
Eraldo Lúıs Rezende Fernandes

Entropy Guided Feature Generation for
Structure Learning

Tese de Doutorado

Thesis presented to the Programa de Pós-Graduação em
Informática, of the Departamento de Informática do Centro
Técnico Cient́ıfico da PUC–Rio, as partial fulfillment of the
requirements for the degree of Doutor.

Advisor: Prof. Ruy Luiz Milidiú

Rio de Janeiro
September 2012

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Eraldo Lúıs Rezende Fernandes

Entropy Guided Feature Generation for
Structure Learning

Thesis presented to the Programa de Pós-Graduação em
Informática, of the Departamento de Informática do Centro
Técnico Cient́ıfico da PUC–Rio, as partial fulfillment of the
requirements for the degree of Doutor.

Prof. Ruy Luiz Milidiú

Advisor
Departamento de Informática — PUC–Rio

Prof. Marcus Vinicius Soledade Poggi de Aragão

Departamento de Informática — PUC–Rio

Prof. Valmir Carneiro Barbosa

UFRJ

Prof. Ćıcero Nogueira dos Santos

IBM Research

Prof. Daniel Schwabe

Departamento de Informática — PUC–Rio

Prof. José Eugenio Leal

Coordinator of the Centro Técnico Cient́ıfico — PUC–Rio

Rio de Janeiro — September 6, 2012

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

All rights reserved.

Eraldo Lúıs Rezende Fernandes

Graduated from the Universidade Federal de Mato Grosso
do Sul in Ciência da Computação and obtained a degree of
Mestre em Informática at PUC–Rio. He is a lecturer and a
researcher at the Instituto Federal de Educação, Ciência e
Tecnologia de Goiás.

Bibliographic data

Fernandes, Eraldo Lúıs Rezende

Entropy Guided Feature Generation for Structure Learning
/ Eraldo Lúıs Rezende Fernandes ; advisor: Ruy Luiz Milidiú.
— 2012.

93 f. : il. ; 30 cm

Tese (Doutorado em Informática)-Pontif́ıcia Universidade
Católica do Rio de Janeiro, Rio de Janeiro, 2012.

Inclui bibliografia

1. Informática – Teses. 2. Aprendizado de Estruturas.
3. Geração de Atributos. 4. Entropia. 5. Processamento
de Linguagem Natural. I. Milidiú, Ruy Luiz. II. Pontif́ıcia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Acknowledgments

First of all, I am thankful for all my family which has always supported

me. We have had amazing moments during so many meetings, and it is always

my pleasure to be with them. Specially, I would like to thank my parents,

Eraldo and Sônia, my sister, Luciana, and my little brother, Lúciu. They

constitute my ultimate foundation for all aspects of my life.

I am unable to express in words all my love and gratitude for my dear

wife, Valéria. She standed by me during the most difficult and sad moments

of my PhD course. And, more importantly, we are always enjoying each other

and having fun with the simplest things.

I also want to thank my sisters-in-law, Vanessa and Patŕıcia, and my

brother-in-law, Márcio.

I will never forget the great moments I have spent in the lab. Thank you

very much, all Learnlings. Specially, I am glad for having closely worked with

Carlos, Ćıcero, Eduardo, Leandro and William.

I am thankful to my advisor, Ruy, who have taught me so many things

regarding different aspects of my life.

I thank all my friends from Barcelona, where I spent one great year at

Yahoo! Research Lab. Specially, I need to thank my supervisor and friend, Ulf,

and all the Berlineros.

Finally, I need to thank my colleagues from IFG for all the support.

Specially, José Antônio, his family and Sérgio Henrique.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Abstract
Fernandes, Eraldo Lúıs Rezende; Milidiú, Ruy Luiz. Entropy Guided

Feature Generation for Structure Learning. Rio de Janeiro,
2012. 93p. DSc Thesis — Departamento de Informática, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Structure learning consists in learning a mapping from inputs to

structured outputs by means of a sample of correct input-output pairs. Many

important problems fit into this setting. Natural language processing provides

several tasks that can be formulated and solved as structure learning problems.

Dependency parsing, for instance, involves the prediction of a tree underlying

a sentence. Feature generation is an important subtask of structure learning

which, usually, is partially solved by a domain expert that builds complex

discriminative feature templates by conjoining the available basic features.

This is a limited and expensive way to generate features and is recognized as

a modeling bottleneck.

In this work, we propose an automatic feature generation method

for structure learning problems. This method is entropy guided since it

generates complex features based on the conditional entropy of local output

variables given the available input features. We experimentally compare the

proposed method with two important alternative feature generation methods,

namely manual template generation and polynomial kernel methods. Our

experimental findings indicate that the proposed method is more attractive

than both alternatives. It is much cheaper than manual templates and

computationally faster than kernel methods. Additionally, it is simpler to

control its generalization performance than with kernel methods.

We evaluate our method on nine datasets involving five natural

language processing tasks and four languages. The resulting systems present

state-of-the-art comparable performances and, particularly on part-of-speech

tagging, text chunking, quotation extraction and coreference resolution,

remarkably achieve the best known performances on different languages

like Arabic, Chinese, English, and Portuguese. Furthermore, our coreference

resolution systems achieve the very first place on the Conference on

Computational Natural Language Learning 2012 Shared Task. The competing

systems were ranked by the mean score over three languages: Arabic,

Chinese and English. Our approach obtained the best performances among

all competitors for all the three languages.

Our feature generation method naturally extends the general structure

learning framework and is not restricted to natural language processing tasks.

Keywords

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Structure Learning. Feature Generation. Entropy. Natural

Language Processing.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Resumo

Fernandes, Eraldo Lúıs Rezende; Milidiú, Ruy Luiz. Geração

de Atributos Guiada por Entropia para Aprendizado de

Estruturas. Rio de Janeiro, 2012. 93p. Tese de Doutorado —
Departamento de Informática, Pontif́ıcia Universidade Católica do
Rio de Janeiro.

Aprendizado de estruturas consiste em aprender um mapeamento de

variáveis de entrada para sáıdas estruturadas a partir de exemplos de pares

entrada-sáıda. Vários problemas importantes podem ser modelados desta

maneira. O processamento de linguagem natural provê diversas tarefas que

podem ser formuladas e solucionadas através do aprendizado de estruturas.

Por exemplo, parsing de dependência envolve o reconhecimento de uma árvore

impĺıcita em uma frase. Geração de atributos é uma sub-tarefa importante

do aprendizado de estruturas. Geralmente, esta sub-tarefa é realizada por um

especialista que constrói gabaritos de atributos complexos e discriminativos

através da combinação dos atributos básicos dispońıveis na entrada. Esta é

uma forma limitada e cara para geração de atributos e é reconhecida como um

gargalo de modelagem.

Neste trabalho, propomos um método automático para geração de

atributos para problemas de aprendizado de estruturas. Este método é guiado

por entropia já que é baseado na entropia condicional de variáveis locais de

sáıda dados os atributos básicos. Comparamos experimentalmente o método

proposto com dois métodos alternativos para geração de atributos: geração

manual e métodos de kernel polinomial. Nossos resultados mostram que o

método de geração de atributos guiado por entropia é superior aos dois métodos

alternativos em diferentes aspectos. Nosso método é muito mais barato do que

o método manual e computacionalmente mais rápido que o método baseado em

kernel. Adicionalmente, ele permite o controle do seu poder de generalização

mais facilmente do que métodos de kernel.

Nós avaliamos nosso método em nove datasets envolvendo cinco tarefas

de lingúıstica computacional e quatro idiomas. Os sistemas desenvolvidos

apresentam resultados comparáveis aos melhores sistemas atualmente e,

particularmente para etiquetagem morfossintática, identificação de sintagmas,

extração de citações e resolução de coreferência, obtêm os melhores resultados

conhecidos para diferentes idiomas como Árabe, Chinês, Inglês e Português.

Adicionalmente, nosso sistema de resolução de coreferência obteve o primeiro

lugar na competição Conference on Computational Natural Language Learning

2012 Shared Task. O sistema vencedor foi determinado pela média de

desempenho em três idiomas: Árabe, Chinês e Inglês. Nosso sistema obteve

o melhor desempenho nos três idiomas avaliados.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Nosso método de geração de atributos estende naturalmente o framework

de aprendizado de estruturas e não está restrito a tarefas de processamento de

linguagem natural.

Palavras–chave

Aprendizado de Estruturas. Geração de Atributos. Entropia.

Processamento de Linguagem Natural.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Contents

1 Introduction 13

1.1 Ad Hoc Approaches 13
1.2 Linear Discriminative Models 15
1.3 Nonlinearity 20
1.4 Entropy-Guided Structure Learning 21
1.5 Contributions 22
1.6 Dissertation Organization 24

2 Structure Learning Framework 26

2.1 Dependency Parsing 26
2.2 Large Margin Training 28
2.3 Latent Structure Training 29
2.4 Empirical Results 31

3 Entropy-Guided Feature Generation 33

3.1 Basic Dataset 34
3.2 Conditional Entropy and Information Gain 34
3.3 Decision Tree Learning 36
3.4 Feature Templates 37
3.5 Generated Features 38
3.6 Empirical Results 38

4 Entropy-Guided Structure Learning Framework 40

4.1 Feature Factorization 40
4.2 Entropy-Guided Feature Generation 41
4.3 Training Algorithm 42
4.4 Kernelization 44
4.5 Empirical results 46

5 Prediction Problems 47

5.1 Rooted Tree 48
5.2 Sequence Labeling 49
5.3 Sequence Segmentation 49
5.4 Clustering 50

6 Dependency Parsing 51

6.1 Task Formalization 51
6.2 Feature Factorization 51
6.3 Prediction Problem 51
6.4 Basic Features 52
6.5 Empirical Results 53

7 Part-of-Speech Tagging 55

7.1 Task Formalization 55
7.2 Feature Factorization 56

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

7.3 Prediction Problem 57
7.4 Basic Features 58
7.5 Empirical Results 59

8 Text Chunking 61

8.1 Task Formalization 61
8.2 Feature Factorization 62
8.3 Prediction Problem 62
8.4 Basic Features 62
8.5 Empirical Results 62

9 Quotation Extraction 65

9.1 Task Formalization 65
9.2 Feature Factorization 66
9.3 Prediction Problem 66
9.4 Basic Features 67
9.5 Empirical Results 67

10 Coreference Resolution 69

10.1 Task Formalization 70
10.2 Feature Factorization 70
10.3 Prediction Problem 73
10.4 Basic Features 74
10.5 Data Preparation 74
10.6 Empirical Results 78

11 Conclusions 84

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

List of Figures

1.1 Dependency tree example. 14
1.2 Binary perceptron algorithm. 16
1.3 Multiclass perceptron algorithm. 17
1.4 Generalized perceptron algorithm for dependency parsing. 18
1.5 Structure perceptron algorithm. 19
1.6 Averaged structure perceptron algorithm. 19
1.7 Entropy-Guided Structure Learning framework. 22

2.1 Dependency tree represented as arcs (y) and as head vector. 26
2.2 Large margin structure perceptron algorithm for dependency parsing. 29
2.3 Latent structure perceptron algorithm. 31

3.1 Entropy H(y) of a random binary variable y versus Pr[y = 1] that
is denoted by p. 35

3.2 A decision tree. 36
3.3 Feature template induction from a decision tree. 37

4.1 ESL training algorithm – the entropy-guided large-margin structure
perceptron. 43

7.1 Part-of-speech tagging example. 55
7.2 Illustrative directed acyclic graph for a sentence x = (x1, x2, x3)

and a tagset S = {a, b}. The continuous path (y1,b, y2,a, y3,a)
corresponds to the labeling y = (b, a, a). 57

8.1 Text chunking example. 61

9.1 Quotation extraction example. 65

10.1 Document with nine highlighted mentions that refer to three
different entities: North Korea is referenced by mentions {a1, a2, a3,
a4}; the U.S. is referenced by {b1, b2}; and Madeleine Albright by
{c1, c2, c3}. The letter in the mention subscript identifies its entity
cluster and the number uniquely identifies the mention within its
cluster. 69

10.2 Coreference tree for the cluster a in Figure 10.1. 71
10.3 Document tree with three coreference trees that corresponds to the

text in Figure 10.1. Dashed lines indicate artificial arcs. 72
10.4 Latent structure perceptron algorithm. 73

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

List of Tables

1.1 Comparison of EFG with other feature generation methods. 21
1.2 Comparison of ESL with state-of-the-art systems. 22

2.1 Performances of dependency parsers using manual templates on
the Portuguese CoNLL-2006 dataset. These systems use different
learning algorithms and also different basic features. 32

3.1 Basic dataset for the sentence in Figure 2.1. 34
3.2 Performances of EFG and manual templates on the Portuguese

CoNLL-2006 dependency parsing dataset. 39

4.1 Comparison of ESL to second-degree polynomial kernel. 46

5.1 List of tasks and the corresponding output structures and prediction
problems. 47

6.1 Bosque dependency parsing dataset statistics. 53
6.2 Performances of ESL and state-of-the-art systems on the

Portuguese CoNLL-2006 dependency parsing dataset. 53

7.1 Basic statistics of the part-of-speech tagging datasets. 59
7.2 Performances on the Mac-Morpho dataset. 59
7.3 Performances on the Brown dataset. 60

8.1 Basic statistics of the text chunking datasets. 62
8.2 Performances on the Bosque dataset. 63
8.3 Performances on the CoNLL-2000 dataset. 63

9.1 GloboNotes dataset statistics. 67
9.2 Performances on the GloboQuotes dataset. 68

10.1 Description of all 70 basic features. 75
10.2 State-of-the-art systems for multilingual unrestricted coreference

resolution in OntoNotes. Performances on the CoNLL-2012 Shared
Task test sets. 79

10.3 Detailed performance of our system on the CoNLL-2012 Shared
Task test sets. 79

10.4 EFG effect on system performance for the English development set. 80
10.5 Root loss value effect on development set performances. 81
10.6 Effect whether nested coreferring mentions are considered or not

for the Chinese language. 82
10.7 Supplementary results on the test sets with different

configurations (Config) for parse quality and mention candidates
(parse/mentions). Parse quality can be automatic (A) or golden
(G); and mention candidates can be automatically identified (A),
golden mention boundaries (GB) or golden mentions (GM). 82

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

1

Introduction

Machine learning (ML) is a very active research field whose main

objective is to learn a prediction function from a given set of examples. In

the last decades, ML has been successfully applied in many fields, such as

natural language processing, information extraction, computer vision, and

computational biology. There are several learning paradigms, but in this work

we focus on supervised machine learning. In this case, the training examples

comprise inputs and their correct outputs.

A classic ML problem is binary classification, in which the prediction

output is binary. Here, the learned model discriminates between two classes

of examples. However, many important problems involve the prediction of

a structure. In these cases, the prediction output comprises many variables

with complex interdependencies. Natural language processing (NLP) includes

many structure learning (SL) problems, such as dependency parsing (DP),

part-of-speech (POS) tagging, quotation extraction and coreference resolution.

Dependency parsing is to identify a tree underlying a given sentence. In POS

tagging, for a given input sentence, the prediction output is a sequence of tags.

In quotation extraction, an input document is segmented into non-overlapping

quotes that, additionally, are associated with their authors. Given a document

with mentions to entities from the real world – like people, companies

and places – coreference resolution consists in clustering mentions that are

references to the same entity.

1.1

Ad Hoc Approaches

Many approaches to solve structured problems are based on complex

ML systems that combine several basic classifiers. In order to consider the

interdependencies among output variables, the basic classifiers are trained

and applied by ad hoc strategies that pass information from one classifier to

another during training and enforce constraints on the prediction outputs of

the basic classifiers. One of the most basic structured problems is multiclass

classification. This is a generalization of the binary classification problem

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 14

where one needs to discriminate among K > 2 classes of interest. There

are two common approaches to perform this task by decomposing it on

independent binary classification problems. The one-vs-all approach trains K

binary classifiers, where the k-th classifier, for k ∈ {1, . . . , K}, is trained to

discriminate the instances of class k from instances of all other classes. To

classify an unseen example, all K classifiers are applied and a rule is used

to choose only one class. Another approach to multiclass classification is the

one-vs-one technique. In this approach, K(K − 1)/2 binary classifiers are

trained in order to discriminate between each pair of classes. To classify an

unseen example, a voting scheme is used to enforce the unique-class constraint.

RelHunter (Fernandes et al., 2010b,c) is a general method for relation

extraction from text that is based on task decomposition and entropy-guided

transformation learning (ETL) (Milidiú et al., 2008; dos Santos and Milidiú,

2009b). Besides the fact that ETL considers complex output dependencies, it

is tailored for sequential outputs and thus can not directly consider arbitrary

structures. In quotation extraction, for instance, RelHunter trains two ETL

models to identify tokens that start or end a quote. Then, another ETL

model is trained to discriminate which pairs of start-end tokens are correct

quotes and, additionally, to associate them with their authors. A task specific

heuristic is later applied to discard overlapping quotes. In Fernandes et al.

(2010c), RelHunter is further applied to text chunking, clause identification,

hedge detection, and dependency parsing.

Dependency parsing (DP) (Buchholz and Marsi, 2006) is to identify

the words that syntactically modify other words in a given sentence. This

dependency structure corresponds to a rooted tree whose nodes are the

sentence words. In Figure 1.1, we show a dependency tree example. As usual,

Our system achieves the best result

Figure 1.1: Dependency tree example.

in this example, the root node is the main verb of the sentence. An edge (i, j)

connects the i-th token to the j-th token and indicates that the latter modifies

the former. Additionally, the i-th token is called the head token and the j-th

token is called the modifier. Nivre et al. (2006) propose a dependency parser

that relies on a left-to-right deterministic parsing algorithm. Four support

vector machines (SVM) are trained to predict parsing actions given features

that represent the parser history. Previous word predictions are incorporated

in order to consider the interdependency between predictions. Milidiú et al.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 15

(2009) cast DP as a token classification task by using a specific tagging style

that provides good generalization. In this tagging style, a modifier token class

uniquely identifies its head token. A modifier tag is given by the concatenation

of three values: the head token POS tag; how many tokens with the same

POS of the head there are between the modifier and its head; and if the head

is to the left or to the right of the modifier token. Then, an ETL model is

directly trained on the given sentences, along with their features, to predict

these specific token tags. This approach achieves good performance but has

limitations to generalize on complex sentences with several clauses, since these

instances can involve arbitrarily long distances, even with this relative distance.

These ad hoc approaches are developed on a per-task basis and do

not provide a general neither principled design pattern. Thus, they are not

directly generalized to arbitrary structures and, moreover, most of them have

no theoretical guarantees regarding their performances.

1.2

Linear Discriminative Models

In this work, we are interested in linear discriminative methods that,

regarding binary classification, for instance, learn the parameters of the

following linear discriminant function

s(x;w) = 〈w,Φ(x)〉 =
∑

m=1,...,M

wm · φm(x), (1-1)

where Φ(x) = (φ1(x), . . . , φM(x)) is a vector of M real-valued feature

functions, or simply features, that represents the input x; w = (w1, . . . , wM)

is the parameter vector – also called model, which is estimated from examples;

and 〈·, ·〉 is the scalar product operator. Then, the prediction function for a

given model w is simply

F (x;w) =







+1 if s(x;w) ≥ 0

−1 otherwise.
(1-2)

The learning problem is then to estimate w from a training set D = {(x, y)}

comprising correct input-output pairs (x, y), such that x is an input and

y ∈ {−1,+1} is the corresponding binary output.

There are plenty of training algorithms for binary classification that

follow the empirical risk minimization (ERM) principle (Vapnik, 1998). The

empirical risk of a model w on the training set D is given by

R(D,w) =
∑

(x,y)∈D

1[y 6= F (x;w)], (1-3)

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 16

where 1[p] is equal to 1 if p is true and 0 otherwise. In words, the empirical

risk is the number of misclassified examples in the training data.

The binary perceptron (Rosenblatt, 1957) is an online algorithm that

starts from a null model w = 0 and iteratively updates its parameters. In

Figure 1.2, we present the pseudo-code of this algorithm. At each iteration,

w ← 0

while no convergence

for each (x, y) ∈ D

ŷ ← F (x;w)

w ← w +
(

y−ŷ
2

)

·Φ(x)

return w

Figure 1.2: Binary perceptron algorithm.

the perceptron draws a training example (x, y) and performs two actions: a

prediction ŷ is obtained by applying the current model w and, in case of

a prediction error, the model is updated towards the misclassified example.

Observe that, for positive examples (y = +1), the misclassified example

features Φ(x) are summed to the model parameters. And, for negative

examples (y = −1), the features are subtracted from the model parameters.

If the predicted output is correct (ŷ = y), the model w is not updated. This

algorithm is proved to converge to a zero-risk solution, if one exists (Novikoff,

1962). Other training algorithms like stochastic gradient descent or support

vector machines can also be employed with similar performance guarantees.

Weston and Watkins (1998) propose a generalization of the binary linear

discriminant approach for multiclass classification problems. Their approach

learns K linear discriminant functions, one for each class. Hence, for each

class k ∈ {1, . . . , K}, it learns a parameter vector wk of a linear discriminant

function given by
s(x;wk) = 〈wk,Φ(x)〉. (1-4)

Up to this point, this approach is very similar to the one-vs-all approach cited

earlier. However, it differs on the training strategy and also on the prediction

function that is given by

F (x;w) = argmax
y∈Y

s(x;wy), (1-5)

where w = (w1, . . . ,wK) is the concatenation of the parameter vectors for

all classes and Y = {1, . . . , K} is the set of classes. As one can notice, the K

discriminant functions are jointly employed to perform a prediction.

There are different training algorithms that jointly estimate the

discriminant parameters for this multiclass model. Weston and Watkins (1998)

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 17

propose an SVM-based formulation by designing joint constraints for each

training example, and Crammer and Singer (2001) propose an alternative

formulation in order to derive an efficient algorithm for the resulting learning

problem. Later, Crammer and Singer (2003) introduce a family of algorithms,

called ultraconservatives, for training this kind of joint multiclass model with

proven error bounds. In this same work, Crammer and Singer further propose

the margin infused relaxed algorithm (MIRA), a ultraconservative algorithm

that incorporates a generalized notion of margin for multiclass problems.

The multiclass perceptron is a generalization of the binary perceptron and

is a member of the ultraconservative family. We present the pseudo-code

of this algorithm in Figure 1.3. As its binary counterpart, the multiclass

w ← 0

while no convergence

for each (x, y) ∈ D

ŷ ← argmaxy′∈Y〈wy′ ,Φ(x)〉

wy ← wy +Φ(x)

wŷ ← wŷ −Φ(x)

return w

Figure 1.3: Multiclass perceptron algorithm.

perceptron is an online algorithm that, on each iteration, picks a training

example (x, y) and performs two main steps. First, a prediction ŷ is obtained

by applying the multiclass prediction function (1-5) using the current joint

model w = (w1, . . . ,wK). Then, if the predicted class ŷ is not the correct

one y, the joint model w is updated as follows. The correct class model

wy is incremented by the input feature vector Φ(x) and the predicted class

model wŷ is decremented by this vector. For all other classes, their models are

not updated. This update rule benefits the correct class in detriment of the

predicted one in the next predictions regarding the current input features. If

the predicted class is correct, the correct and predicted updates cancel each

other and actually no update is performed.

Collins (2002b) further generalizes the multiclass perceptron for sequence

labeling problems, like POS tagging. Following Weston and Watkins (1998)

and Collins (2002b), Altun et al. (2003) propose an SVM-based formulation

for sequence labeling and Joachims (2003) develops a related approach for

sequence alignment. McDonald et al. (2005) further extend these methods and

propose MSTParser, a system that uses a generalization of MIRA to train a

dependency parser. Its training algorithm learns a linear discriminant function

over head-modifier edges. Given an input sentence x and an edge (i, j) that

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 18

corresponds to a candidate dependency between the words xi and xj in x, they

define the following discriminant function

s(x, i, j;w) = 〈w,Φ(x, i, j)〉, (1-6)

where Φ(x, i, j) is a feature vector that describes the given dependency edge.

The prediction function is then given by

F (x;w) = arg max
y∈Y(x)

∑

(i,j)∈y

s(x, i, j;w), (1-7)

where Y(x) is the set of all rooted trees over the words in x, i.e., all possible

dependency trees for the input sentence. This optimization problem is thus

to find a rooted tree such that the sum of its edges scores is maximum. This

problem corresponds to the maximum branching problem that is efficiently

solved by Chu-Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967).

Fernandes and Milidiú (2012) use a generalization of the multiclass

perceptron to estimate a parameter vector that minimizes the empirical

risk of this DP model. In Figure 1.4, we present the pseudo-code for this

algorithm. Again, it is an online algorithm that, at each iteration, performs

w ← 0

while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)

∑

(i,j)∈y′〈w,Φ(x, i, j)〉

w ← w +
∑

(i,j)∈y Φ(x, i, j)−
∑

(i,j)∈ŷ Φ(x, i, j)

return w

Figure 1.4: Generalized perceptron algorithm for dependency parsing.

two main actions regarding a training instance (x,y): prediction and model

update. The predicted tree ŷ is obtained by solving (1-7), which is done by

Chu-Liu-Edmonds algorithm. The update rule is similar to the one used in the

multiclass perceptron. Features present in the edges within y have their weights

incremented, and weights for features within ŷ are decremented. Edges that

are present in both y and ŷ are canceled, thus their weights are not updated.

Edges not present in either structures are also ignored.

Eventually, it has been realized that these task-specific methods are

just instances of a general structure learning framework. In this framework,

for a given input x, the prediction problem is formulated as the following

w-parameterized optimization problem

F (x;w) = arg max
y∈Y(x)

s(x,y;w), (1-8)

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 19

where Y(x) is the set of possible predictions for the given input x; and

s(x,y;w) is a w-parameterized function that jointly scores an input-output

pair (x,y). Intuitively, the scoring function measures how well the output

structure fits the input. And, it is given by the following linear discriminant

function
s(x,y;w) = 〈w,Φ(x,y)〉, (1-9)

where Φ(x,y) is an arbitrary joint feature vector representation of the

input-output pair. Thus, for a given input, the prediction problem is to find the

output with the highest score; where an output score is given by a discriminant

function that is linear on some joint feature representation.

The structure learning framework directly solves structured problems in

a general and principled way. The structure perceptron (SPerc) is a general

training algorithm that follows the ERM principle to estimate the required

parameter vector w. This algorithm is presented in Figure 10.4. It is easy

w ← 0

while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)〈w,Φ(x,y′)〉

w ← w +Φ(x,y)−Φ(x, ŷ)

return w

Figure 1.5: Structure perceptron algorithm.

to show that the algorithms from Figures 1.2, 1.3 and 1.4 are instances of

the SPerc algorithm. Moreover, an extension of Novikoff’s theorem (Novikoff,

1962) proves that this algorithm converges to a zero-risk solution, if one exists.

Collins (2002b) proposes the structure perceptron algorithm with an

averaging strategy. This is a known strategy used even with the binary

perceptron and turns the algorithm more robust. In Figure 1.6, we present

the pseudo-code of the averaged SPerc. It is very similar to the algorithm

w
0 ← 0

t← 0
while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)〈w
t,Φ(x,y′)〉

w
t+1 ← w

t +Φ(x,y)−Φ(x, ŷ)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 1.6: Averaged structure perceptron algorithm.

presented in Figure 10.4. Given that the algorithm executes for T iterations, the

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 20

averaged SPerc builds a sequence of models w0, . . . ,wT . Instead of returning

the last model wT , like the ordinary SPerc, it returns the average among all

built models, that is, w = 1
T

∑T

k=1 w
k. Each update in the SPerc algorithm

has potentially a big impact on the model parameters. Thus, the averaged

algorithm is more robust to noisy examples, and usually performs significantly

better than the non-averaged version.

The power of this framework relies mainly on the freedom to design

the feature representation and the prediction problem. Specific feature

representations allow the design of adherent models for complex SL problems.

The decomposition of the joint feature vector along the output structures gives

rise to meaningful prediction problems that frequently are reduced to well

studied optimization problems. For instance, Collins (2002b) and Altun et al.

(2003) model sequence labeling problems through the SL framework, and the

resulting prediction problems are solved by the well known Viterbi algorithm;

Joachims (2003) develops an approach to learn sequence alignment score

functions that are then plugged in the Smith-Waterman alignment algorithm

(Smith and Waterman, 1981); and Altun et al. (2007) create a constituent

parser whose prediction is performed by the CKY parsing algorithm. This

natural fitting between prediction problems and task-meaningful algorithms is

no coincidence. It is a consequence of the fact that the SL framework is general

yet very flexible.

1.3

Nonlinearity

Linear models are pervasive in ML, mainly because there are efficient

training algorithms with proven error bounds to estimate such models. On the

other hand, many SL problems are highly non-linear on the available input

features. Therefore, when training a linear model within the SL framework,

it is necessary to use some feature generation method in order to provide the

required nonlinear feature combinations.

Feature generation is frequently solved by a domain expert that generates

complex and discriminative feature templates by conjoining input features.

Manual template generation is a limited and expensive way to obtain feature

templates and is recognized as a modeling bottleneck. Another popular

alternative is to employ a kernel function, if the learning algorithm allows

it. Besides the fact that kernelized training algorithms are computationally

expensive, it is difficult to control the generalization performance of the learned

models.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 21

1.4

Entropy-Guided Structure Learning

In this work, we use Entropy-guided Feature Generation (EFG), an

automatic method to generate feature templates. EFG is based on the

conditional entropy of local prediction variables given basic features. It

receives a training dataset with basic features and produces a set of feature

templates by conjoining features that together are highly discriminative. EFG

is based on the same strategy of Entropy-guided Transformation Learning

(ETL) (Milidiú et al., 2008; dos Santos and Milidiú, 2009a), which generalizes

Transformation-Based Learning (Brill, 1995) by automatically generating rule

templates.

We introduce EFG in Fernandes and Milidiú (2012), where we apply it to

Portuguese dependency parsing and show that it obtains higher performance

than the best available manual templates, when the same basic features are

given to both systems. In the Conference on Computational Natural Language

Learning (CoNLL) 2012 Shared Task (Pradhan et al., 2012), we propose

another EFG-based system that achieves the very first place in this competition

(Fernandes et al., 2012b). Here, we experimentally compare EFG to manual

template generation and kernel methods on three tasks. In Table 1.1, we

summarize these results. Observe that EFG outperforms both alternative

Alternative System EFG

Task Method F1 F1 Error Reduction

Portuguese DP Manual Templates 90.06 90.28 2.2%
English Chunking Kernel 93.48 94.12 9.8%

Portuguese Chunking Kernel 86.67 87.72 7.9%

Table 1.1: Comparison of EFG with other feature generation methods.

methods on the evaluated datasets. Additionally, it is much cheaper than

manual templates and computationally faster than kernel methods.

EFG is easily integrated into the general structure learning framework.

We extend this framework by including EFG as a preprocessing step. We

denote this extension Entropy-guided Structure Learning (ESL) framework.

ESL is not restricted to natural language processing tasks. In Figure 1.7, we

present the pseudo-code of the extended framework. The training dataset D is

given with the available basic features. Before running the learning algorithm,

we apply EFG to generate non-linear features that compose the feature vectors

Φ(D) = {Φ(x,y)}(x,y)∈D given as input for the learning algorithm.

We evaluate the entropy-guided structure learning framework on nine

datasets involving five NLP tasks and four languages. In Table 1.2, we depict

the performances achieved by ESL systems compared with the best known

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 22

Φ(D)← EFG(D)
w

0 ← 0

t← 0
while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)〈w
t,Φ(x,y′)〉

w
t+1 ← w

t +Φ(x,y)−Φ(x, ŷ)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 1.7: Entropy-Guided Structure Learning framework.

results for each task. ESL reduces the smallest known error for some tasks and

Task Language

ESL

State of
Accuracy

Error

the Art Reduction

POS Tagging Portuguese 96.94 97.12 5.9%
POS Tagging English 96.83 96.72 −3.5%
Text Chunking Portuguese 87.46 87.72 2.1%
Text Chunking English 94.21 94.12 −1.6%

Dependency Parsing Portuguese 93.03 92.66 −5.3%
Quotation Extraction Portuguese 71.26 76.80 19.3%
Coreference Resolution Arabic 53.55 54.22 1.4%
Coreference Resolution Chinese 62.24 62.87 1.7%
Coreference Resolution English 61.31 63.37 5.3%
Coreference Resolution Multilingual 58.25 60.15 4.5%

Table 1.2: Comparison of ESL with state-of-the-art systems.

achieves state-of-the-art comparable results for others. These are remarkable

results, specially considering that ESL is relatively simple to be applied on such

complex tasks. Moreover, many of the systems that outperform ESL include

additional information that could be also included in our systems.

1.5

Contributions

This work has seven main contributions:

1. the ESL framework;

2. a comparison of EFG with manual templates and polynomial kernels;

3. nine ESL based systems for fundamental NLP tasks;

4. state-of-the-art systems for three Portuguese tasks;

5. a novel SL modeling of coreference resolution based on latent trees;

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 23

6. ESL-based systems that achieve the best performance on the renowned

CoNLL-2012 Shared Task on multilingual coreference resolution;

7. state-of-the-art systems for coreference resolution on Arabic, Chinese and

English.

Partial results related to this work have been previously presented in

eight important scientific events (Fernandes et al., 2009a,b; dos Santos et al.,

2010; Fernandes et al., 2010a,b; Fernandes and Brefeld, 2011; Fernandes and

Milidiú, 2012; Fernandes et al., 2012b) and one journal paper (Fernandes et al.,

2010c).

Our key contribution is the entropy-guided structure learning framework

that extends the general linear discriminative SL framework. ESL employs the

entropy-guided feature generation method to solve the problem of non-linear

feature generation, a known modeling bottleneck. This framework provides a

general machine learning approach that can be applied to supervised structure

learning problems.

Our second main contribution is to compare the EFG method with

two alternative methods for non-linear feature generation, namely manual

templates and polynomial kernel methods. We demonstrate that EFG is

superior to both alternatives, since it achieves higher performance. Moreover,

it is cheaper than manual templates, faster than kernel methods and avoids

the overfitting issue shown by the latter. EFG outperforms the best available

manual template set for dependency parsing on the Portuguese dataset

provided in the CoNLL-2006 Shared Task. We also compare EFG with

polynomial kernel methods for Portuguese and English text chunking. EFG

outperforms both methods.

Our third main contribution is the ESL framework instantiation on

five NLP tasks and the assessment of the resulting systems by comparing

their performances with the best known results on nine datasets involving

four languages. These five tasks involve four different structured outputs,

namely: sequence, segmentation, rooted tree and clustering. The developed

ESL systems present state-of-the-art comparable performances on all evaluated

datasets.

Our fourth main contribution is to provide three ESL-based systems

that outperform the best previous systems on three Portuguese tasks. On

Mac-Morpho, a POS tagging dataset, our system reduces the previous smallest

error by 5.9%. On Bosque, a text chunking dataset, the proposed ESL system

reduces the previous smallest error by 2.1%. For quotation extraction, our

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 24

system reduces the previous smallest error on the GloboQuotes dataset by

19.3%.

Our fifth main contribution is a novel coreference resolution modeling

which employs a latent structure in order to control the complexity of the

prediction problem. Coreference resolution is a clustering problem and most

objective functions for such problems lead to NP-hard optimization problems.

In order to design a prediction problem that can be efficiently solved, we

represent a coreference cluster as a directed tree that is intuitively adherent to

the coreference task.

By employing this latent modeling along with the ESL framework, we

achieve the very first place on the renowned CoNLL 2012 Shared Task. The

competing systems are ranked by the mean score over three languages: Arabic,

Chinese and English. Our ESL systems present an error that is 1.1% smaller

than the runner-up competitor on this multilingual task. By further improving

our Chinese system, we achieve a 4.5% error reduction over the runner-up

system. This relevant achievement constitutes our sixth main contribution.

Our coreference resolution systems achieve the best known performance

on the three languages considered in the CoNLL-2012 Shared Task. Our

systems reduce the smaller known error by 1.4%, 1.7%, and 5.3%, respectively,

on Arabic, Chinese and English. These state-of-the-art systems for multilingual

unrestricted coreference resolution comprise our seventh main contribution.

1.6

Dissertation Organization

We use the dependency parsing task as an illustrative application of the

main concepts underlying our work. In Chapter 2, we detail the application

of the structure learning framework for this task. In this chapter, we also

introduce two important extensions to the basic SL framework, namely large

margin training and latent structures. In Chapter 3, we describe the proposed

entropy-guided feature generation method for structure learning problems.

Again, we use DP to illustrate EFG application. We also present in this

chapter a comparison of the EFG method to manual templates and kernel

methods under the same experimental conditions. In Chapter 4, we detail

ESL, the extension of the structure learning framework by incorporating

EFG. We also show that the DP system presented in the previous chapters

is an instance of this general framework. One key component of ESL is the

prediction problem. We discuss some important aspects related to prediction

problems in Chapter 5. In this chapter, we also present important examples

of prediction problems. Our dependency parsing system is summarized in

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 25

Chapter 6. We apply our framework to two part-of-speech tagging datasets. In

Chapter 7, we detail these two applications and their experimental results.

In Chapter 8, we introduce the application of ESL to two text chunking

datasets and the corresponding experimental results. In Chapter 9, we present

an ESL-based system to quotation extraction and report on some experiments

with a Portuguese dataset. As mentioned before, we achieved the first place in

the CoNLL-2012 Shared Task, which was dedicated to multilingual coreference

resolution. In Chapter 10, we describe our ESL modeling for this task and

the achieved results. This system further extends the ESL framework by

introducing latent structures, which are also described. Finally, in Chapter

11, we present our concluding remarks.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

2

Structure Learning Framework

In this chapter, we describe the structure learning framework and some

known extensions by detailing its application to the dependency parsing task.

In Section 2.1, we formalize this task. Then, in Section 2.2, we present the large

margin structure perceptron, an important extension to the SPerc algorithm.

A powerful extension to the SL framework allows the introduction of latent

structures that are optionally used as auxiliary information to the target task.

We present the latent structure perceptron in Section 2.3. Finally, in Section

2.4, we depict empirical results of the structure perceptron on a Portuguese

DP dataset, comparing its results with other state-of-the-art systems.

2.1

Dependency Parsing

Dependency parsing is to identify the structure underlying a sentence

that describes the syntactic dependencies among its words. This structure

is called dependency tree and is a rooted tree whose nodes are the words

and punctuation marks in the sentence, i.e., the sentence tokens. Let x =

(x0, x1, . . . , xN) be a sentence, where xi is the i-th token and x0 is an artificial

token which is always the root of the dependency tree. For a given input

sentence x, the prediction output space Y(x) is the set of all rooted trees

whose nodes are the tokens in x and the root node is x0. For any dependency

tree y ∈ Y(x), we say that (i, j) ∈ y whenever token xj modifies token xi

in the tree y. The token xi is called head token and the token xj is called

modifier token. Figure 2.1 shows the sentence John saw Mary, its dependency

tree y = {(0, 2), (2, 1), (2, 3)}, and the corresponding head tokens. The head

y

i 0 1 2 3
x root John saw Mary

Head (y(i)) – 2 0 2

Figure 2.1: Dependency tree represented as arcs (y) and as head vector.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 27

vector is an alternative representation for the dependency tree, since each

modifier token has exactly one head given by an incoming edge; except the

artificial root token which has no head. We denote by y(i) the head token of

the modifier token xi within the tree y, that is (y(i), i) ∈ y, for i = 1, . . . , N .

MSTParser (McDonald et al., 2005, 2006; McDonald and Pereira,

2006) is a SL system that employs an online algorithm to train a

dependency parser. MSTParser’s prediction problem is formulated as a linear

discriminative problem. MSTParser learns a w-parameterized edge scoring

function s(x, i, j;w) for every candidate edge (i, j) over x, such that the

prediction problem is to find the maximum-scoring rooted tree, that is

F (x;w) = arg max
y∈Y(x)

∑

(i,j)∈y

s(x, i, j;w). (2-1)

This is equivalent to the well studied maximum branching problem that can

be efficiently solved by Chu-Liu-Edmonds algorithm (Chu and Liu, 1965;

Edmonds, 1967). There is also an improved version of this algorithm by Tarjan

(1977).

Obviously, the edge scoring function is key for MSTParser and has to

generalize over any possible input sentence. For a sentence x and a candidate

edge (i, j), MSTParser determines s(x, i, j;w) by means of M real-valued

features denoted by φm(x, i, j), for m = 1, . . . ,M . These features describe

the dependency between the head token xi and the modifier token xj in a

meaningful and general way. MSTParser uses several binary features like, for

instance, the i-th word, the j-th word, the part-of-speech of the i-th word, the

distance from xi to xj, the relative order between xi and xj, among others.

Then, the edge scoring function is defined as an weighted sum of the edge

features

s(x, i, j;w) = 〈w,Φ(x, i, j)〉,

wherew = (w1, . . . , wM) comprises the model parameters, one for each feature;

andΦ(x, i, j) = (φ1(x, i, j), . . . , φM(x, i, j)) is the feature vector that describes

the dependency edge (i, j). In that way, the learning problem is to determine

a parameter vector w such that the predictor F (x;w) has small empirical risk

on the training data and, at the same time, performs well on unseen data.

MSTParser’s training algorithm is an extension of the margin infused

relaxed algorithm, an online algorithm for multiclass problems. In this work,

we use the averaged structure perceptron algorithm (Collins, 2002b) with a

large margin extension (Fernandes and Brefeld, 2011; McAllester et al., 2011;

Tsochantaridis et al., 2005) as the training algorithm for all tasks. We use

SPerc even for DP, despite the fact that we use MSTParser’s modeling for this

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 28

task.

2.2

Large Margin Training

The structure perceptron algorithm finds a classifier with no concern

about its margin. However, it is well known that large margin classifiers provide

better generalization performance on unseen data. We use a large-margin

generalization of the structure perceptron that is based on the margin rescaling

technique for SVMstruct (Altun et al., 2003; Tsochantaridis et al., 2005). During

training, for an example (x,y), instead of the ordinary prediction problem

(2-1), we use the following loss-augmented prediction function

Fℓ(x,y;w) = arg max
y′∈Y(x)









∑

(i,j)∈y′

s(x, i, j;w)



+ C · ℓ(y,y′)



 , (2-2)

where ℓ(y,y′) ≥ 0 is an appropriate loss function that measures the difference

between a candidate tree y′ and the correct one y; and C is a constant to

balance the weight between the loss function (margin) and the learned edge

weights. We use a loss function that just counts how many incorrect edges are

in the predicted tree y′, which is given by

ℓ(y,y′) =
∑

(i,j)∈y′

1[(i, j) /∈ y]. (2-3)

This loss function can be decomposed along the tree edges and we can thus

rewrite the loss-augmented prediction function as

Fℓ(x,y;w) = arg max
y′∈Y(x)

∑

(i,j)∈y′

(s(x, i, j;w) + C · 1[(i, j) /∈ y]) . (2-4)

This characteristic is desirable because we can define a loss-augmented edge

scoring function as

sℓ(x,y, i, j;w) = s(x, i, j;w) + C · 1[(i, j) /∈ y],

and then we have that

Fℓ(x,y;w) = arg max
y′∈Y(x)

∑

(i,j)∈y′

sℓ(x,y, i, j;w),

which is a maximum branching problem just as the original prediction

problem, but with modified edge weights. In that way, we can still use

Chu-Liu-Edmonds algorithm in the large margin structure perceptron. We

present the pseudo-code of the large-margin structure perceptron algorithm

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 29

in Figure 2.2. The unique modification to the SPerc algorithm is in the

w0 ← 0
t← 0
while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)

∑

(i,j)∈y′

(

〈wt,Φ(x, i, j)〉+ C · 1[(i, j) /∈ y]
)

wt+1 ← wt +
∑

(i,j)∈y Φ(x, i, j)−
∑

(i,j)∈ŷ Φ(x, i, j)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 2.2: Large margin structure perceptron algorithm for dependency
parsing.

computation of edge scores, where we add a constant C to the score of

every incorrect edge. The constant C is a meta-parameter of this algorithm

that allows us to balance the relative importance of the two components

in the objective function. This parameter can be calibrated by means of

cross-validation or a development set.

By using the loss-augmented prediction problem during training, an

example (x,y) implies a model update whenever the current model does not

respect the following margin constraint

s(x,y;w)− s(x,y′;w) ≥ C · ℓ(y,y′), ∀y′ ∈ Y(x),

where s(x,y;w) =
∑

(i,j)∈y s(x, i, j;w) is the score of a whole tree. If a model

respects this prediction margin, then the current predictor F (x;w) separates

the correct output y from every alternative y′ ∈ Y(x) by a margin as large as

C · ℓ(y,y′). In that way, the training algorithm incorporates some information

about the structured empirical risk Rℓ(D,w) of the current model, defined as

Rℓ(D,w) =
∑

(x,y)∈D

ℓ(y, F (x;w)).

2.3

Latent Structure Training

For some structure learning problems, to directly predict an output y

from the input x is a very hard problem, considering any meaningful feature

representation. In some cases, if an appropriate auxiliary structure h is given

for the input x, the prediction problem becomes much easier. In coreference

resolution, for instance, the input comprises a document containing a set of

mentions to real world entities, like companies, places or people. The prediction

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 30

problem is then to cluster mentions that correspond to the same entity. Most

clustering metrics lead to NP-hard optimization problems. Thus, we introduce

coreference trees to represent a cluster of mentions. Giving such tree for an

input document turns prediction into a polynomial problem.

Usually, the auxiliary structures are not explicitly given in the training

data. Thus, we assume that these structures are latent and make use of the

latent structure perceptron (Fernandes and Brefeld, 2011; Yu and Joachims,

2009). The original prediction problem is then split into two sub-problems:

the latent prediction problem Fh(x;wh) and the target prediction problem

Fy(x,h;wy), where wh is the latent model and wy is the target model. In

that way, the final prediction is performed by combining these two predictors

F (x;wh,wy) = Fy(x, Fh(x;wh);wy).

Both the latent and the target predictors have the same form. Not

surprisingly they are based on linear discriminative functions. The latent

prediction function is given by

Fh(x;wh) = arg max
h∈H(x)

〈wh,Φh(x,h)〉,

where H(x) is the set of feasible latent structures for the given input x and

Φh(x,h) is an arbitrary joint feature vector representation of the input and

the latent structure. The target prediction function is then defined as

Fy(x,h;wy) = arg max
y∈Y(x,h)

〈wy,Φy(x,h,y)〉,

where Y(x,h) is the set of feasible output structures for the input x and

the latent structure h; and, Φy(x,h,y) is an arbitrary joint feature vector

representation of the input, the latent structure and the output structure.

In Figure 2.3, we depict the latent structure perceptron algorithm. The

latent structure perceptron is very similar to the original SPerc, which, for

each training instance, performs two major steps: (i) a prediction for the

given input using the current model; and (ii) a model update based on the

difference between the predicted and the ground truth outputs. The latent

SPerc performs an additional step to predict the latent ground truth h̃ using

a specialization of the latent predictor.

Golden latent structures are usually not available in the training data.

However, during training, for a given input x, we have the golden output

structure y. Thus, we predict the constrained latent structure h̃ for the training

instance (x,y) using a specialization of the latent predictor – the constrained

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 31

w0 ← 0
t← 0
while no convergence

for each (x,y) ∈ D

h̃← argmaxh∈H(x,y)〈w
t
h,Φh(x,h)〉

ĥ← argmaxh∈H(x)〈w
t
h,Φh(x,h)〉+ ℓ(h̃,h)

ŷ ← argmax
y′∈Y(x,ĥ)〈w

t
y,Φy(x, ĥ,y

′)〉+ ℓ(y,y′)

wt+1
h ← wt

h +Φh(x, h̃)−Φh(x, ĥ)

wt+1
y ← wt

y +Φy(x, h̃,y)−Φy(x, ĥ, ŷ)

t← t+ 1

wh ←
1
t

∑t
k=1w

k
h

wy ←
1
t

∑t
k=1w

k
y

return (wh,wy)

Figure 2.3: Latent structure perceptron algorithm.

latent predictor – that makes use of y. The constrained predictor finds the

maximum scoring latent structure among all structures that follow the correct

output y. That is, the constrained set H(x,y) ⊂ H(x) does not include latent

structures that lead to incorrect output structures y′ 6= y. The constrained

latent structure h̃ is then used as the ground truth for the current iteration.

Therefore, the model update is determined by the difference between the

constrained structure latent and the document tree predicted by the ordinary

predictor.

The latent structure perceptron algorithm learns to predict latent

structures that help to solve the target task. This algorithm is an instance

of the Concave-Convex Procedure and converges to a local optimum (Yuille

and Rangarajan, 2003; Yu and Joachims, 2009).

2.4

Empirical Results

Recently, dependency parsing has attracted much attention, and fast

progress has been made on pushing the performance of dependency parsers.

In 2005, McDonald et al. (2005) proposes the MSTParser system that

achieves state-of-the-art performance on different datasets. In the next year,

the CoNLL-2006 Shared Task (Buchholz and Marsi, 2006) is devoted to

multilingual dependency parsing, and McDonald et al. (2006) achieves the best

performances by applying an extension of MSTParser that uses second-order

features. MSTParser’s original features are based on individual edges. The

second-order features depend on two edges, which link a head token to

two sibling modifiers. Since this model considers more complex dependencies

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 32

in the output structure, the corresponding prediction problem is also more

complex. In fact, the prediction problem in this case is NP-Hard (McDonald

and Pereira, 2006). McDonald and Pereira (2006) propose an approximation

algorithm to this problem and show that the second-order model outperform

the first-order one, even using approximated prediction. In Table 2.1, we show

the performances of these two systems on the Portuguese CoNLL-2006 dataset.

The performances are reported using the unlabeled attachment score (UAS).

Reference
Learning Basic

UAS
Algorithm Features

Koo et al. (2010) MIRA
3rd order 93.03
2nd order 92.57

McDonald et al. (2005, 2006);
McDonald and Pereira (2006)

MIRA
2nd order 91.36
1st order 90.68

This work SPerc 1st order 90.06

Table 2.1: Performances of dependency parsers using manual templates on
the Portuguese CoNLL-2006 dataset. These systems use different learning
algorithms and also different basic features.

UAS is the percentage of tokens that are attached to the correct head or,

equivalently, the percentage of correct edges in the predicted tree.

Nowadays, as far as we know, the best performing system on the

Portuguese CoNLL-2006 dataset is the dual decomposition system proposed

by Koo et al. (2010). In Table 2.1, we present the performances of this system.

This system introduces a new algorithm to perform approximated prediction

with second- and third-order features. However, the second-order features used

in this system are slightly different from the ones used in MSTParser, as we

can see from the achieved results. The third-order features include grandparent

dependencies, in addition to the sibling dependencies given by second-order

features. All these models are trained with MIRA and complex features are

generated with the manual templates proposed by McDonald and Pereira

(2006).

We also present in Table 2.1 the performance achieved by a first-order

model trained by the SPerc algorithm with the same templates used in

MSTParser. We notice that this system is outperformed by MSTParser, even

when MSTParser is using first-order features. This difference is probably due

to the training algorithm and also to some differences in the feature templates

that are not completely described in the corresponding references.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

3

Entropy-Guided Feature Generation

A task dataset includes features that usually are either (i) naturally

included in the very phenomenon of interest, like words in NLP tasks; (ii)

simply derived from other basic features, like word capitalization patterns;

or (iii) automatically generated by external systems, like part-of-speech tags.

We denote this dataset-provided information as basic features. At the same

time, most structure learning algorithms are based on linear models, since

such algorithms have strong theoretical guarantees regarding their prediction

performance and, moreover, are computationally efficient. However, linear

models on basic features alone do not capture all the relevant relationships

among these variables.

For instance, dependency parsing is highly non-linear on the basic

features. One important basic feature for DP is the POS of words. By observing

the example in Figure 1.1, one can notice that both nouns system and result

are modifiers of the verb achieves. This is a very strong pattern in DP and,

thus, the binary feature modifier is a noun AND head is a verb is very

important. This feature is a conjunction of two basic features, namely the

modifier POS tag and the head POS tag. On the other hand, taking each of

these basic features independently is not informative, since most POS tags

can be head or modifier of many dependencies, depending on the context. For

instance, the nouns system and results, that modify the main verb, are also

heads of the pronoun Our and the adjective best, respectively.

Conjoining basic features to derive new features is a common way

to introduce nonlinear contextual patterns into linear models. Frequently,

a domain expert manually generates feature templates by conjoining the

given basic features in order to capture discriminative contextual patterns.

MSTParser, for instance, uses 21 feature templates that were manually created

from basic features. These templates include from one to six features, indicating

that the trained model is highly non-linear on the basic input features.

In this chapter, we describe the proposed entropy-guided feature

generation method for structure learning. EFG automatically derives a set of

basic feature conjunctions, which we denote feature templates. These templates

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 34

are later used to generate the derived features, which comprise the joint

feature vectors Φ(x,y) used in the structured modeling described earlier. EFG

conjoins basic features that are useful to predict local variables.

3.1

Basic Dataset

As seen in the previous chapters, in dependency parsing, features are

functions of dependency tree edges. Given an edge e = (i, j) linking token xi to

token xj, let us examine only its categorical basic features. Assume there are K

basic features given by the vectorΨ(e) = (ψ1(e), . . . , ψK(e)). For k = 1, . . . , K,

we have that ψk(e) ∈ Xk, where Xk is the finite set of possible values for the

basic feature ψk. Additionally, we associate each edge e = (i, j) with a binary

label y(e), such that y(e) = 1 if xi is the head of xj and y(e) = 0 otherwise.

Using all edges in the training set D, we obtain the basic dataset

D = {(Ψ(e), y(e))} comprising the basic feature vectors of edges along with

their binary labels. In Table 3.1, we depict an example of such a dataset for

the sentence in Figure 2.1. This example includes the following basic features:

head-word is the word of the head token xi; mod-word is the word of the modifier

token xj; head-pos is the POS tag of xi; mod-pos is the POS tag of xj; dist is

the distance between xi and xj in tokens; and side is the side of xj in relation

to xi.

e Ψ(e)
y(e)

i j head-word mod-word head-pos mod-pos dist side

0 1 root John root noun 1 right 0
0 2 root saw root verb 2 right 1
0 3 root Mary root noun 3 right 0
1 2 John saw noun verb 1 right 0
1 3 John Mary noun noun 2 right 0
2 1 saw John verb noun 1 left 1
2 3 saw Mary verb noun 1 right 1
3 2 Mary saw noun verb 1 left 0

Table 3.1: Basic dataset for the sentence in Figure 2.1.

The entropy guided feature generation method automatically generates

feature templates for a structure learning problem by conjoining basic features

that are highly discriminative together. EFG is based on the conditional

entropy of the local decision variables y(e) given the basic features Ψ(e).

3.2

Conditional Entropy and Information Gain

Entropy is a measure of the uncertainty in a random variable outcome.

Given a binary random variable y and the probability Pr[y = 1] = p, the

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 35

entropy of y is given by

H(y) = −p log
2
p− (1− p) log

2
(1− p),

where 0 log
2
(0) is defined to be equal to 0. In Figure 3.1, we plot the entropy

H(y) versus p. One can see that the maximum entropy is achieved when

p = 0.5, that is, when the uncertainty on the outcome of y is maximum.

��

��

�� ���� ��

�
��
	

Figure 3.1: Entropy H(y) of a random binary variable y versus Pr[y = 1] that
is denoted by p.

Given the basic dataset D, one can easily estimate p as the fraction of

edges in which y(e) is equal to 1. Then, the empirical entropy of y on D is

denoted by HD(y) and can be calculated using the estimated probability of

y = 1 on the given dataset. In the following, we simply use the term entropy

to denote empirical entropy.

Considering the basic dataset D, we define the conditional entropy of y

given the basic feature ψk as

HD(y|ψk) =
∑

σ∈Xk

|Dk,σ|

|D|
·HDk,σ

(y),

where Dk,σ is the subset of edges in D whose feature ψk is equal to σ, that is,

Dk,σ = {(Ψ(e), y(e)) ∈ D | ψk(e) = σ}. The conditional entropy HD(y|ψk)

is the entropy of y on D when an additional information (feature ψk) is

given. From Gibb’s inequality, it follows that HD(y|ψk) ≤ HD(y), that is,

the knowledge of any additional information can only reduce uncertainty.

Additionally, the information gain (IG) of ψk on D is given by

IGD(ψk) = HD(y)−HD(y|ψk),

which corresponds to the reduction on the entropy of y if feature ψk is

known. Hence, IG helps to select high discriminative features with respect

to a target variable. It is straightforward to generalize information gain to

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 36

a subset of features. Thus, we have a valuable metric to measure nonlinear

feature conjunctions and select the most informative ones.

Unfortunatelly, to analyse all possible feature conjunctions is practically

infeasible and, moreover, to find the best conjunctions is an NP-complete

problem (Hyafil and Rivest, 1976). On the other hand, decision tree (DT)

learning provides a simple yet effective algorithm that generates different

subsets of informative features, greedily guided by some informativeness

metric. The most popular DT algorithms (Quinlan, 1992; Su and Zhang, 2006)

use information gain as that metric. Therefore, we use decision tree induction

to generate feature combinations that are highly discriminative together.

3.3

Decision Tree Learning

Decision tree learning is one of the most widely used machine learning

algorithms. It performs a partitioning of the training set using principles of

information theory. The learning algorithm executes a general to specific search

of a feature space. The most informative feature is added to a tree structure at

each step of the search. Information gain, which is based on the data entropy,

is normally used as the informativeness measure. The objective is to construct

a tree, using a minimal set of features, that efficiently partitions the training

set into classes given by the prediction variable values. Usually, after the tree

is grown, a pruning step is carried out in order to avoid overfitting. In Figure

3.2, we present a decision tree learned from a basic dataset. Each internal node

in the DT corresponds to a feature, each leaf node has a label value (0 or 1,

in the binary case), and each edge is labeled with a value of the source node

feature.

Figure 3.2: A decision tree.

The most popular decision tree learning algorithms (Quinlan, 1992; Su

and Zhang, 2006) use information gain to select the most informative feature.

Hence, they provide a quick way to obtain entropy guided feature selection.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 37

We propose a new automatic feature generation method for structure learning

algorithms. The key idea is to use decision tree induction to conjoin the basic

features. One of the most used algorithms for DT induction is C4.5 (Quinlan,

1992). We use Quinlan’s C4.5 system to obtain the required entropy guided

selected features.

3.4

Feature Templates

The first step of the proposed method is to train a decision tree on the

basic dataset. For dependency parsing, the decision variable indicates whether

an edge links a token to its corresponding head token. We use the edges

of all training examples, that is, for each training sentence, we generate an

example for each candidate edge. Thus, the learned DT predicts whether an

edge corresponds to a correct dependency or not.

Our method uses a very simple decomposition scheme to extract feature

templates. This decomposition is based on a depth-first traversal of the learned

DT and is recursively defined as follows. For each internal node that is visited,

a new template is created by conjoining the node feature with its parent

template. Since we aim to generate feature templates – conjunctions of basic

features not including feature values – we disconsider the feature values and

the decision variable values in the DT. Thus, we do not make use of edge labels

nor leaf nodes. Figure 3.3 illustrates our method. The tree in the left side of

this figure is the skeleton obtained from the decision tree in Figure 3.2 by

discarding the aforementioned pieces of information. Then, it remains a tree

whose nodes are basic features with high discriminative power. The generated

templates are listed in the right side of the figure. In other words, we create

a template with the features in each path from the root node to every other

internal node in the given decision tree. Additionally, we eliminate template

duplicates.

Decision Tree Skeleton Generated Feature Templates

dist

dist side

dist mod-pos

dist mod-pos head-pos

dist mod-pos side

Figure 3.3: Feature template induction from a decision tree.

Since the DT learning algorithm greedily chooses the feature with the

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 38

highest information gain at each step, our method generates feature templates

with high discriminative power based on entropy. This method is able to

provide a very large number of templates. Hence, to limit the maximum

template length, we use C4.5 pruned trees and additionally limit the maximum

template length when traversing the DT. This parameter is clearly task

dependent and must be calibrated by cross-validation or by means of a

development set.

3.5

Generated Features

Finally, we employ the generated templates to induce all binary

contextual features that occur in the structured dataset D. For each template,

we generate several binary features, each one corresponding to the assignment

of valid values to the template features. These derived features comprise the

structured model feature vectors Φ(x, i, j) = (φ1(x, i, j), . . . , φM(x, i, j)). For

instance, one of the derived features for the dist mod-pos side template in Figure

3.3 is given by

φm(x, i, j) =







1 if dist=2 and mod-pos=noun and side=left,

0 otherwise.

Observe that this feature captures a context that is not used by the DT

in Figure 3.2. Indeed, we drop the DT feature values when generating the

templates and then instantiate these templates based on every context that

occurs in the dataset.

3.6

Empirical Results

In this section, we compare the performances of systems based on the

proposed EFG method to a system based on the best available set of manual

templates for dependency parsing. For this task, our systems do not make use

of second- or third-order features. Thus, we use only first-order features to

perform this comparison. In Table 3.2, we show the performance of an SPerc

system using the best available manual templates along with the performances

of two systems based on EFG. First, let us focus on a comparison of EFG

to manual templates under same conditions, i.e., same basic features, same

learning algorithm, and same datasets. We use the SPerc learning algorithm

and the first-order features provided in the templates from McDonald et al.

(2006). The first row of Table 3.2 shows the performance when using the

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 39

Basic Feature
UAS

Features Generation

1st order Manual 90.06
1st order EFG 90.28

1st+ck+clause EFG 92.66

Table 3.2: Performances of EFG and manual templates on the Portuguese
CoNLL-2006 dependency parsing dataset.

manual templates; and, the second row presents the performance when using

EFG to automatically generate non-linear features. EFG outperforms manual

templates by 0.22 on UAS. This is not a very big improvement, but shows

that EFG is able to automatically generate complex feature templates that

are competitive, and even better, than state-of-the-art templates that require

substantial human effort.

Fernandes et al. (2010b) present text chunking and clause identification

for the Bosque corpus, which comprises the Portuguese CoNLL-2006 dataset.

We provide these two basic pieces of information as basic features to the EFG

method, as well as the basic features used earlier, and train an SPerc model

using the provided templates. The performance obtained by this system is

shown in the last row of Table 3.2. We can see that we achieve an impressive

improvement around 2.4% on UAS. Moreover, this improvement is achieved

by simply including two basic features, without any human effort, as would be

required if one used manual templates.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

4

Entropy-Guided Structure Learning Framework

We show in this chapter that the proposed entropy-guided feature

generation method is naturally integrated to the general structure learning

framework, thus extending it. We again make use of dependency parsing as

an illustrative application to show that the system presented in the previous

chapters is an instantiation of the extended framework.

Structure learning is to learn a function that maps an input x to

the correct output structure y. The output is an arbitrary structure, i.e.,

it comprises many variables with complex interdependencies. In the SL

framework, the prediction problem is recast as an optimization problem of

the form
F (x;w) = arg max

y∈Y(x)
s(x,y;w), (4-1)

where w = (w1, . . . , wM) is the parameter vector of some learned model,

Y(x) is the set of feasible predictions for the given input, and s(x,y;w) is

a w-parameterized scoring function that measures how well an output y fits

the input x. The prediction output space is arbitrary, but the scoring function

must have the following strict form

s(x,y;w) = 〈w,Φ(x,y)〉, (4-2)

where 〈·, ·〉 is the scalar product operator and Φ(x,y) = (φ1(x,y), . . . ,

φM(x,y)) is some joint feature vector representation of the input-output pair.

That is, the scoring function is linear on the feature representation.

4.1

Feature Factorization

Each value φm(x,y) in the feature vector is called the global feature

m, which is the value of a specific feature m on the whole structure.

For dependency parsing, we define the global feature m as φm(x,y) =
∑

(i,j)∈y φm(x, i, j), which is the sum of the local feature values over all edges

in the tree y. In that way, we can rewrite the dependency tree scoring function

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 41

in the general form of (4-2)

s(x,y;w) =
∑

(i,j)∈y

〈w,Φ(x, i, j)〉

=
∑

(i,j)∈y

M
∑

m=1

wm · φm(x, i, j)

=
M
∑

m=1

wm

∑

(i,j)∈y

φm(x, i, j)

=
M
∑

m=1

wm · φm(x,y)

= 〈w,Φ(x,y)〉.

Thus, global DP features are factored along the edges of the dependency tree.

Consequently, the score of a dependency tree in the prediction function is also

factored along its edges. Feature factorization is a key point in SL modeling

and must give rise to efficient prediction algorithms. For DP, for instance, we

end up with a maximum branching problem that is efficiently solved by the

Chu-Liu-Edmonds algorithm.

4.2

Entropy-Guided Feature Generation

The derived feature vector Φ(x,y) is automatically generated by

means of the proposed entropy-guided feature generation method. EFG

induces feature templates by conjoining the available basic features and then

instantiates these templates to generate the derived feature vectors. Basic

features are factored in the same way as derived features. This factorization

determines the prediction scoring function and, consequently, directly affects

the prediction problem, which is the core of the SL framework. Therefore, we

use the same factorization to derive the EFG basic dataset. For each factor

in a structured example, we generate an example in the basic dataset, which

comprises a vector of basic features and a decision variable. These variables

correspond to local decision variables in the prediction problem. Hence, EFG

conjoins basic features that help to discriminante the prediction problem

variables.

For instance, dependency parsing features are factored along candidate

edges. Thus, for each edge in a training sentence, we generate an example in the

basic dataset. And, a binary decision variable is associated with each candidate

edge and determines whether an edge is present in the corresponding decision

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 42

tree. Hence, EFG generates feature templates that are highly discriminative

with respect to dependency edge prediction, which corresponds to the local

decision in dependency parsing.

Each generated template is used to instantiate a feature in Φ(x,y).

Then, this derived feature vector is used to train the structured model.

Therefore, the structured model is linear on the derived feature representation,

which corresponds to a non-linear combination of the basic features. EFG is

completely aligned to the SL framework and it is naturally integrated in it.

4.3

Training Algorithm

There are some training algorithms that learn the parameter vector w

from a given training dataset D = {(x,y)} of correct input-output pairs.

For instance, Collins (2002b) proposed the structured perceptron algorithm,

a generalization of the well known binary perceptron algorithm for sequence

labeling problems. The structured perceptron can be easily applied to any

structured problem. Collins (2002b) also proved that the structured perceptron

converges to a zero-error solution, if one exists. Crammer and Singer (2003)

proposed the margin infused relaxed algorithm (MIRA), an online algorithm to

train structured models for multiclass problems. MIRA can also be extended

for virtually any structured problem and, for instance, is used in MSTParser.

Crammer and Singer (2003) also proved some mistake bounds for an algorithm

class called ultraconservative, which includes MIRA and structure perceptrons.

SVMstruct Tsochantaridis et al. (2004) formulates the structure learning

problem through a regularized max-margin framework, inspired on the binary

support vector machine formulation. They also proposed a cutting plane

method to efficiently solve this problem. However, this method still requires

more computational power and memory than online algorithms like structure

perceptron and MIRA. Additionally, the online algorithms are much simpler

to implement than SVMstruct.

In this work, we use the structure perceptron algorithm (Collins, 2002b).

Given a training sample D = {(x,y)} of correct input-output pairs, the

algorithm generates a sequence of models until convergence. At each iteration,

a training instance is drawn from D and two major steps are performed:

prediction using the current model and model update based on the difference

between the correct and the predicted outputs. We use the large-margin

structure perceptron Fernandes and Brefeld (2011).

During training, instead of the ordinary prediction problem in (4-1), we

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 43

use the following loss-augmented version

Fℓ(x;w) = arg max
y′∈Y(x)

[〈w,Φ(x,y′)〉+ C · ℓ(y,y′)] ,

where ℓ(·, ·) ≥ 0 is an appropriate loss function that measures the difference

between a candidate output and the correct one. For dependency trees,

as presented in Section 2.2, we use a loss function that just counts the

number of incorrect edges in the predicted tree. This loss function factorizes

along the dependency tree edges, just like the global features. Thus, the

nature of the underlying optimization problem is not modified when using the

loss-augmented prediction. This is a desirable, yet not necessary, characteristic

of loss functions in the SL framework. The model update usually is also

factored along the output structure and efficient algorithms can be used. For

dependency trees, for instance, this update can be performed in linear time,

since a tree has no more than N edges (for a sentence with N tokens plus the

artificial token).

We further extend the SL framework by introducing the EFGmethod into

it. EFG is naturally integrated in the SL framework as a preprocessing step.

In Figure 4.1, we present the pseudo-code of the entropy-guided large-margin

structure perceptron. EFG is used to generate the derived feature vectors

Φ(D)← EFG(D)
w

0 ← 0

t← 0
while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)

[

〈wt,Φ(x,y′)〉+ C · ℓ(y,y′)
]

w
t+1 ← w

t +Φ(x,y)−Φ(x, ŷ)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 4.1: ESL training algorithm – the entropy-guided large-margin structure
perceptron.

Φ(D) = {Φ(x,y)}(x,y)∈D. The derived features are then used to train the

structured model. Note that, when a correct prediction is made, that is ŷ = y,

the model does not change, that is wk+1 ← w
k. When the prediction is wrong,

the update rule favors the correct output y over the predicted one ŷ. Regarding

binary features, for instance, the update rule increases the weights of features

that are present in y but missing in ŷ and decreases the weights of features

that are present in ŷ but not in y. The weights of features that are present in

both y and ŷ are not changed.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 44

A simple extension of Novikoff’s theorem (Novikoff, 1962) shows that

the structure perceptron is guaranteed to converge to a zero loss solution, if

one exists, in a finite number of steps (Altun et al., 2003; Collins, 2002a).

The convergence theorem for SPerc is stated in Theorem 1. Crammer and

Singer (2003) further prove some mistake bounds for the structure perceptron

algorithm.

Theorem 1 (Structure Perceptron Convergence) For any training

dataset D that is separable by margin δ, the structure perceptron

algorithm makes no more than R2

δ2
prediction errors, where R =

max(x,y)∈D;y′∈Y(x) ||Φ(x,y) − Φ(x,y′)|| is the radius of a hypersphere that,

centered at Φ(x,y), encloses the joint feature vectors for all alternative

outputs y
′ ∈ Y(x), for all training examples (x,y) ∈ D.

4.4

Kernelization

We argue that EFG has two main advantages over kernel functions.

EFG training algorithm is much faster than kernelized algorithms, and EFG

makes generalization performance control easier than with kernel methods. In

this section, we present the kernelized structure perceptron in order to better

understand the differences between this method and EFG.

Analogously to the binary perceptron algorithm, its structure

generalization can be easily kernelized. Given the sequence

(x1,y1, ŷ1), . . . , (xT ,yT , ŷT) of inputs, correct outputs and predicted outputs

considered by the training algorithm up to iteration T , the parameter vector

at this point can be defined as

w
T =

T−1
∑

t=1

[

Φ(xt,yt)−Φ(xt, ŷt)
]

.

The algorithm can keep track of how many times each alternative output ŷ

has been predicted instead of the correct output y for each example pair (x,y)

by means of counters αx,y,ŷ. Thus, the parameter vector can be rewritten as

w =
∑

x,y,ŷ

αx,y,ŷ · [Φ(x,y)−Φ(x, ŷ)] , (4-3)

which is called the dual model representation. The output space Y(x) of

most SL problems is exponential on the input size or even infinity. Thus, the

dual model representation may comprise an intractable number of parameters.

However, these parameters are initially zero for all x,y, ŷ and only need to be

instantiated once the respective triple is actually seen.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 45

Using (4-3), the objective function of the prediction problem can also be

rewritten as

〈w,Φ(x′,y′)〉 =
∑

x,y,ŷ

αx,y,ŷ · [〈Φ(x,y),Φ(x′,y′)〉 − 〈Φ(x, ŷ),Φ(x′,y′)〉] ,

which depends only on inner products of feature vectors of the form 〈Φa,Φb〉,

where Φa and Φb are shortcuts to, respectively, Φ(xa,ya) and Φ(xb,yb) for

any two input-output pairs (xa,ya) and (xb,yb). Following the kernel trick

(Vapnik, 1998), the inner products of feature vectors can then be replaced by

an appropriate kernel function

K(Φa,Φb) = 〈Ψ(Φa),Ψ(Φb)〉,

where Ψ(·) expands elements from the original feature vector space Φ(·, ·) to a

much higher dimensional space. The kernel trick relies on the kernel function

K(·, ·) to efficiently compute inner products in the high dimensional space of

Ψ without explicitly expanding the original feature space.

The most successful kernel function family for NLP problems is the

polynomial kernel. Considering binary features, a polynomial kernel of degree

d conjoins all possible combinations with up to d original features. The

polynomial kernel of degree d can be efficiently computed by

Kd(Φ
a,Φb) =

(

〈Φa,Φb〉+ 1
)d

,

which involves only an inner product in the original feature space, a sum

of a constant, and an exponentiation. For instance, if d = 2 and the

original space has exactly 3 binary features, then the explicit polynomial

kernel expansion of Φ(x,y) = (φ1, φ2, φ3) corresponds to Ψ(Φ(x,y)) =

(1, φ1, φ2, φ3, φ1φ2, φ1φ3, φ2φ3), if we omit redundant permutations.

The polynomial kernel of degree d is equivalent to generating all possible

templates with length up to d. The problem with these kernels is that the

only way to control which combinations are used is through the parameter

d. For some SL task, for instance, d = 2 can be not enough to capture all

relevant contextual patterns, but d = 3 can bring so many patterns that it is

harmful to the generalization performance. This is a known issue with kernel

methods and is related to overfitting. Another issue with kernel functions is

training time. Performing predictions with the dual model is much slower than

with the primal, because the former is represented by a list of dual variables

that usually keeps growing during training. Since the prediction problem is

constantly solved during training, the training algorithm becomes very slow.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 46

Just like features, kernel functions can also be decomposed along the

output structures. Thus, the dual model representation can be even more

sparse by using α counters for each factor that appears in (x,y) but not in

(x, ŷ), and vice versa. For DP, for instance, we can store a counter for each

possible edge within a training sentence.

4.5

Empirical results

We compare ESL to polynomial kernels on two text chunking tasks. We

use ESL to train a text chunking system on the Portuguese dataset provided

by Fernandes et al. (2010b). We also train a kernelized SPerc system on the

same data using a second-degree polynomial kernel. Previous work (Kudo and

Matsumoto, 2001; Wu et al., 2006) report that this is the optimum degree

for text chunking. Again, in this experiment, we use the same basic features,

training algorithm, and datasets for both systems. In the first row of Table 4.1,

we report the performances of these two systems. ESL outperforms the kernel

Task
Kernel Method ESL

Learning F1 F1 Error Reduction

Portuguese Chunking SPerc 86.67 87.72 7.9%
English Chunking SVM 93.48 94.12 9.8%

Table 4.1: Comparison of ESL to second-degree polynomial kernel.

method, reducing its error by 7.9%. That is an impressive achievement, since

polynomial kernels present state-of-the-art results on many tasks, and training

time for kernel methods is more than one order of magnitude longer than for

ESL.

We also compare ESL to a kernel system on the CoNLL-2000 text

chunking dataset. The second row of Table 4.1 presents the performances of

ESL and a second-degree polynomial kernel system. The kernel method result

is reported by Kudo and Matsumoto (2001). They use an SVM algorithm to

train their system. However, they employ a training strategy that considers

sequential interdependencies among output variables and also use Viterbi

decoding during test. ESL outperforms this system, reducing its error by 9.8%.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

5

Prediction Problems

In this chapter, we discuss prediction problems, a component that plays

a central role in the SL framework. The prediction problem for an input x in

the SL formulation has the form

arg max
y∈Y(x)

〈w,Φ(x,y)〉.

This is a very general form for an optimization problem. In fact, the

only requirement is that the objective function be linear on some feature

representation. On the other hand, the joint feature representation has no

explicit restriction and the output space is also arbitrary. Thus, ESL is just a

framework for learning parameters for general linear predictors. And, there are

several learning algorithms for this framework with strong guarantees regarding

both prediction performance and learning time. In Table 5.1, we present a list

of SL problems along with the corresponding output structures and prediction

problems.

Task Output Structure Prediction Problem

Dependency parsing Rooted tree Maximum branching

Part-of-speech tagging Sequence Longest path on DAG

Text chunking Sequence Longest path on DAG

Quotation extraction Segmentation Weighted interval scheduling

Coreference resolution Clustering Latent maximum branching

Table 5.1: List of tasks and the corresponding output structures and prediction
problems.

The output space Y(x) is represented by task-specific hard constraints

that are embedded in the prediction algorithm. Hence, Y(x) can comprise

any constraint that is efficiently handled by the optimization algorithm. For

most SL problems, these constraints are difficult to be learned from data;

or, at least, it is unnecessary to do so, since they are never violated in any

example. For instance, in dependency parsing, the learning algorithm expends

no effort on estimating parameters to avoid cycles in the output structure. The

prediction algorithm never extracts cycles because it is constrained to extract

only trees. This is a very flexible way to represent the valid prediction outputs.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 48

Additionally, it allows the modeler to make use of countless theoretical and

practical results from combinatorial optimization.

The second arbitrary component in the prediction problem is the joint

feature vector representation Φ(x,y) = (φ1(x,y), . . . , φM(x,y)). Each feature

function φm(x,y) is called global feature because it gives a value regarding the

whole output structure y. However, global features are usually factored along

the output structure and, consequently, the scoring function 〈w,Φ(x,y)〉 is

factored in the same way. Otherwise, the prediction algorithm would need to

enumerate all possible outputs to determine the best scoring one. In multiclass

classification, for instance, there is no feature factorization and the prediction

algorithm just enumerates all classes, computes their scores and picks the

highest scoring one. That is feasible when the number of classes is limited,

which is the case for multiclass classification. The feature factorization defines

the dependencies among the output variables. For dependency parsing, features

are factored on dependency edges (i, j) and a tree score is given just by

independently summing the scores of its edges. Thus, the prediction problem

is equivalent to the maximum branching problem.

In the next sections, we briefly describe some important structures

along with the proposed feature factorizations and the resulting prediction

algorithms. These aspects are discussed later in more details.

5.1

Rooted Tree

Dependency parsing consists in predicting a rooted tree underlying a

given sentence. The nodes of this tree are fixed: the sentence tokens. Let

x = (x0, x1, . . . , xN) be an input sequence, where xt is the t-th token and

x0 is a special node that is always the root of the tree. The prediction output

space Y(x) is the set of all rooted trees whose nodes are tokens in x and the

root node is x0.

In this work, we use the feature factorization proposed by McDonald

et al. (2005), which defines features over independent edges. In this case, the

prediction problem is efficiently solved by the Chu-Liu-Edmonds algorithm

(Chu and Liu, 1965; Edmonds, 1967). However, more complex models are

possible. McDonald and Pereira (2006) propose features that depend on

more than two tokens. More specifically, they use the so called second-order

features that depend on two dependency edges (i, j) and (i, k). Koo et al.

(2010) further extends this model by introducing third-order features that

also depend on two edges, but include dependencies on grandparent tokens.

They show significant improvements on parsing performance by including

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 49

high-order features. However, the complexity of the prediction algorithm also

grows. In fact, the prediction problem becomes NP-hard when these features

are considered. Thus, they solve the problem by approximation algorithms.

5.2

Sequence Labeling

Sequence labeling Dietterich (2002) is to find a sequence of labels y =

(y1, . . . , yN), where yt ∈ S, for a given input sequence of tokens x = (x1, . . . ,

xN). That is, each token xt is annotated with a label yt ∈ S, where S is a fixed

set of labels. The prediction output space for an input x is simply the set of

all possible label sequences with length N , that is Y(x) = SN .

Collins (2002b) proposes a feature factorization for sequence labeling

problems that relies on a Markovian property. The best scoring label for a

specific token xt depends only on the label itself yt and the previous token

label yt−1. In this factorization, there are two types of features: Φobs(x, yt)

are observation features that depend only on the input x and individual

token labels; and Φ
trans(yt−1, yt) are transition features that depend on two

consecutive labels. The resulting prediction problem is reduced to the longest

path problem on a directed acyclic graph, which can be efficiently solved by a

dynamic programming algorithm.

5.3

Sequence Segmentation

Given a document, quotation extraction is to identify quotes and,

additionally, to associate each quote to its author. For a training example

(x,y), the input x is composed by a set of K candidate authors a =

{a1, . . . , aK} and a set of N candidate quotes q = {q1, . . . , qN}, where each

quote corresponds to a segment of the input document. The set of candidate

quotes can overlap each other, but the correct quotes do not. The output space

is thus all subsets of non-overlapping candidate quotes such that each selected

quote is associated to exactly one author.

Fernandes (2012) proposes a structure learning modeling for quotation

extraction in which features depend on the association of a quote to an

author. In that way, the prediction problem is to find non-overlapping segments

associated to authors whose weights are maximum. This problem is equivalent

to the weighted interval scheduling for which there is an efficient dynamic

programming algorithm.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 50

5.4

Clustering

Coreference resolution Pradhan et al. (2011) consists in identifying

mentions to real-world entities in a document and clustering mentions that

refer to the same entity. This task is usually split into two subtasks: mention

detection and mention clustering. Mention detection is easily performed by

recovering all noun phrases in the document. The most interesting task is

mention clustering. The prediction output space for this task comprises all

possible clustering of the given mentions. The number of clusters is unknown.

Usually, coreference systems use features that depend on pairs of

mentions. We follow this idea, but we introduce a novel modeling for

coreference resolution. We assume that an entity cluster is represented by a

rooted tree, denoted coreference tree. A directed edge (mi,mj) from mentionmi

to mention mj in this tree indicates that mj is a reference to the more general

mention mi. In that way, we model the prediction problem as a maximum

branching problem on the graph whose nodes are the given set of mentions.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

6

Dependency Parsing

Dependency parsing is to identify a rooted tree underlying a sentence.

The nodes in this tree are the sentence tokens. The dependency tree represents

the syntactic dependencies among the sentence tokens.

6.1

Task Formalization

Let x = (x0, x1, . . . , xN) be a sentence, where xi is the i-th token and

x0 is an artificial token which is always the root of the dependency tree. For

a given input sentence x, the prediction output space Y(x) is the set of all

rooted trees whose nodes are the tokens in x and the root node is x0. For any

dependency tree y ∈ Y(x), we say that (i, j) ∈ y whenever token xj modifies

the head token xi in the tree y.

6.2

Feature Factorization

We follow McDonald et al. (2005, 2006); McDonald and Pereira (2006)

and factorize the joint feature vectorΦ(x,y) along the edges of the dependency

tree y. In that way, an edge (i, j) connecting xi to xj is represented by a vector

Φ(x, i, j) = (φ1(x, i, j), . . . , φM(x, i, j)) of M binary features. These features

describe the dependency between the head token xi and the modifier token xj.

Then, the global feature vector is

Φ(x,y) =
∑

(i,j)∈y

Φ(x, i, j),

which gives the frequency distribution of the local features in the tree y.

6.3

Prediction Problem

The prediction problem for this DP modeling is reduced to the maximum

branching problem, which can be efficiently solved by Chu-Liu-Edmonds

algorithm. In the following, we just summarize this result.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 52

The objective function of the prediction problem is

s(x,y) = 〈w,Φ(x,y)〉.

Using the aforementioned factorization, it is easy to see that

s(x,y) =
∑

(i,j)∈y

〈w,Φ(x, i, j)〉,

which is just the sum of the edge weights, that is,

s(x,y) =
∑

(i,j)∈y

s(i, j),

where s(i, j) = 〈w,Φ(x, i, j)〉 gives the weight of edge (i, j). The objective

function of the prediction problem is equivalent to the tree weight given by

this function. Thus, we can generate a maximum branching instance using

s(i, j) as edge weight function. In that way, to solve this instance is equivalent

to solve the DP prediction problem in the ESL framework.

We use a loss function that just counts how many predicted edges are

not correct, that is ℓ(y,y′) =
∑

(i,j)∈y′ 1[(i, j) /∈ y].

6.4

Basic Features

We use the same basic features proposed by McDonald et al. (2006). For

a given edge (i, j), we have the following feature list:

– Side – Whether xj is on the left or on the right side of xi in the input

sentence.

– Distance – How many tokens there are between xi and xj.

– Word – Surface representation of both xi and xj.

– POS – Part-of-speech tag of xi, xi−1, xi+1, xj, xj−1 and xj+1.

– POS Between – Part-of-speech tag of all tokens between xi and xj.

– Feats – Syntactic and morphological features that are included in the

CoNLL-2006 dataset. We include these features for xi, xj and all tokens

that occur between xi and xj.

Fernandes et al. (2010b) present text chunking and clause identification

for the Bosque corpus, which comprises the Portuguese CoNLL-2006 dataset.

We perform additional experiments using basic features based on this

information. These features are the following:

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 53

– Chunk Tag – The chunk tag, in IOB2 style, for xi and xj.

– Start Clause – Indicates whether a token starts a clause.

– End Clause – Indicates whether a token ends a clause.

6.5

Empirical Results

The CoNLL-2006 (Buchholz and Marsi, 2006) provided a dependency

parsing dataset that is derived from Bosque (Freitas et al., 2008), a Portuguese

corpus comprising European and Brazilian news articles. In Table 6.1, we

provide basic statistics about this dataset.

Sentences Tokens

Train 8,546 207,000

Test 241 5,838

Table 6.1: Bosque dependency parsing dataset statistics.

In this section, we compare the performances of systems based on the

proposed ESL framework with state-of-the-art systems. Our systems use only

first-order features, while the best performing systems for this task use second-

and third-order features. In Table 6.2, we show the performances of several

systems along with two systems based on ESL. The two first rows in the

System
Learning Basic Feature

UAS
Algorithm Features Generation

Dual Decomposition MIRA
3rd order

Manual
93.03

2nd order 92.57

MSTParser MIRA
2nd order

Manual
91.36

1nd order 90.68

SPerc SPerc 1st order Manual 90.06

ESL SPerc
1st order EFG 90.28

1st+ck+clause EFG 92.66

Table 6.2: Performances of ESL and state-of-the-art systems on the Portuguese
CoNLL-2006 dependency parsing dataset.

table present the system results by Koo et al. (2010). This system uses an

algorithm based on dual decomposition (DD) to approximately solve the

NP-hard optimization problem when second- and third-order features are

considered. The DD algorithm provides a certificate of optimality for 99.65%

of the test examples. The third and fourth rows in the results table show

the results of MSTParser with first- and second-order features (McDonald

et al., 2005, 2006; McDonald and Pereira, 2006). As we showed before, our ESL

system outperforms an SPerc with the first-order templates from McDonald

et al. (2006). When we provide text chunking and clause features (Fernandes

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 54

et al., 2010b) to our ESL system, we achieve a performance comparable with

systems based on second- and third-order features. Moreover, this improvement

is achieved by simply including two basic features, without any human effort,

as would be required if one used manual templates.

We use 10% of the training data as validation set in order to pick the ESL

meta-parameters. The loss weight C is set to 300 and the number of epochs is

10. We generate templates containing from 2 to 4 basic features.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

7

Part-of-Speech Tagging

Part-of-speech tagging is to categorize words according to its part of

speech in a given sentence. In Figure 7.1, we present the sentence Flies like

flowers with the corresponding part of speech of each word. The task is to give

Word Flies like flowers

POS noun verb noun

Figure 7.1: Part-of-speech tagging example.

each word a tag according to its part of speech. The set of tags, or simply tagset,

is fixed within a particular POS tagging task. However, different applications

or datasets provide different tagsets, mainly varying POS granularity. For

instance, some POS tagsets include only one broad category for verbs, while

others include categories like main verb, auxiliary verb, among others. The

main difficult of this task is ambiguity, since one word can have different

POS tags depending on the context. For instance, the words Flies and flowers

can act as verbs in other contexts; and the word like can act as adverb,

noun, conjunction, among several other parts of speech. POS provides basic

morphological and syntactic information to more complex NLP tasks. It can

be even directly used to solve simple information extraction tasks.

We use a general sequence labeling modeling to approach POS tagging. In

Section 7.1, we formalize this general task. In order to apply ESL framework to

this problem, we still need to define the factorization of the global feature vector

Φ(x,y) along the output sequence y, and the resulting prediction problem.

We describe these two aspects in Section 7.2 and Section 7.3, respectively.

In Section 7.5, we present empirical results of two ESL applications for POS

tagging.

7.1

Task Formalization

The general task of sequence labeling is to find a mapping from an input

token sequence x = (x1, . . . , xN) to a label sequence y = (y1, . . . , yN), where

yt ∈ S. That is, each token in x is tagged with a label, or tag, from a given

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 56

set S. The output space Y(x) for an input sequence x is the set of all possible

sequences of N labels, i.e., Y(x) = SN . Part-of-speech tagging is an instance

of sequence labeling in which S is the given POS tagset.

7.2

Feature Factorization

We use the decomposition scheme from Collins (2002b). Each input

token xt is represented by a vector Φsurf(xt) = (φsurf
1 (xt), . . . , φ

surf
M (xt)) of

M binary features that we call surface features. For instance, some surface

features that are present – have value 1 – in the second token of the example

in Figure 7.1 are: the current word is like, the previous word is Flies,

and the previous word is capitalized. The number of such features in

a dataset with hundreds of thousands of tokens is huge, but just a dozen

are active on each token. For a given example (x,y), the surface features

depend only on the input x, which is fixed within the prediction problem.

To compose Φ(x,y), surface features are combined with the output labels

in y. Additionally, transition features within y are used to cope with label

interdependencies.

Each surface feature m ∈ {1, . . . ,M} is combined with every possible

label s ∈ S to generate the observation feature φobs
m,s(xt, yt) = φsurf

m (xt)·1[yt = s],

for a given token xt and its corresponding label yt. This observation feature

indicates whether both the surface feature m is present in token xt and the

token label yt is equal to s. Then, we can define the observation feature vector

for a token-label pair (xt, yt) as

Φobs(xt, yt) =
(

φobs
m,s(xt, yt)

)

m∈{1,...,M};s∈S
.

Furthermore, we combine these local vectors into the global observation feature

vector

Φobs(x,y) =
N
∑

t=1

Φobs(xt, yt),

which is the frequency distribution of the observation features in (x,y).

For each possible pair of labels s, r ∈ S, the transition feature

φtrans
s,r (yt−1, yt) = 1[yt−1 = s] · 1[yt = r] indicates whether two consecutive

labels yt−1 and yt are equal to s and r, respectively. The transition feature

vector is then defined as

Φtrans(yt−1, yt) =
(

φtrans
s,r (yt−1, yt)

)

s,r∈S
,

which is a unit vector whose non-zero position is the one corresponding to

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 57

s = yt−1 and r = yt. The global transition feature vector is given by

Φtrans(y) =
T

∑

t=2

Φtrans(yt−1, yt),

which is the frequency distribution of the transitions in the output sequence

y. Finally, the global feature vector is simply the concatenation of the global

observation feature vector and the global transition feature vector, that is

Φ(x,y) =
(

Φobs(x,y),Φtrans(x,y)
)

.

7.3

Prediction Problem

The used feature factorization relies on a Markovian property. Thus, in

the prediction problem, the best scoring label for a specific token xt depends

only on its label yt and the previous token label yt−1. In that way, the prediction

problem can be reduced to a longest path problem on an weighted directed

acyclic graph (DAG), which can be efficiently solved by dynamic programming.

In Figure 7.2, we present an example of such DAG for a sentence with three

tokens and a tagset with 2 labels (a and b). This graph comprises one layer for

Figure 7.2: Illustrative directed acyclic graph for a sentence x = (x1, x2, x3)
and a tagset S = {a, b}. The continuous path (y1,b, y2,a, y3,a) corresponds to
the labeling y = (b, a, a).

each token xt in the input sentence. At every layer t, there is a node labeled

yt,s for each label s ∈ S. The node yt,s represents that the t-th token is tagged

as s, that is yt = s. For each pair of labels (s, r) ∈ S × S and each consecutive

layers t−1 and t, there is one directed edge (yt−1,s, yt,r) in the graph. The edge

(yt−1,s, yt,r) represents a transition from yt−1 = s to yt = r and its weight is

given by

s(s, r, xt) = 〈w
trans,Φtrans(s, r)〉+ 〈wobs,Φobs(xt, r)〉,

wherewtrans is the model parameter vector corresponding to transition features

and w
obs comprises the parameters for observation features.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 58

Each path from layer t = 1 to layer t = N corresponds to a possible

output y = (y1, . . . , yN) whose accumulated weight in the graph is

s(x,y) = 〈wobs,Φobs(x1, y1)〉+
N
∑

t=2

s(yt−1, yt, xt). (7-1)

By expanding the edge weight function in the formula above, we have that

s(x,y) =
N
∑

t=1

〈wobs,Φobs(xt, yt)〉+
N
∑

t=2

〈wtrans,Φtrans(yt−1, yt)〉.

And, by using the feature factorization described earlier, we can derive that

s(x,y) = 〈wobs,Φobs(x,y)〉+ 〈wtrans,Φtrans(x,y)〉

= 〈w,Φ(x,y)〉,

where w = (wobs,wtrans) is the complete model, that is the concatenation of

the observation and transition parameters. Thus, to find the longest path in

the aforementioned DAG is equivalent to solve the ESL prediction problem for

the presented sequence labeling modeling.

For sequence labeling, we use the loss function ℓ(y,y′) =
∑T

t=1 1[yt 6= y′t]

that counts the number of mislabeled tokens.

7.4

Basic Features

Our basic features for POS tagging are obtained from dos Santos and

Milidiú (2009a). We use the following features:

– Word: The surface form of a token;

– Prefix/Suffix: Word prefixes and suffixes up to 5-character long;

– Known Word Prefix: Adding (or subtracting) 5-character prefix (or

suffix) results in a known word, where known words are the ones that

occur in the training dataset;

– Known Word Bigram: Occurrence of the word before (or after) a specific

word in a given long list of word bigrams. For instance, for the English

language, if the word appears after to, then it is likely to be a verb in

the infinitive form;

– Word Window: Words of the previous two tokens and the next two

tokens.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 59

7.5

Empirical Results

We evaluate our system performances on two POS datasets: Mac-Morpho

(Alúısio et al., 2003), a Portuguese language corpus; and Brown (Francis and

Kučera, 1982), an English language corpus. In Table 7.1, we present some

statistics of these datasets. Both datasets are split into training and test

Dataset Language
Tagset Training Test

size Tokens Tokens

Mac-Morpho Portuguese 22 1,007,671 213,794

Brown English 182 950,975 210,217

Table 7.1: Basic statistics of the part-of-speech tagging datasets.

partitions. Brown and Mac-Morpho have relatively the same size, but Brown

includes a much larger tagset. Performance on POS tagging is reported on

simple token accuracy, that is the percentage of correctly tagged tokens among

all tokens.

7.5.1

Mac-Morpho Dataset

The best performing system on the Mac-Morpho dataset is the ETL

Committee (dos Santos and Milidiú, 2009a), an ensemble composed by 100

ETL models. We compare our system to this ensemble system and also to the

best single model ETL-based system. In Table 7.2, we depict the performance

of these systems. We notice that ESL reduces the accuracy error by 5.9% when

System Accuracy

ETL single model 96.75

ETL Committee 96.94

ESL 97.12

Table 7.2: Performances on the Mac-Morpho dataset.

compared to ETL Committee and by 11.4% when compared to the single model

ETL system. These are substantial improvements on this dataset, since there

is not much room for improvements.

Regarding ESL training meta-parameters, we use the following setting.

The number of epochs is 50 and the loss weight parameter C is set to 50. One

epoch corresponds to one complete pass over all examples in the training set.

The minimum and the maximum feature template length is set to 2.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 60

7.5.2

Brown Dataset

The best performing system on the Brown dataset is also ETL

Committee. Thus, in Table 7.3, we again present the performances of the

best single model ETL system, ETL Committee, and ESL. We notice that

System Accuracy

ETL single model 96.69

ETL Committee 96.83

ESL 96.72

Table 7.3: Performances on the Brown dataset.

ESL outperforms the single model ETL system, but does not outperform

ETL Committee. ETL Committee error is 3.4% smaller than ESL error.

Nevertheless, ESL is still competitive with state-of-the-art systems. Moreover,

we can also train ensembles of ESL models and probably have some gain in

performance.

We use the following values for ESL meta-parameters. The number of

epochs is 50 and the loss weight parameter C is set to 100. One epoch

corresponds to one complete pass over all examples in the training set. The

minimum and the maximum feature template length is set to 2.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

8

Text Chunking

Text chunking is another basic NLP task and consists in identifying

segments, or chunks, of words that are syntactically related in a given sentence.

Additionally, each chunk needs to be classified among some classes of interest,

which gives the chunk type. In Figure 8.1, we present a sentence along with

the corresponding chunking output. In this example, there are three chunk

Sentence He reckons the deficit will narrow to 1.8 billion
Chunk

Type nominal verbal nominal verbal prep. nominal
IOB2 Tag B-NP B-VP B-NP I-NP B-VP I-VP B-PP B-NP I-NP

Figure 8.1: Text chunking example.

types: nominal (NP), verbal (VP), and prepositional (PP). Many text chunking

systems cast this task as a sequence labeling problem by employing some

appropriate tagging style. For instance, the row labeled IOB2 Tag in the figure

indicates the token tags that encode the given chunks according to the IOB2

tagging style. This tagging style makes use of three prefix tags: B, for beginning,

indicates the first token of a chunk; I, for inside, indicates any other token in a

chunk; and O, for outside, indicates tokens that are not part of a chunk (most

punctuation marks, for instance). Additionally, the B and I tags are combined

with the chunk type.

8.1

Task Formalization

We employ the IOB2 tagging style to cast text chunking as a sequence

labeling problem. In that way, we use same modeling presented in the previous

chapter, in which the input x = (x1, . . . , xN) is a sequence of tokens and the

output y = (y1, . . . , yN) comprises a tag sequence, where yi ∈ S is the tag

given for token xi, and S is the IOB2 tagset.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 62

8.2

Feature Factorization

Since we model text chunking as a sequence labeling problem, we use the

observation and transition features and decompose them just as for the POS

task, that is,

Φ(x,y) =
(

Φobs(x,y),Φtrans(x,y)
)

.

8.3

Prediction Problem

The prediction problem is exactly the same as presented in Section 7.3,

that is, a longest path problem on an weighted directed acyclic graph. We also

use the same loss function ℓ(y,y′) =
∑

T

t=1
1[yt 6= y′

t
], which counts the number

of mislabeled tokens.

8.4

Basic Features

Our chunking datasets include the following basic features:

– Word – the word of each token;

– POS tag – the part-of-speech tag;

– Basic form – which type of word among the following types: (i) number;

(ii) alphabetical in lower case; (iii) alphabetical in upper case; (iv)

capitalized alphabetical; or (v) something else.

The basic features of each token also include the values of the aforementioned

features for the three previous tokens and the three next tokens.

8.5

Empirical Results

We evaluate ESL on two text chunking datasets: the Bosque dataset

(Fernandes et al., 2010b), a Portuguese language corpus; and the CoNLL-2000

dataset (Sang and Buchholz, 2000), an English language corpus. In Table

8.1, we present the number of chunks, sentences and tokens in each dataset.

Both datasets have relatively the same size and are split into training and

Dataset Language
Training Test

Cks Sents Tkns Cks Sents Tkns

Bosque Portuguese 116,233 9,368 226,758 18,908 1,405 35,256
CoNLL-2000 English 106,978 8,936 211,727 23,852 2,012 47,377

Table 8.1: Basic statistics of the text chunking datasets.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 63

test partitions. Performance for text chunking is reported on precision, recall

and F -score. Precision is the percentage of recovered chunks that are correct

and recall is the percentage of correct chunks that are recovered. A chunk is

considered correct when both its span and its type are correct. The F -score

is the harmonic mean of precision and recall. That is, F = 2 · P · R/(P + R),

where P is the precision ratio and R is the recall ratio.

8.5.1

Bosque Dataset

Fernandes et al. (2010b) propose a heuristic to extract text chunks from

the Bosque treebank (Freitas et al., 2008). The Bosque corpus includes news

articles comprising Brazilian and European Portuguese. Fernandes et al. also

propose an ETL-based system for text chunking and evaluate it on the Bosque

dataset. We report in Table 8.2 the performance of this system along with

the performance of our ESL-based system. ESL reduces the error of the ETL

System P R F

ETL 89.61 85.41 87.46
ESL 88.06 87.39 87.72

Table 8.2: Performances on the Bosque dataset.

system by 2.1%, regarding F -score. On the other hand, ETL achieves a higher

precision than ESL.

We use the following values for the ESL meta-parameters in order to

train this system. The number of epochs is 20. The loss weight parameter C is

set to 300. And, we generate feature templates containing from 2 to 4 features.

8.5.2

CoNLL-2000 Dataset

System P R F

Wu et al. (2006) 94.16 94.26 94.21

Kudo and Matsumoto (2001) 93.47 93.49 93.48
ESL 94.05 94.18 94.12

Table 8.3: Performances on the CoNLL-2000 dataset.

The CoNLL-2000 Shared Task (Sang and Buchholz, 2000) provides an

English text chunking dataset that includes some sections from the WSJ in the

Penn Treebank. The best performing system on this dataset is presented by

Wu et al. (2006). This system introduces a masking strategy to approach hard

examples that involve words not seen in the training data. In Table 8.3, we

present the performances of our ESL system, Wu et al.’s masking system, and

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 64

the kernelized SVM presented in Kudo and Matsumoto (2001). The masking

system outperforms ESL, achieving an error that is 1.5% smaller than ESL’s.

Nevertheless, ESL is still competitive to state-of-the-art systems.

By using the standard validation set, we select the following values for the

ESL meta-parameters. The number of epochs is 50, the loss weight parameter

C is set to 300, and all feature templates contain 2 features.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

9

Quotation Extraction

Quotation extraction is to identify quotes and their authors in a given

document. A quote is a segment of the input document and quotes cannot

overlap each other. We consider that an input for this task, in addition to the

document itself, also includes two sets: the candidate authors and the candidate

quotes. Candidate quotes in the input can overlap. In that way, a feasible

output for this task is a subset of non-overlapping quotes and their associated

authors. In Figure 9.1, we exemplify this task. In this figure, authors are

highlighted in bold type and quotes in italic. The subscripted numbers indicate

the association between quotes and their respective authors. For instance, the

author for the quote ‘estranha’ is Nélio Machado.

Nélio Machado1, que defende Daniel Dantas2, considerou ‘estranha’1 a

acusação de que Dantas2 teria cogitado subornar o juiz3. ‘Isso é o fim da
picada. Completamente sem fundamento e bem no dia em que o Daniel2
vai prestar depoimento. Estou inclinado a pedir suspeição dele3 [Fausto
de Sanctis3]. Acho muito estranho, tem conteúdo de mais armação do que
qualquer outra coisa’1 disse ele1.

Figure 9.1: Quotation extraction example.

9.1

Task Formalization

An input-output pair (x,y) for quotation extraction is represented as

follows. The input x = (a, q) comprises two sets: the candidate authors

a = {a1, . . . , aK} and the candidate quotes q = {q1, . . . , qN}. Each quote

qi = (si, ei), for i ∈ {1, . . . , N}, is a segment in the document and is represented

by its starting token si and its end token ei, where si ≤ ei. The output

y = (y1, . . . , yN) is a vector of author indexes, where yi ∈ {1, . . . , K} ∪ {0}

indicates the author associated to the quote qi; and yi = 0 means that qi is not

included in the output y.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 66

9.2

Feature Factorization

Fernandes (2012) proposes a structure learning modeling for quotation

extraction that is based on an input feature vector Φ(i, j) = (φ1(i, j), . . . ,

φM(i, j)) that describes the candidate quote-author association (qi, aj). Then,

for a given output y, the global feature vector is defined as

Φ(x,y) =
∑

i=1,...,N ;yi 6=0

Φ(i, yi),

which is the histogram of the local features for all associations selected in y.

9.3

Prediction Problem

Here, the prediction problem is to find non-overlapping quotes associated

to authors whose association weights are maximum. This problem can be

reduced to the weighted interval scheduling (WIS) problem for which there

is a known efficient dynamic programming algorithm. In order generate a WIS

instance from a quotation extraction input x, we create an weighted interval

for each association (qi, aj). The segment, or span, for this interval is given by

the quote segment (si, ei); and, given the current model w, the interval weight

is

s(i, j) = 〈w,Φ(i, j)〉.

Since the associations (qi, a1), . . . , (qi, aK) have the same span in the WIS

instance – which is (si, ei) – the WIS algorithm never selects more than one

author for qi. Additionally, if s(i, j) < 0 for all j ∈ {1, . . . , K}, then qi is

not selected. And, clearly, overlapping quotes are never selected together. The

weight of a complete solution y is then given by

s(y) =
∑

i=1,...,N ;yi 6=0

s(i, yi)

=
∑

i=1,...,N ;yi 6=0

〈w,Φ(i, yi)〉

= 〈w,Φ(x,y)〉.

Thus, this WIS problem is equivalent to the prediction problem in the ESL

framework.

We use a loss function that counts how many quotes have been associated

to incorrect authors, that is ℓ(y,y′) =
∑

i=1,...,N 1[yi 6= y′i].

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 67

9.4

Basic Features

We use the same basic features from Fernandes (2012). The following

basic features are used for each quote-author association (qi, aj):

– Distance – Number of tokens between qi and aj.

– Direction – Indicates whether aj is on the left or on the right of qi.

– Say-verb between – Indicates whether there is a say-verb between qi and

aj. Fernandes proposes a list of say-verbs that are frequently used to

indicate quotes, like say, speak and comment.

– Number of say-verbs – Number of say-verbs between qi and aj.

– Author between – Indicates whether there is an author between qi and

aj.

– Quote between – Indicates whether there is a quote between qi and aj.

– BLS – Indicates whether Fernandes’s baseline system selects (qi, aj)

association.

– Say-verb around – Indicates whether a say-verb occurs at most two tokens

away from qi.

– First letter uppercased – Indicates whether the first letter in qi is

uppercased.

9.5

Empirical Results

We evaluate ESL on the GloboNotes dataset (Fernandes, 2012) that

includes news articles from the Globo.com portal. These articles comprise ten

different news genres, namely Sports, General, Celebrities, Arts, Economy,

Education, Politics, Science, Technology, and World. This dataset is split into

training and test subsets. In Table 9.1, we present basic statistic of these

datasets.

Docs Sentences Tokens Quotations

Train 552 7,963 174,415 802

Test 133 1,834 41,613 205

Table 9.1: GloboNotes dataset statistics.

We compare ESL performance to ETL and a baseline system, both

proposed by Fernandes (2012). We present these performances in Table 9.2.

Performances are reported in precision, recall and F -score. We notice that ESL

outperforms both ETL and the baseline system.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 68

Model Precision Recall F

ESL 83.24 71.49 76.80

ETL 69.44 73.17 71.26

Baseline 64.35 67.80 66.03

Table 9.2: Performances on the GloboQuotes dataset.

The results aforementioned are obtained by using the set of candidate

authors that are manually annotated in the GloboNotes dataset. We follow the

setting used in Fernandes (2012) to allow a fair comparison. On the other hand,

the set of candidate quotes given to ESL are generated by simple rules that

are part of Fernandes’s baseline system. These rules select some segments from

the document by applying a sequence of regular expressions. The extracted

segments correspond to more than 90% of the quotes in the dataset. However,

this heuristic still greatly reduces the number of segments given as input to

the ESL system when compared to all possible segments.

Since GloboQuotes has no standard validation set, we use 5-fold

cross-validation on the training set to tune ESL meta-parameters. The loss

weight C is set to 10 and the number of epochs is 65. We generate templates

containing from 2 to 4 basic features and, additionally, include templates by

removing the feature at the root node of the decision tree.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

10

Coreference Resolution

The CoNLL-2012 Shared Task (Pradhan et al., 2012) is dedicated

to the modeling of coreference resolution for multiple languages. The

participants are provided with datasets for three languages: Arabic, Chinese

and English. These datasets are provided by the OntoNotes project and,

besides accurate coreference information, contain various annotation layers

such as part-of-speech (POS) tagging, syntax parsing, named entities (NE)

and semantic role labeling (SRL). The shared task consists in the automatic

identification of coreferring mentions of entities and events, given predicted

information on other OntoNotes layers. The official ranking for this task

is given by the mean score on the three languages. We take part in the

CoNLL-2012 Shared Task closed track, in which training data is restricted

to the information provided by the shared task organizers. We propose a

language-independent approach based on ESL and submit its results to the

shared task (Fernandes et al., 2012b). The developed systems obtain the very

best performance among all participants. In this chapter, we describe this ESL

application.

Coreference resolution consists in identifying mention clusters in a

document. Mentions are textual references to real world entities, like people,

companies or places. In Figure 10.1, we present an illustrative document with

nine highlighted mentions. In a given document, mentions that refer to the

North Koreaa1
opened itsa2

doors to the U.S.b1 today, welcoming Secretary of State

Madeleine Albrightc1 . Shec2 says herc3 visit is a good start. The U.S.b2 remains concerned

about North Korea’sa3
missile development program and itsa4

exports of missiles to Iran.

Figure 10.1: Document with nine highlighted mentions that refer to three
different entities: North Korea is referenced by mentions {a1, a2, a3, a4}; the
U.S. is referenced by {b1, b2}; and Madeleine Albright by {c1, c2, c3}. The letter
in the mention subscript identifies its entity cluster and the number uniquely
identifies the mention within its cluster.

same entity are called coreferring mentions and form an entity cluster. In

the example, the letter in a mention subscript indicates its entity cluster

and the number uniquely identifies the mention within its cluster. There are

three entity clusters in the example that are related to the following real

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 70

world entities: North Korea, which is identified by the letter a; the United

States, which is identified by b; and Madeleine Albright, which is identified

by c. The coreference resolution task is to identify entity mentions in a given

document and to cluster the coreferring mentions. Clusters that comprise only

one mention are ignored. For instance, in the example, the mention Iran is

ignored.

The remainder of this chapter is organized as follows. In Section 10.1,

we formalize the coreference resolution task. In this chapter, we propose a

novel structure learning modeling for this task. In Section 10.2, we present the

feature factorization used in this modeling. The resulting prediction problem is

equivalent to the maximum branching problem, just as for dependency parsing.

However, we use a slightly different loss function. These aspects are discussed

in Section 10.3. We describe the basic features provided to ESL in Section

10.4. We apply our ESL-based coreference modeling to three very different

languages, since our modeling is highly language independent. Nevertheless,

some datasets lack basic features and we need to adapt some parts of the

systems. In Section 10.5, we describe these adaptations and some additional

preprocessing procedures. Finally, in Section 10.6, we present our empirical

results.

10.1

Task Formalization

Regarding our ESL modeling, the input for the coreference resolution

task is a set of mentions x = {x1, . . . , xN} within a document. The task is to

cluster the coreferring mentions together, that is, mentions that are references

to the same entity are in the same cluster. A feasible output is then a set

of non-overlapping clusters y = {y1, . . . ,yK}, where yi ⊂ x; yi ∩ yj = ∅,

for i, j ∈ {1, . . . , K} and i 6= j; and K is unknown. Additionally, singleton

mentions are ignored. A singleton is a unique mention to its entity in the

input document.

10.2

Feature Factorization

Usually, coreference systems use features that depend on pairs of

mentions (xi, xj). We follow this idea, but we introduce a novel modeling for

coreference resolution. Most clustering metrics lead to NP-hard optimization

problems. Hence, we assume that an entity cluster is represented by a rooted

tree. A directed edge (i, j) in this tree indicates that xj is a reference to the

more general mention xi.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 71

10.2.1

Coreference Trees

We introduce coreference trees to represent clusters of coreferring

mentions. A coreference tree is a rooted tree whose nodes are the coreferring

mentions and arcs represent some coreference relation between mentions. In

Figure 10.1, we present a document with nine highlighted mentions comprising

three clusters. One plausible coreference tree for the cluster {a1,a2,a3,a4} is

presented in Figure 10.2. We are not really concerned about the semantics

Figure 10.2: Coreference tree for the cluster a in Figure 10.1.

underlying coreference trees, since they are just auxiliary structures for

the clustering task. However, we argue that this concept is linguistically

plausible, since usually there is indeed a specific-to-general relation between

two coreferring mentions. Observing the aforementioned example, one may

agree that mention a3 (North Korea’s) is more likely to be associated with

mention a1 (North Korea) than with mention a2 (its), even considering that a2

and a3 are closer to each other than a1 and a3, in the document text.

For a given document, we have a forest of coreference trees, one tree for

each entity cluster. However, for the sake of simplicity, we link the root node of

every coreference tree to an artificial root node, obtaining the document tree.

In Figure 10.3, we depict a document tree for the text in Figure 10.1.

10.2.2

Latent Structure Learning

Coreference trees are not given in the training data. Thus, we assume

that these structures are latent and make use of the latent structure perceptron

(Fernandes and Brefeld, 2011; Yu and Joachims, 2009) to train our models. We

introduced this algorithm earlier in Figure 2.3. Here, we describe its application

to coreference resolution by using coreference trees. We decompose the original

predictor into two predictors, namely the latent predictor Fh(x;w) and the

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 72

Figure 10.3: Document tree with three coreference trees that corresponds to
the text in Figure 10.1. Dashed lines indicate artificial arcs.

target predictor Fy(x,h). The latent predictor is defined as

Fh(x;w) = arg max
h∈H(x)

〈w,Φ(x,h)〉,

where H(x) is the set of feasible document trees for x and Φ(x,h) is the joint

feature vector representation for the mentions x and the document tree h.

Hence, the latent predictor finds a maximum scoring rooted tree over the given

mentions x, where a tree score is given by a linear function over its features.

Fy(x,h) is a straightforward procedure that creates a cluster for each subtree

connected to the artificial root node in the document tree h. Then, for a given

input x, a complete prediction is given by Fy(x, Fh(x;w)).

As one can observe, in this application of the latent SPerc, we do not

use the target model wy introduced in Section 2.3, since the target predictor

Fy(x,h) predicts an output based exclusively on the latent structure h. Thus,

in this chapter, the model w corresponds to the latent model wh presented in

Chapter 2.

In Figure 10.4, we depict the latent structure perceptron algorithm for the

mention clustering task. Likewise its binary counterpart (Rosenblatt, 1957),

the structure perceptron is an online algorithm that iterates through the

training set. For each training instance, it performs two major steps: (i) a

prediction for the given input using the current model; and (ii) a model update

based on the difference between the predicted and the ground truth outputs.

The latent SPerc performs an additional step to predict the latent ground truth

h̃ by using a specialization of the latent predictor.

Golden coreference trees are not available, however, during training, for

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 73

w0 ← 0

t← 0
while no convergence

for each (x,y) ∈ D

h̃← argmaxh∈H(x,y)〈wt,Φ(x,h)〉

ĥ← argmaxh∈H(x)〈wt,Φ(x,h)〉+ ℓ(h, h̃)

wt+1 ← wt +Φ(x, h̃)−Φ(x, ĥ)

t← t+ 1

w ← 1
t

∑t
k=1wk

Figure 10.4: Latent structure perceptron algorithm.

an input x, we have the golden clustering y. Thus, we predict the constrained

document tree h̃ for the training instance (x,y) using a specialization of the

latent predictor – the constrained latent predictor – that makes use of y. The

constrained predictor finds the maximum scoring document tree among the

constrained document tree set H(x,y) ⊂ H(x), which includes all rooted

trees of x that follow the correct clustering y. That is, a constrained tree

h ∈ H(x,y) comprises only arcs between coreferring mentions – according

to y – plus one arc from the artificial node to each cluster. In that way, the

constrained predictor guarantees that Fy(h̃) = y, for any w. The constrained

tree is then used as the ground truth on each iteration. Therefore, the model

update is determined by the difference between the constrained document tree

and the document tree predicted by the ordinary predictor.

The latent structure perceptron algorithm learns to predict document

trees that help to solve the clustering task. Thereafter, for an unseen document

x, the latent predictor Fh(x;w) is employed to produce a predicted document

tree h which, in turn, is fed to Fy(x,h) to give the predicted clusters.

10.3

Prediction Problem

We decompose the joint feature vector Φ(x,h) along coreference tree

edges, that is, mention pairs. Thus, the prediction problem is reduced to the

maximum branching problem, just as for dependency parsing, and it can be

efficiently solved by the Chu-Liu-Edmonds algorithm.

We use a loss function that is similar to the one used for dependency

parsing

ℓ(h, ĥ) =
∑

(i,j)∈ĥ;i>0

1[(i, j) /∈ h]+
∑

(i,j)∈ĥ;i=0

r · 1[(i, j) /∈ h]

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 74

where (0, j) is an artificial edge and r is a meta-parameter denoted root loss

value. This loss function just counts how many predicted edges are not present

in the constrained document tree. Additionally, for arcs from the artificial root

node, we use a different loss value r.

10.4

Basic Features

We use 70 basic features to describe a candidate edge. All of them

give hints on the coreference strength of individual edges. These features

provide lexical, syntactic, semantic, and positional information. They have

been adapted from previously proposed features dos Santos and Carvalho

(2011); Sapena et al. (2010); Ng and Cardie (2002). All features have been

transformed into categorical, even the integer ones.

In Table 10.1, we briefly describe the set of basic features used in our

system. The Id column identifies each feature. The Type column indicates the

value type of each feature, such as boolean (yes, no) or ternary (yes, no, not

applicable). The # column indicates how many basic features correspond to

each description.

10.5

Data Preparation

In this section, we present some specific procedures that are performed

before the application of the ESL system to coreference resolution.

10.5.1

Mention Detection

The CoNLL-2012 shared task datasets do not explicitly provide entity

mentions; the system needs to detect them. For each document, we generate

a list of candidate mentions using the strategy of dos Santos and Carvalho

(2011). The basic idea is to use all noun phrases and, additionally, pronouns

and named entities, even if they are inside larger noun phrases. We do not

include verbs as mentions.

10.5.2

Coreference Arcs Generation

The input for the prediction problem is a graph whose nodes are the

mentions in a document. Ideally, we could consider the complete graph for

each document, thus every mention pair would be an option for building the

document tree. However, since the total number of mentions is huge and a big

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 75

Id Description Type #

Lexical Features 25

L1 Head word of xi (xj) word 2
L2 String matching of xi and xj boolean 1
L3 String matching of the head words of xi and xj boolean 1
L4 Both xi and xj are pronouns and their strings match ternary 1
L5 Both xi and xj are not pronouns and their string match ternary 1
L6 Previous and next two words of xi (xj) word 8
L7 Length of xi (xj) integer 2
L8 Edit distance of head words xi and xj integer 1
L9 Edit distance of xi and xj after removing determiners integer 1
L10 xi (xj) is a definitive noun phrase boolean 2
L11 xi (xj) is a demonstrative noun phrase boolean 2
L12 The head word of both xi and xj are proper nouns boolean 1
L13 Both xi and xj are proper names and their strings match ternary 1
L14 Both xi and xj are proper names and their head word strings

match
ternary 1

Syntactic Features 28

Sy1 POS tag of the head word of xi (xj) POS tag 2
Sy2 Previous and next two POS tags of xi (xj) POS tag 8
Sy3 xi (xj) is a pronoun boolean 2
Sy4 Gender of xi (xj), if pronoun f, m, n/a 2
Sy5 xi and xj are both pronouns and agree in gender ternary 1
Sy6 xi and xj are both pronouns and agree in number ternary 1
Sy7 xi (xj) is a proper name boolean 2
Sy8 xi and xj are both proper names boolean 1
Sy9 Previous and next predicate of xi (xj) verb 4
Sy10 xi and xj are pronouns and agree in number, gender and

person
ternary 1

Sy11 Noun phrase embedding level of xi (xj) in the syntactic parse integer 2
Sy12 Number of embedded noun phrases in xi (xj) integer 2

Semantic Features 13

Se1 The prediction of the baseline system proposed in dos Santos
and Carvalho (2011)

binary 1

Se2 Sense of the head word of xi (xj) sense 2
Se3 Named entity type of xi (xj) NE tag 2
Se4 xi and xj have the same named entity ternary 1
Se5 Semantic role for the previous and next words of xi (xj) SRL tag 4
Se6 Concatenation of semantic roles of xi and xj for the same

predicate, if they are in the same sentence
(SRL tag)2 1

Se7 xi and xj have the same speaker ternary 1
Se8 xj is an alias of xi boolean 1

Positional Features 4

P1 Distance between xi and xj in number of sentences integer 1
P2 Distance between xi and xj in number of mentions integer 1
P3 Distance between xi and xj in number of person names

(applies only for the cases where xi and xj are both pronouns
or one of them is a person name)

integer 1

P4 One mention is in apposition to the other boolean 1

Table 10.1: Description of all 70 basic features.

portion of arcs can be easily identified as incorrect, we filter the arcs and, thus,

include only candidate mention pairs that are more likely to be coreferent.

We filter arcs by simply adapting the sieves method proposed by Lee et al.

(2011) to English coreference resolution. Lee et al. propose a list of handcrafted

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 76

rules that are sequentially applied to mention pairs in order to iteratively merge

mentions into entity clusters. These rules are denoted sieves, since they filter

the correct mention pairs. In Lee et al.’s system, sieves are applied from higher

to lower precision. However, in our filtering strategy, precision is not a concern

and the application order is not important. The objective here is to build a

small set of candidate arcs that shows good recall. Additionally, we do not

have interest on sieves that are strongly language dependent, since our target

is multilingual coreference resolution. We thus select the most general sieves,

which can be easily applied to the Arabic and Chinese datasets provided in

the CoNLL-2012 shared task.

Given a mention pair (xi, xj), where xi appears before xj in the text, we

create a directed arc (i, j) if at least one of the following conditions holds:

1. Distance – The number of mentions between xi and xj is not greater

than a given parameter.

2. Alias – If both mentions are people, check if the head word of one mention

is part of the other mention, like Dilma and Dilma Rousseff. If both

mentions are organizations, check if the head word of one mention is

contained in the other, or if one is the acronym of the other.

3. Relaxed String Match – There is a match of both mentions up to their

head words.

4. Head Word Match – The head word of xi matches the head word of xj.

5. Shallow Discourse – Test if shallow discourse attributes match for both

mentions. For instance, two first person pronouns assigned to the same

speaker are considered coreferent.

6. Pronouns – Check if xj is a pronoun and xi has the same gender, number,

speaker and animacy of xj. For this filter, we use number and gender data

provided by Bergsma and Lin (2006).

7. Pronouns/NE – Check if xj is a pronoun and xi is a compatible pronoun

or proper name (named entity).

Sieves 2 to 7 are adapted from Lee et al. (2011). Most of these sieves are

relaxed versions of the ones proposed by Lee et al. (2011). Sieve 1 is introduced

by us to lift recall, yet avoiding strongly language-dependent sieves.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 77

10.5.3

Language Specifics

Our system can be easily adapted to different languages. In our

experiments, only minor changes are needed to train and apply the system

to three different languages. The adaptations are due to: (i) lack of input

features for some languages; (i) different POS tagsets across datasets; and (iii)

creation of static lists of language specific pronouns. The necessary adaptations

are restricted to only two preprocessing steps: basic features and coreference

arcs generation.

Some input features available in the English dataset are not available

in the Arabic nor in the Chinese datasets. The Arabic dataset does not

contain named entity, semantic role labeling and speaker features. Therefore,

for Arabic, we do not derive the following basic features: Sy9, Se3, Se4, Se5,

Se6, Se7, and P3. For Chinese, information related to named entity is not

provided. Thus, we do not derive the following basic features: Se3, Se4, and

P3. Additionally, the Chinese dataset uses a different POS tagset. Hence, some

mappings are used during the basic feature derivation stage.

The lack of input features for Arabic and Chinese also impact the sieve

based arc generation. For Chinese, we do not use sieve 6, and, for Arabic, we

only use sieves 1, 3, 4 and 7. Sieve 7 is not used for the English dataset, since

it is a specialization of sieve 6. The first sieve threshold is 4 for Arabic and

Chinese, and 8 for English.

In the arc generation and basic feature derivation steps, our system makes

use of static lists of language specific pronouns. In our experiments, we use

the POS tagging information and the golden entity clusters to automatically

extract these pronoun lists from training data.

Our system submitted to the CoNLL-2012 Shared Task ignores arcs

linking nested mentions. While this kind of mentions are never coreferent in

Arabic nor in English, the Chinese datasets include many nested coreferring

mentions. Hence, in the latest version of our system, we include such arcs for

the Chinese language.

10.5.4

EFG Setting

We experiment with different template sets for each language. The

difference between these sets is the training data given as input to EFG. We

obtain better results when merging different template sets. For the English

language, it is better to use a set of 196 templates obtained by merging

the output of two independent EFG executions. These two runs are fed with

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 78

training datasets comprising: (a) mention pairs produced by sieves 2 to 6; and

(b) mention pairs produced by all sieves. For Chinese and Arabic, it is better

to use template sets generated specifically for these languages and merge them

with the template set (a), generated for the English language. The final set for

Chinese comprises 197 templates, while the final set for Arabic comprises 223.

All these templates conjoin from two to seven basic features.

10.5.5

Evaluation Metrics

Evaluating coreference systems is a hard task. The main issue is that

coreference information is highly faceted and the value of each facet varies

a lot from one application to another. Thus, when reporting and comparing

coreference performances, it is really hard to define one metric that fits all

purposes. Therefore, we follow the methodology proposed in the CoNLL-2012

Shared Task to assess our systems, since it combines three of the most popular

metrics. The metrics used are the link based MUC metric (Vilain et al., 1995),

the mention based B3 metric (Bagga and Baldwin, 1998) and the entity based

CEAFe metric (Luo, 2005). All these metrics are based on precision and recall

measures, which are combined to give an F-score value. The mean F-score of

these three metrics gives a unique score for each language. Additionally, when

appropriate, the official CoNLL-2012 Shared Task score is reported, which is

the average of the F-scores for all languages. We denote this metric as CoNLL

score.

Another important aspect of coreference evaluation is mention matching.

Some methodologies, like the ones used in MUC or ACE evaluations, consider

approximate matching of mention spans. However, the CoNLL-2012 Shared

Task evaluation considers only exact span matching. We use the latter in our

performance measures. In fact, the experimental results reported in this work

are generated by the official CoNLL-2012 Shared Task evaluation scripts.

10.6

Empirical Results

In this section, we present five sets of empirical findings on the

CoNLL-2012 Shared Task datasets. Namely, (i) we show our system overall

quality, that is, the best one for Arabic, Chinese and English; (ii) we assess

the EFG impact, showing that it significantly improves the resulting system

quality; (iii) we assess the root loss value impact, also showing that it

significantly improves system quality; (iv) we show that by enhancing our

Chinese modeling with nested mentions, we achieve state-of-the-art quality

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 79

for this language; and (v) we present the supplementary results provided

by the shared task organizers. These empirical findings highlight the main

contributions of this work regarding multilingual unrestricted coreference

resolution on OntoNotes.

10.6.1

State-of-the-art Systems

In Table 10.2, we present per-language and CoNLL scores of the best

performing systems on the CoNLL-2012 test sets. The first row of this table

Reference AR CH EN CoNLL Score

This work 54.22 62.87 63.37 60.15

Fernandes et al. (2012a) 54.22 58.49 63.37 58.69
Björkelund and Farkas (2012) 53.55 59.97 61.24 58.25

Chen and Ng (2012) 47.13 62.24 59.69 56.35

Table 10.2: State-of-the-art systems for multilingual unrestricted coreference
resolution in OntoNotes. Performances on the CoNLL-2012 Shared Task test
sets.

corresponds to the last version of our system and the second row corresponds

to our official entry in the CoNLL-2012 Shared Task. The difference between

these two versions is the inclusion of candidate arcs linking nested mentions

for the Chinese language. By including such arcs, the score increases almost

4.5 points for that language.

The last two rows of Table 10.2 correspond to the competitors that are

ranked second Björkelund and Farkas (2012) and third Chen and Ng (2012) in

the shared task. Our system obtains a remarkable performance on the English

language, outperforming the runner-up by more than two points. We also

achieve the highest performance on Arabic and Chinese.

The detailed performance of our systems is presented in Table 10.3, where

we report recall, precision and F-score for all metrics and languages considered

in the CoNLL-2012 Shared Task. We can observe that the mean scores on

Chinese and English are similar. On the other hand, the performance on the

Arabic language is much lower. Given the smaller size of the Arabic training

corpus, this variation is expected.

Lang
MUC B3 CEAFe Mean

R P F R P F R P F
Arabic 43.63 49.69 46.46 62.70 72.19 67.11 52.49 46.09 49.08 54.22

Chinese 59.20 71.52 64.78 67.17 80.55 73.25 57.46 45.20 50.59 62.87

English 65.83 75.91 70.51 65.79 77.69 71.24 55.00 43.17 48.37 63.37

CoNLL Score 60.15

Table 10.3: Detailed performance of our system on the CoNLL-2012 Shared
Task test sets.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 80

10.6.2

Entropy Guided Feature Generation

In this work, we employ entropy guided feature generation to

automatically generate non-linear features that conjoin the used 70 basic

features. In this section, we compare our EFG-based system with a system

trained with basic features alone. It is important to notice that among these

70 basic features there are several complex features. Some of these features are

even conjunctions of other simpler basic features, and others provide complex

task dependent information, like head words and agreement on number and

gender, for instance. These 70 basic features were manually generated by

domain experts and encode valuable coreference information.

In Table 10.4, we present the performances of four systems on the

English development set. In the upper half of this table, we report the

performance of our EFG-based system (first row) and the performance of a

model trained with basic features alone (second row). We can notice that

the EFG system outperforms the baseline by 7.31 points. Moreover, EFG

consistently outperforms the baseline on all metrics.

Basic
EFG

MUC B3 CEAFe Mean
Feats. R P F1 R P F1 R P F1

70
Yes 61.34 75.71 67.77 62.94 79.59 70.29 56.23 40.36 46.99 61.68

No 51.32 73.28 60.37 54.85 78.06 64.43 50.87 30.71 38.30 54.37

54
Yes 60.86 74.82 67.12 62.50 78.83 69.72 54.53 39.46 45.79 60.88

No 36.65 73.44 48.90 45.25 82.26 58.38 49.97 22.09 30.64 45.97

Table 10.4: EFG effect on system performance for the English development
set.

We perform another experiment to assess EFG. We remove 16 basic

features out of the 70 original ones and perform the same experiment as

before. That is, we evaluate an EFG-based system trained with the remaining

54 basic features and compare it to another system trained with the same

54 basic features alone. Namely, we remove the following basic features:

L2, L3, L4, L5, L8, L9, L12, L13, L14, Sy5, Sy8, Sy10, Se1, Se4, Se7, P4.

In the lower half of Table 10.4, we present the performance of these two

systems. We can see that, while the EFG-based system performance (third

row) drops only 0.8 point when the 16 features are removed, the performance

of the baseline system (fourth row) drops impressive 8.4 points. The difference

between the two systems doubles in respect to the difference when using

all 70 basic features. These findings highlight two important points. First,

the removed features are very informative. Moreover, EFG is able to almost

completly overcome the omission of these informative features by automatically

generating conjunctions of the remaining 54 basic features.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 81

10.6.3

Root Loss Value

Just as some coreference metrics can be more important than others for

some applications, precision and recall have different values for applications.

Specifically for the CoNLL score – which is based on the Fβ=1 score – the

balance between precision and recall is important. For this reason, we introduce

one important parameter in our system: the root loss value. This parameter

specifies a different loss function value for outgoing arcs in the artificial

root node. Observe that, in a document tree, each arc from the root node

corresponds to a cluster. The effect of a root loss value larger than one is to

reduce the creation of new clusters, stimulating larger clusters. Therefore, one

can use this parameter to adjust the balance between precision and recall.

In the upper half of Table 10.5, we present our system performances on

the development sets when we set this parameter to one, which is equivalent

to not use this parameter at all. We can notice that in this case recall and

precision have very distinct values, lowering the F-score values. Using the

Root
Lang

MUC B3 CEAFe Mean
Loss R P F R P F R P F

Off

Arabic 34.18 58.85 43.25 50.61 82.13 62.63 57.37 33.75 42.49 49.45

Chinese 49.17 76.03 59.72 58.16 86.33 69.50 57.56 34.38 43.05 57.42

English 62.75 77.41 69.31 63.88 81.34 71.56 57.46 41.08 47.91 62.92

CoNLL Score 56.59

On

Arabic 43.00 47.87 45.30 61.41 70.38 65.59 49.42 44.19 46.66 52.52

Chinese 54.40 68.19 60.52 64.17 78.84 70.76 51.42 38.96 44.33 58.54

English 64.88 74.74 69.46 66.53 78.28 71.93 54.93 43.68 48.66 63.35

CoNLL Score 58.14

Table 10.5: Root loss value effect on development set performances.

development sets for tuning, we set the root loss value to 6, 2 and 1.5 for Arabic,

Chinese and English, respectively. In the lower half of Table 10.5, we present

the performances when we use these values for the root loss value parameter.

We can observe that this parameter really causes a better balancing between

precision and recall, consequently increasing the F-score values. Its effect is

accentuated on Arabic and Chinese, since the unbalancing issue is worse on

these languages. The increase in the CoNLL score is over 1.5 point.

10.6.4

Chinese Nested Mentions

Nested noun phrases are very common. For instance, the noun phrase the

smart boy includes the nested noun phrase boy. Whether to consider these two

noun phrases as coreferring mentions or only consider the longer noun phrase as

a mention is an annotation design choice. OntoNotes mostly consider only the

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 82

longer noun phrase. However, in many Chinese documents, nested mentions are

annotated as coreferring. Thus, in this work, we evaluate the effect of whether

arcs linking nested mentions are considered or not. In Table 10.6, we present

the detailed results when such arcs are ignored (first row) and when they are

included (second row). To consider these arcs remarkably increases our system

score by almost 4 points on the Chinese language.

Nested MUC B3 CEAFe Mean
Mentions R P F1 R P F1 R P F1

Yes 60.35 70.56 65.05 67.37 79.49 72.93 55.15 44.94 49.52 62.50

No 54.40 68.19 60.52 64.17 78.84 70.76 51.42 38.96 44.33 58.54

Table 10.6: Effect whether nested coreferring mentions are considered or not
for the Chinese language.

10.6.5

Supplementary Results

We report in Table 10.7 the supplementary results provided by the

CoNLL-2012 Shared Task organizers on the test sets. These additional

Lang Config
MUC B3 CEAFe Mean

R P F1 R P F1 R P F1

AR

A/A 43.63 49.69 46.46 62.70 72.19 67.11 52.49 46.09 49.08 54.22

A/GB 45.18 47.39 46.26 64.56 69.44 66.91 49.73 47.39 48.53 53.90

A/GM 57.25 76.48 65.48 60.27 79.81 68.68 72.61 46.00 56.32 63.49

G/A 46.38 51.78 48.93 63.53 72.37 67.66 52.57 46.88 49.56 55.38

G/GB 46.38 51.78 48.93 63.53 72.37 67.66 52.57 46.88 49.56 55.38

G/GM 56.89 76.27 65.17 60.07 80.02 68.62 72.24 45.58 55.90 63.23

CH

A/A 52.69 70.58 60.34 62.99 80.57 70.70 53.75 37.88 44.44 58.49

A/GB 58.76 71.46 64.49 66.62 79.88 72.65 54.09 42.02 47.29 61.48

A/GM 61.64 90.81 73.43 63.55 89.43 74.30 72.78 39.68 51.36 66.36

G/A 59.35 74.49 66.07 66.31 81.43 73.10 55.97 41.50 47.66 62.28

G/GB 59.35 74.49 66.07 66.31 81.43 73.10 55.97 41.50 47.66 62.28

G/GM 61.70 91.45 73.69 63.57 89.76 74.43 72.84 39.49 51.21 66.44

EN

A/A 65.83 75.91 70.51 65.79 77.69 71.24 55.00 43.17 48.37 63.37

A/GB 64.92 77.53 70.67 64.25 78.95 70.85 56.48 41.69 47.97 63.16

A/GM 70.69 91.21 79.65 65.46 85.61 74.19 74.71 42.55 54.22 69.35

G/A 67.73 77.25 72.18 66.42 78.01 71.75 56.16 44.51 49.66 64.53

G/GB 65.65 78.26 71.40 64.36 79.09 70.97 57.36 42.23 48.65 63.67

G/GM 71.18 91.24 79.97 65.81 85.51 74.38 74.93 43.09 54.72 69.69

Table 10.7: Supplementary results on the test sets with different configurations
(Config) for parse quality and mention candidates (parse/mentions). Parse
quality can be automatic (A) or golden (G); and mention candidates can
be automatically identified (A), golden mention boundaries (GB) or golden
mentions (GM).

experiments investigate two key aspects of any coreference resolution system:

the parse feature and the mention candidates that are given to the clustering

procedure. In these results, we alternate the parse feature between the official

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 83

automatic parse (A in the results table) and the golden parse from OntoNotes

(G). Regarding mention candidates, we use three different strategies: automatic

mentions (A), golden mention boundaries (GB) and golden mentions (GM).

Automatic mentions are the ones detected by our system. Golden mention

boundaries comprise all noun phrases in the golden parse tree, even when the

automatic parse is used as input feature. Golden mentions are all non-singleton

mentions, i.e., all mentions that take part in some entity cluster. It is important

to notice that golden mention information is much stronger than just golden

boundaries.

By observing Table 10.7, it is clear that the most beneficial information

is golden mentions (compare A/GM to A/A rows, for each language). The

mean F-score over all languages when using golden mentions is almost 8

points higher than the official score. These results are not surprising since

to identify non-singleton mentions accounts to a significant part of the final

task. Golden mention boundaries (A/GB) increase the Chinese score by almost

3 points. Conversely, for the other two languages, the results are decreased

when this information is given. This is probably due to parameter tuning,

since any additional information potentially changes the learning problem and,

nevertheless, we use exactly the same three models – one per language – to

produce both the official and the supplementary results. One can observe, for

instance, that the recall/precision balance greatly varies among the different

configurations in these experiments. The golden parse feature (G/A) causes

big improvements on all languages, specially Chinese.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

11

Conclusions

We propose the entropy-guided structure learning framework that

extends the general SL framework by integrating an automatic feature

generation approach – the entropy-guided feature generation method that is

based on the conditional entropy of local decision variables given input basic

features.

We compare EFG with two important alternative feature generation

methods, namely manual template generation and polynomial kernel functions.

Our empirical results on dependency parsing show that EFG outperforms

the best known template set on the Portuguese CoNLL-2006 dataset. We

compare EFG with polynomial kernel methods on two text chunking datasets:

the Portuguese Bosque dataset and the English CoNLL-2000 dataset. EFG

outperforms both. Furthermore, our method presents additional advantages

over these two alternative methods. It is faster than kernel methods and avoid

the overfitting issue. Compared to manual feature templates, the fact that

EFG bypasses domain experts is highly valuable.

We evaluate ESL on nine datasets involving five natural language

processing tasks and four different languages. ESL presents state-of-the-art

comparable performances on all evaluated datasets. Moreover, it outperforms

the previous best performing systems on six datasets, namely the Mac-Morpho

dataset for Portuguese part-of-speech tagging, the Bosque dataset for

Portuguese text chunking, the GloboQuotes dataset for Portuguese quotation

extraction, the CoNLL-2012 Shared Task datasets for Arabic, Chinese,

and multilingual coreference resolution. Additionally, on the Portuguese

dependency parsing task, we demonstrate the power of ESL by automatically

including two basic features in our model, lifting the final performance by

around 2.4 points.

We propose a novel modeling for coreference resolution based on latent

structure learning. The ESL systems based on this modeling achieve the

best results for Arabic and English coreference resolution. Moreover, the ESL

coreference systems – for Arabic, Chinese and English – achieve the very first

place on the renowned CoNLL-2012 Shared Task. The proposed modeling is

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 85

highly language-independent, allowing us to apply it on three very different

languages with no more than minor adaptations, which are mainly necessary

due to lack of features for some languages.

Koo et al. (2010) and McDonald and Pereira (2006) show significant

improvements on the performance of DP systems by extending the first-order

model used in this work to include second- and third-order features. As future

work, we plan to apply these modelings to dependency parsing and coreference

resolution.

For coreference resolution, some authors (Lee et al., 2011) report

that features based on partial clusters bring substantial improvements on

performance. We also plan to extend our latent modeling in order to include

such type of features.

Text chunking and named entity recognition have been recurrently recast

as sequence labeling problems. Nevertheless, these tasks require sentence

segmentation and, additionally, segment classification. In this way, we can

apply our modeling based on weighted interval scheduling to such tasks, just

as we have done for quotation extraction. By using a sequence segmentation

modeling, we are able to use more meaningful features for these tasks and,

consequently, improve performance.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Bibliography

Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann. Hidden

Markov support vector machines. In Proceedings of the International

Conference on Machine Learning, 2003.

Yasemin Altun, Thomas Hofmann, and Ioannis Tsochantaridis. SVM learning

for interdependent and structured output spaces. In Machine Learning with

Structured Outputs, 2007.

Sandra Alúısio, Jorge Pelizzoni, Ana R. Marchi, Lucélia de Oliveira, Regiana

Manenti, and Vanessa Marquiafável. An account of the challenge of

tagging a reference corpus for brazilian portuguese. In Proceedings

of the 6th international conference on Computational processing of the

Portuguese language, PROPOR’03, pages 110–117, Berlin, Heidelberg,

2003. Springer-Verlag. ISBN 3-540-40436-8. URL http://dl.acm.org/

citation.cfm?id=1758748.1758769.

Amit Bagga and Breck Baldwin. Algorithms for scoring coreference chains.

In In The First International Conference on Language Resources and

Evaluation Workshop on Linguistics Coreference, pages 563–566, 1998.

Shane Bergsma and Dekang Lin. Bootstrapping path-based pronoun

resolution. In Proceedings of ACL2006, ACL–44, pages 33–40, Stroudsburg,

PA, USA, 2006. Association for Computational Linguistics.

Anders Björkelund and Richárd Farkas. Data-driven multilingual coreference

resolution using resolver stacking. In Joint Conference on EMNLP

and CoNLL - Shared Task, pages 49–55, Jeju Island, Korea, July 2012.

Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W12-4503.

Eric Brill. Transformation-based error-driven learning and natural language

processing: a case study in part-of-speech tagging. Comput. Linguist., 21:

543–565, December 1995. ISSN 0891-2017. URL http://dl.acm.org/

citation.cfm?id=218355.218367.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 87

Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on multilingual

dependency parsing. In Proceedings of the Tenth Conference on Natural

Language Learning, pages 149–164, 2006.

Chen Chen and Vincent Ng. Combining the best of two worlds: A hybrid

approach to multilingual coreference resolution. In Joint Conference on

EMNLP and CoNLL - Shared Task, pages 56–63, Jeju Island, Korea,

July 2012. Association for Computational Linguistics. URL http://www.

aclweb.org/anthology/W12-4504.

Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph.

Science Sinica, 14:1396–1400, 1965.

Michael Collins. Ranking algorithms for named-entity extraction: Boosting

and the voted perceptron. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics, 2002a.

Michael Collins. Discriminative training methods for hidden Markov models:

theory and experiments with perceptron algorithms. In Proceedings of the

ACL-02 Conference on Empirical Methods in Natural Language Processing,

pages 1–8, 2002b.

Koby Crammer and Yoram Singer. On the algorithmic implementation of

multi-class kernel-based vector machines. Journal of Machine Learning

Research, 2:265–292, 2001.

Koby Crammer and Yoram Singer. Ultraconservative online algorithms for

multiclass problems. Journal of Machine Learning Research, 3:951–991,

2003.

Thomas G. Dietterich. Machine learning for sequential data: A review.

In Proceedings of the Joint IAPR International Workshop on Structural,

Syntactic, and Statistical Pattern Recognition, 2002.

Ćıcero N. dos Santos and Davi L. Carvalho. Rule and tree ensembles

for unrestricted coreference resolution. In Proceedings of the Fifteenth

Conference on Computational Natural Language Learning: Shared Task,

pages 51–55, Portland, Oregon, USA, June 2011. Association for

Computational Linguistics. URL http://www.aclweb.org/anthology/

W11-1906.

Ćıcero N. dos Santos and Ruy L. Milidiú. Foundations of Computational

Intelligence, Volume 1: Learning and Approximation, volume 201 of Studies

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 88

in Computational Intelligence, chapter Entropy Guided Transformation

Learning, pages 159–184. Springer, 2009a.

Ćıcero N. dos Santos and Ruy L. Milidiú. Entropy guided transformation

learning. In Foundations of Computational Intelligence (1), pages 159–184.

Springer, 2009b.

Ćıcero N. dos Santos, Ruy L. Milidiú, Carlos E. M. Crestana, and Eraldo R.

Fernandes. ETL ensembles for chunking, NER and SRL. In 11th

International Conference on Computational Linguistics and Intelligent Text

Processing, CICLing, pages 100–112, 2010.

Jack Edmonds. Optimum branchings. Journal of Research of the National

Bureau of Standards, 71B:233–240, 1967.

Eraldo R. Fernandes and Ulf Brefeld. Learning from partially annotated

sequences. In Proceedings of the European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases

(ECML-PKDD), Athens, Greece, 2011.

Eraldo R. Fernandes and Ruy L. Milidiú. Entropy-guided feature generation

for structured learning of Portuguese dependency parsing. In Proceedings of

the Conference on Computational Processing of the Portuguese Language

(PROPOR), volume 7243 of Lecture Notes in Computer Science, pages

146–156. Springer Berlin / Heidelberg, 2012.

Eraldo R. Fernandes, Ruy L. Milidiú, and Ćıcero N. dos Santos. Portuguese

language processing service. In 18th International World Wide Web

Conference, April 2009a. URL http://www2009.eprints.org/208/.

Eraldo R. Fernandes, Bernardo A. Pires, Ćıcero N. dos Santos, and Ruy L.

Milidiú. Clause identification using entropy guided transformation learning.

In Proceedings of the 2009 Seventh Brazilian Symposium in Information

and Human Language Technology, STIL ’09, pages 117–124, Washington,

DC, USA, 2009b. IEEE Computer Society. ISBN 978-0-7695-3945-4. doi:

10.1109/STIL.2009.10. URL http://dx.doi.org/10.1109/STIL.2009.10.

Eraldo R. Fernandes, Carlos E. M. Crestana, and Ruy L. Milidiú. Hedge

detection using the relhunter approach. In Proceedings of the Fourteenth

Conference on Computational Natural Language Learning — Shared Task,

CoNLL ’10: Shared Task, pages 64–69, Stroudsburg, PA, USA, 2010a.

Association for Computational Linguistics. ISBN 978-1-932432-84-8. URL

http://dl.acm.org/citation.cfm?id=1870535.1870544.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 89

Eraldo R. Fernandes, Ćıcero N. dos Santos, and Ruy L. Milidiú. A

machine learning approach to portuguese clause identification. In

Proceedings of the 9th international conference on Computational

Processing of the Portuguese Language, PROPOR’10, pages 55–64, Berlin,

Heidelberg, 2010b. Springer-Verlag. ISBN 3-642-12319-8, 978-3-642-12319-1.

doi: 10.1007/978-3-642-12320-7 8. URL http://dx.doi.org/10.1007/

978-3-642-12320-7_8.

Eraldo R. Fernandes, Ruy L. Milidiú, and Raúl P. Renteŕıa. RelHunter: a

machine learning method for relation extraction from text. Journal of the

Brazilian Computer Society, 16:191–199, 2010c. ISSN 0104-6500. URL

http://dx.doi.org/10.1007/s13173-010-0018-y.

Eraldo R. Fernandes, Ćıcero dos Santos, and Ruy L. Milidiú. Latent structure

perceptron with feature induction for unrestricted coreference resolution. In

Joint Conference on EMNLP and CoNLL - Shared Task, pages 41–48, Jeju

Island, Korea, July 2012a. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/W12-4502.

Eraldo R. Fernandes, Ćıcero N. dos Santos, and Ruy L. Milidiú. Latent

structure perceptron with feature induction for unrestricted coreference

resolution. In Joint Conference on EMNLP and CoNLL - Shared Task,

pages 41–48, Jeju Island, Korea, July 2012b. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/W12-4502.

William P. D. Fernandes. Quotation extraction for portuguese. Master’s thesis,

PUC-Rio, Rio de Janeiro, 2012.

Winthrop N. Francis and Henry Kučera. Frequency analysis of english usage:

Lexicon and grammar. Houghton Mifflin, Boston, 1982.

Cláudia Freitas, Paulo Rocha, and Eckhard Bick. Floresta Sintá(c)tica: Bigger,

thicker and easier. In António Teixeira, Vera Lúcia Strube de Lima,

Lúıs Caldas de Oliveira, and Paulo Quaresma, editors, Computational

Processing of the Portuguese Language, volume 5190 of Lecture Notes in

Computer Science, pages 216–219, 2008.

Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision

trees is np-complete. Information Processing Letters, 5(1):15–17, 1976. ISSN

0020-0190. doi: 10.1016/0020-0190(76)90095-8.

Thorsten Joachims. Learning to align sequences: A maximum-margin

approach. Technical report, Cornell University, 2003.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 90

Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David

Sontag. Dual decomposition for parsing with non-projective head automata.

In Proceedings of the 2010 Conference on Empirical Methods in Natural

Language Processing, EMNLP ’10, pages 1288–1298, Stroudsburg, PA, USA,

2010. Association for Computational Linguistics. URL http://dl.acm.

org/citation.cfm?id=1870658.1870783.

Taku Kudo and Yuji Matsumoto. Chunking with support vector machines.

In Proceedings of the second meeting of the North American Chapter of

the Association for Computational Linguistics on Language technologies,

NAACL’01, pages 1–8, Stroudsburg, PA, USA, 2001. Association for

Computational Linguistics. doi: http://dx.doi.org/10.3115/1073336.

1073361. URL http://dx.doi.org/10.3115/1073336.1073361.

Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai

Surdeanu, and Dan Jurafsky. Stanford’s multi-pass sieve coreference

resolution system at the CoNLL-2011 shared task. In Proceedings of the

Fifteenth Conference on Computational Natural Language Learning: Shared

Task, CoNLL Shared Task 2011, pages 28–34, Stroudsburg, PA, USA, 2011.

Association for Computational Linguistics. ISBN 9781937284084. URL

http://dl.acm.org/citation.cfm?id=2132936.2132938.

Xiaoqiang Luo. On coreference resolution performance metrics. In In Proc. of

HLT/EMNLP, pages 25–32. URL, 2005.

David McAllester, Tamir Hazan, and Joseph Keshet. Direct loss minimization

for structured prediction. In Advances in Neural Information Processing

Systems, 2011.

Ryan McDonald and Fernando Pereira. Online learning of approximate

dependency parsing algorithms. In In Proc. of EACL, pages 81–88, 2006.

Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin

training of dependency parsers. In Proceedings of the 43rd Annual Meeting

on Association for Computational Linguistics, ACL’05, pages 91–98, 2005.

Ryan McDonald, Kevin Lerman, and Fernando Pereira. Multilingual

dependency analysis with a two-stage discriminative parser. In Proceedings

of the Conference on Computational Natural Language Learning (CoNLL),

pages 216–220, 2006.

Ruy L. Milidiú, Ćıcero N. dos Santos, and Julio C. Duarte. Phrase chunking

using entropy guided transformation learning. In Proceedings of ACL2008,

Columbus, Ohio, 2008.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 91

Ruy L. Milidiú, Carlos E. M. Crestana, and Ćıcero N. dos Santos. A token

classification approach to dependency parsing. Information and Human

Language Technology, Brazilian Symposium in, 0:80–88, 2009. doi: http:

//doi.ieeecomputersociety.org/10.1109/STIL.2009.29.

Vincent Ng and Claire Cardie. Improving machine learning approaches

to coreference resolution. In Proceedings of the 40th Annual Meeting

on Association for Computational Linguistics, ACL ’02, pages 104–111,

Stroudsburg, PA, USA, 2002. Association for Computational Linguistics.

doi: http://dx.doi.org/10.3115/1073083.1073102. URL http://dx.doi.

org/10.3115/1073083.1073102.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryiǧit, and Svetoslav

Marinov. Labeled pseudo-projective dependency parsing with support vector

machines. In Proceedings of the Tenth Conference on Computational Natural

Language Learning, CoNLL-X ’06, pages 221–225, Stroudsburg, PA, USA,

2006. Association for Computational Linguistics. URL http://dl.acm.

org/citation.cfm?id=1596276.1596318.

Albert B. Novikoff. On convergence proofs on perceptrons. In Proceedings of

the Symposium on the Mathematical Theory of Automata, 1962.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus, Martha Palmer, Ralph

Weischedel, and Nianwen Xue. Conll-2011 shared task: Modeling

unrestricted coreference in ontonotes. In Proceedings of the Fifteenth

Conference on Computational Natural Language Learning Shared Task,

pages 1–27, Portland, USA, 2011. ACL.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and

Yuchen Zhang. Conll-2012 shared task: Modeling multilingual unrestricted

coreference in ontonotes. In Joint Conference on EMNLP and CoNLL

- Shared Task, pages 1–40, Jeju Island, Korea, July 2012. Association

for Computational Linguistics. URL http://www.aclweb.org/anthology/

W12-4501.

John R. Quinlan. C4.5: Programs for Machine Learning (Morgan Kaufmann

Series in Machine Learning). Morgan Kaufmann, 1 edition, 1992.

Frank Rosenblatt. The Perceptron – a perceiving and recognizing automaton.

Technical report, Cornell Aeronautical Laboratory, 1957. Report 85-460-1.

Erik F. T. K. Sang and Sabine Buchholz. Introduction to the conll-2000 shared

task: chunking. In Proceedings of the 2nd workshop on Learning language in

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 92

logic and the 4th conference on Computational natural language learning

- Volume 7, ConLL ’00, pages 127–132, Stroudsburg, PA, USA, 2000.

Association for Computational Linguistics. doi: http://dx.doi.org/10.3115/

1117601.1117631. URL http://dx.doi.org/10.3115/1117601.1117631.

Emili Sapena, Llúıs Padró, and Jordi Turmo. Relaxcor: A global relaxation

labeling approach to coreference resolution. In Proceedings of the 5th

International Workshop on Semantic Evaluation, SemEval ’10, pages 88–91,

Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

Temple F. Smith and Michael S. Waterman. Identification of common

molecular subsequences. Journal of Molecular Biology, 147(1):195–197,

1981. URL /brokenurl#http://publication.wilsonwong.me/load.php?

id=233281657.

Jiang Su and Harry Zhang. A fast decision tree learning algorithm. In

Proceedings of the 21st National Conference on Artificial intelligence, pages

500–505, 2006.

Robert E. Tarjan. Finding optimum branchings. Networks, 7:25–25, 1977.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin

Altun. Support vector machine learning for interdependent and structured

output spaces. In Proceedings of the International Conference on Machine

Learning, 2004.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin

Altun. Large margin methods for structured and interdependent output

variables. Journal of Machine Learning Research, 6:1453–1484, 2005.

Vladimir Vapnik. Statistical Learning Theory. Wiley, 1998.

Marc Vilain, John Burger, John Aberdeen, Dennis Connolly, and Lynette

Hirschman. A model-theoretic coreference scoring scheme. In Proceedings

of the 6th conference on Message understanding, MUC6 ’95, pages 45–52,

Stroudsburg, PA, USA, 1995. Association for Computational Linguistics.

ISBN 1-55860-402-2. doi: 10.3115/1072399.1072405. URL http://dx.doi.

org/10.3115/1072399.1072405.

Jason Weston and Chris Watkins. Multi-class support vector machines.

Pattern Recognition, (CSD-TR-98-04), 1998. URL http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.50.9594.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 93

Yu-Chieh Wu, Chia-Hui Chang, and Yue-Shi Lee. A general and multi-lingual

phrase chunking model based on masking method. In Alexander Gelbukh,

editor, Computational Linguistics and Intelligent Text Processing, volume

3878 of Lecture Notes in Computer Science, pages 144–155. Springer Berlin

/ Heidelberg, 2006. ISBN 978-3-540-32205-4.

Chun-Nam Yu and Thorsten Joachims. Learning structural SVMs with

latent variables. In Proceedings of the International Conference on Machine

Learning (ICML), 2009.

Alan L. Yuille and Anand Rangarajan. The concave-convex procedure.

Neural Comput., 15(4):915–936, April 2003. ISSN 0899-7667. doi:

10.1162/08997660360581958. URL http://dx.doi.org/10.1162/

08997660360581958.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

