Skip to content
htmlwidget that creates plotly parallel categories diagrams from easyalluvial plots.
R JavaScript CSS
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
R
docs
inst
man
pkgdown/favicon
tests
vignettes
.Rbuildignore
.gitignore
.travis.yml
DESCRIPTION
LICENSE
LICENSE.md
NAMESPACE
NEWS.md
README.Rmd
README.md
_pkgdown.yml
appveyor.yml
codecov.yml
cran-comments.md
parcats.Rproj

README.md

parcats logo

Travis build status AppVeyor build status Codecov test coverage CRAN status CRAN_time_from_release metacran downloads

Create ‘plotly.js’ Parallel Categories Diagrams Using this Htmlwidget and ‘easyalluvial’

Complex graphical representations of data are best explored using interactive elements. ‘parcats’ adds interactive graphing capabilities to the ‘easyalluvial’ package. The ‘plotly.js’ parallel categories diagrams offer a good framework for creating interactive flow graphs that allow manual drag and drop sorting of dimensions and categories, highlighting single flows and displaying mouse over information. The ‘plotly.js’ dependency is quite heavy and therefore is outsourced into a separate package.

Installation

CRAN

install.packages('parcats')

Development Version

# install.packages("devtools")
devtools::install_github("erblast/parcats")

easyalluvial

parcats requires an alluvial plot created with easyalluvial to create an interactive parrallel categories diagram.

Examples

suppressPackageStartupMessages( require(tidyverse) )
suppressPackageStartupMessages( require(easyalluvial) )
suppressPackageStartupMessages( require(parcats) )

Live Widget

The Htmlwidgets cannot be embedded in the README.md file. Check out the Live Widget here.

Parcats from alluvial from data in wide format

p = alluvial_wide(mtcars2, max_variables = 5)

parcats(p, marginal_histograms = TRUE, data_input = mtcars2)

Parcats from model response alluvial

Machine Learning models operate in a multidimensional space and their response is hard to visualise. Model response and partial dependency plots attempt to visualise ML models in a two dimensional space. Using alluvial plots or parrallel categories diagrams we can increase the number of dimensions.

Here we see the response of a random forest model if we vary the three variables with the highest importance while keeping all other features at their median/mode value.

df = select(mtcars2, -ids )
m = randomForest::randomForest( disp ~ ., df)
imp = m$importance
dspace = get_data_space(df, imp, degree = 3)
pred = predict(m, newdata = dspace)
p = alluvial_model_response(pred, dspace, imp, degree = 3)

parcats(p, marginal_histograms = TRUE, imp = TRUE, data_input = df)

You can’t perform that action at this time.