Skip to content
Jupyter notebooks for using & learning Keras
Branch: master
Clone or download
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
assets/data Add 8.3 jieba lyrics analysis Feb 26, 2018
0.0-coco-dataset-api.ipynb Add 0.0 coco api demo Nov 26, 2017
0.1-poker-cards-dataset.ipynb
0.2-image-processing-pillow.ipynb Add 0.2 pillow-image-process tutorial Feb 3, 2018
1.0-image-augmentation.ipynb add shear image augmentationexplain Nov 9, 2017
1.1-keras-functional-api.ipynb Add 1.1 keras functional api explaination Nov 19, 2017
1.2-vgg16-from-scratch.ipynb Add 1.9 onehot encoding introduction Feb 15, 2018
1.3-use-pretrained-model.ipynb
1.4-small-datasets-image-augmentation.ipynb Add 1.4 small datasets with image aug Nov 27, 2017
1.5-use-pretrained-model-2.ipynb Add 1.5 use pretrained model2 Dec 1, 2017
1.6-visualizing-what-convnets-learn.ipynb
1.7-autoencoder.ipynb Add 3.1 YOLOv2 object detection Jan 1, 2018
1.8-seq2seq-introduction.ipynb Add 1.8 Seq-to-Seq introduction Jan 10, 2018
1.9-onehot-encoding-introduction.ipynb Add 1.9 onehot encoding introduction Feb 15, 2018
1.a-rnn-introduction.ipynb Add 1.a rnn introduction Mar 6, 2018
1.b-lstm-return-sequences-states.ipynb Add 1.b LSTM return sequences vs return states Mar 7, 2018
1.c-lstm-learn-alphabetic-seq.ipynb Add 1.b use LSTM to learn alphabetic sequence Mar 10, 2018
2.0-first-steps-with-julia.ipynb add shear image augmentationexplain Nov 9, 2017
2.1-traffic-signs-recognition.ipynb
2.2-simpson-characters-recognition.ipynb Add 3.1 YOLOv2 object detection Jan 1, 2018
2.3-fashion-mnist-recognition.ipynb Add 0.1 poker cards dataset Dec 30, 2017
2.4-facial-keypoints-recognition.ipynb
2.5-use-keras-break-captcha.ipynb Add 2.5 use keras break captcha Nov 25, 2017
2.6-mnist-recognition-mlp.ipynb Add 3.1 YOLOv2 object detection Jan 1, 2018
2.7-mnist-recognition-cnn.ipynb
3.0-yolo-algorithm-introduction.ipynb Add 3.1 YOLOv2 object detection Jan 1, 2018
3.1-yolov2-object-detection.ipynb Add 3.1 YOLOv2 object detection Jan 1, 2018
3.2-yolov2-train_racoon_dataset.ipynb add yolov2 racoon dataset train tutorial Jan 12, 2018
3.3-yolov2-racoon_detection_inaction.ipynb add yolov2 racoon dataset train tutorial Jan 12, 2018
3.4-yolov2-train-kangaroo-dataset.ipynb
3.5-yolov2-train-hands-dataset.ipynb Add more yolov2 dataset training tutorials Jan 15, 2018
3.6-yolov2-train-simpson-dataset.ipynb Add more yolov2 dataset training tutorials Jan 15, 2018
3.7-yolov2-train-coco-dataset.ipynb
7.0-opencv-face-detection.ipynb Modify 7.0 for fps setting Jan 20, 2018
7.1-mtcnn-face-detection.ipynb Modify 7.1 to add youtube demo Jan 23, 2018
7.2-face-detect-align-and-crop.ipynb Add 7.2 face recognition preprocess Jan 27, 2018
7.3-face-embedding-and-classifier.ipynb Add 7.4 face-recognition full cycle Feb 1, 2018
7.4-face-recognition.ipynb Add 7.4 face-recognition full cycle Feb 1, 2018
7.5-face-landmarks-detection.ipynb
7.6-head-pose-estimation.ipynb Add 7.6 head pose estimation Feb 13, 2018
8.0-using-word-embeddings.ipynb Add 8.0 word embeddings introduction Feb 19, 2018
8.1-jieba-word-tokenizer.ipynb Add 8.1 jieba word tokenizer Feb 22, 2018
8.2-word2vec-concept-introduction.ipynb Add 8.2 word2vec concept introduction Feb 23, 2018
8.3-jieba-lyrics-analysis.ipynb Add 8.3 jieba lyrics analysis Feb 26, 2018
8.4-word2vec-with-gensim.ipynb
README.md Add 1.b use LSTM to learn alphabetic sequence Mar 10, 2018

README.md

deep-learning-with-keras-notebooks

這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例來練練手。如果你/妳也有相關的範例想要一同分享給更多的人, 也歡迎issue PR來給我。

這些notebooks主要是使用Python 3.6與Keras 2.1.1版本跑在一台配置Nivida 1080Ti的Windows 10的機台所產生的結果, 但有些部份會參雜一些Tensorflow與其它的函式庫的介紹。 對於想要進行Deeplearning的朋友們, 真心建議要有GPU啊~!

如果你/妳覺得這個repo對學習deep-learning有幫助, 除了給它一個star以外也請大家不吝嗇去推廣給更多的人。

內容

0.圖像資料集/工具介詔

1.Keras API範例

2.圖像辨識 (Image Classification)

3.物體偵測 (Object Recognition)

4.物體分割 (Object Segmentation)

5.關鍵點偵測 (Keypoint Detection)

6.圖像標題 (Image Caption)

7.人臉偵測辨識 (Face Detection/Recognition)

8.自然語言處理 (Natural Language Processing)

You can’t perform that action at this time.