and ζ = −1.

• SO(1, 7)+ → SO(6, 2)+ → CSO(1, 5, 2)+:

K1,5,2(m,n) = −3∂µm∂µm− 2

7
∂µm∂µn− 1

7
∂µn∂µn,

m = −
√
30

60
m̃−

√
6

6
ñ,

n =
7
√
30

20
m̃,

W1,5,2(ξ, ζ ; m̃, ñ) =
1

8
e−

√
30

15
m̃−

√
6

6
ñ
(
e

2
√

30
5

m̃ + 5ξ + 2e
√

30
15

m̃+ 2
√

6
3

ñξζ
)
,

V1,5,2(ξ, ζ ; m̃, ñ) = −1

8
e−

2
√

30
15

m̃−
√

6
3
ñ
(
−e4

√
30
5

m̃ + 10e
2
√

30
5

m̃ξ + 4e
7
√

30
15

m̃+ 2
√

6
3

ñξζ + 15ξ2

+20e
√

30
15

m̃+ 2
√

6
3

ñξ2ζ
)
.

There exists an SO(3)+ × SO(5)+-invariant critical point for ξ = −1 and ζ = −1.

• SO(1, 7)+ → SO(7, 1)+ → CSO(1, 6, 1)+:

K1,6,1(m,n) = −7∂µm∂µm− 2

7
∂µm∂µn− 1

7
∂µn∂µn,
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m = −
√
42

168
m̃−

√
14

14
ñ,

n =
7
√
42

24
m̃,

W1,6,1(ξ, ζ ; m̃, ñ) =
1

8
e−

√
42

21
m̃−

√
14

14
ñ
(
e

√
42
3

m̃ + 6ξ + e
√

42
21

(m̃+4
√
3ñ)ξζ

)
,

V1,6,1(ξ, ζ ; m̃, ñ) =
1

8
e−

2
√

42
21

m̃−
√
14
7

ñ
(
e2

√
42
3

m̃ − 12e
√

42
3

m̃ξ − 2e
4
√

42
21

(2m̃+
√
3ñ)ξζ − 24ξ2

−12e
√

42
21

(m̃+4
√
3ñ)ξ2ζ + e

2
√

42
21

(m̃+4
√
3ñ)ξ2ζ2

)
.

There are no critical points, in this case.
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