-
Notifications
You must be signed in to change notification settings - Fork 267
/
triangleCube.c
319 lines (262 loc) · 11.6 KB
/
triangleCube.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#include <math.h>
/* this version of SIGN3 shows some numerical instability, and is improved
* by using the uncommented macro that follows, and a different test with it */
#ifdef OLD_TEST
#define SIGN3( A ) (((A).x<0)?4:0 | ((A).y<0)?2:0 | ((A).z<0)?1:0)
#else
#define EPS 10e-5
#define SIGN3( A ) \
((((A).x < EPS) ? 4 : 0) | (((A).x > -EPS) ? 32 : 0) | \
(((A).y < EPS) ? 2 : 0) | (((A).y > -EPS) ? 16 : 0) | \
(((A).z < EPS) ? 1 : 0) | (((A).z > -EPS) ? 8 : 0))
#endif
#define CROSS( A, B, C ) { \
(C).x = (A).y * (B).z - (A).z * (B).y; \
(C).y = -(A).x * (B).z + (A).z * (B).x; \
(C).z = (A).x * (B).y - (A).y * (B).x; \
}
#define SUB( A, B, C ) { \
(C).x = (A).x - (B).x; \
(C).y = (A).y - (B).y; \
(C).z = (A).z - (B).z; \
}
#define LERP( A, B, C) ((B)+(A)*((C)-(B)))
#define MIN3(a,b,c) ((((a)<(b))&&((a)<(c))) ? (a) : (((b)<(c)) ? (b) : (c)))
#define MAX3(a,b,c) ((((a)>(b))&&((a)>(c))) ? (a) : (((b)>(c)) ? (b) : (c)))
#define INSIDE 0
#define OUTSIDE 1
typedef struct {
float x;
float y;
float z;
} Point3;
typedef struct{
Point3 v1; /* Vertex1 */
Point3 v2; /* Vertex2 */
Point3 v3; /* Vertex3 */
} Triangle3;
/*___________________________________________________________________________*/
/* Which of the six face-plane(s) is point P outside of? */
long face_plane(Point3 p)
{
long outcode;
outcode = 0;
if (p.x > .5) outcode |= 0x01;
if (p.x < -.5) outcode |= 0x02;
if (p.y > .5) outcode |= 0x04;
if (p.y < -.5) outcode |= 0x08;
if (p.z > .5) outcode |= 0x10;
if (p.z < -.5) outcode |= 0x20;
return(outcode);
}
/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */
/* Which of the twelve edge plane(s) is point P outside of? */
long bevel_2d(Point3 p)
{
long outcode;
outcode = 0;
if ( p.x + p.y > 1.0) outcode |= 0x001;
if ( p.x - p.y > 1.0) outcode |= 0x002;
if (-p.x + p.y > 1.0) outcode |= 0x004;
if (-p.x - p.y > 1.0) outcode |= 0x008;
if ( p.x + p.z > 1.0) outcode |= 0x010;
if ( p.x - p.z > 1.0) outcode |= 0x020;
if (-p.x + p.z > 1.0) outcode |= 0x040;
if (-p.x - p.z > 1.0) outcode |= 0x080;
if ( p.y + p.z > 1.0) outcode |= 0x100;
if ( p.y - p.z > 1.0) outcode |= 0x200;
if (-p.y + p.z > 1.0) outcode |= 0x400;
if (-p.y - p.z > 1.0) outcode |= 0x800;
return(outcode);
}
/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */
/* Which of the eight corner plane(s) is point P outside of? */
long bevel_3d(Point3 p)
{
long outcode;
outcode = 0;
if (( p.x + p.y + p.z) > 1.5) outcode |= 0x01;
if (( p.x + p.y - p.z) > 1.5) outcode |= 0x02;
if (( p.x - p.y + p.z) > 1.5) outcode |= 0x04;
if (( p.x - p.y - p.z) > 1.5) outcode |= 0x08;
if ((-p.x + p.y + p.z) > 1.5) outcode |= 0x10;
if ((-p.x + p.y - p.z) > 1.5) outcode |= 0x20;
if ((-p.x - p.y + p.z) > 1.5) outcode |= 0x40;
if ((-p.x - p.y - p.z) > 1.5) outcode |= 0x80;
return(outcode);
}
/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */
/* Test the point "alpha" of the way from P1 to P2 */
/* See if it is on a face of the cube */
/* Consider only faces in "mask" */
long check_point(Point3 p1, Point3 p2, float alpha, long mask)
{
Point3 plane_point;
plane_point.x = LERP(alpha, p1.x, p2.x);
plane_point.y = LERP(alpha, p1.y, p2.y);
plane_point.z = LERP(alpha, p1.z, p2.z);
return(face_plane(plane_point) & mask);
}
/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */
/* Compute intersection of P1 --> P2 line segment with face planes */
/* Then test intersection point to see if it is on cube face */
/* Consider only face planes in "outcode_diff" */
/* Note: Zero bits in "outcode_diff" means face line is outside of */
long check_line(Point3 p1, Point3 p2, long outcode_diff)
{
if ((0x01 & outcode_diff) != 0)
if (check_point(p1,p2,( 0.5f-p1.x)/(p2.x-p1.x),0x3e) == INSIDE) return(INSIDE);
if ((0x02 & outcode_diff) != 0)
if (check_point(p1,p2,(-0.5f-p1.x)/(p2.x-p1.x),0x3d) == INSIDE) return(INSIDE);
if ((0x04 & outcode_diff) != 0)
if (check_point(p1,p2,( 0.5f-p1.y)/(p2.y-p1.y),0x3b) == INSIDE) return(INSIDE);
if ((0x08 & outcode_diff) != 0)
if (check_point(p1,p2,(-0.5f-p1.y)/(p2.y-p1.y),0x37) == INSIDE) return(INSIDE);
if ((0x10 & outcode_diff) != 0)
if (check_point(p1,p2,( 0.5f-p1.z)/(p2.z-p1.z),0x2f) == INSIDE) return(INSIDE);
if ((0x20 & outcode_diff) != 0)
if (check_point(p1,p2,(-0.5f-p1.z)/(p2.z-p1.z),0x1f) == INSIDE) return(INSIDE);
return(OUTSIDE);
}
/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */
/* Test if 3D point is inside 3D triangle */
long point_triangle_intersection(Point3 p, Triangle3 t)
{
long sign12,sign23,sign31;
Point3 vect12,vect23,vect31,vect1h,vect2h,vect3h;
Point3 cross12_1p,cross23_2p,cross31_3p;
/* First, a quick bounding-box test: */
/* If P is outside triangle bbox, there cannot be an intersection. */
if (p.x > MAX3(t.v1.x, t.v2.x, t.v3.x)) return(OUTSIDE);
if (p.y > MAX3(t.v1.y, t.v2.y, t.v3.y)) return(OUTSIDE);
if (p.z > MAX3(t.v1.z, t.v2.z, t.v3.z)) return(OUTSIDE);
if (p.x < MIN3(t.v1.x, t.v2.x, t.v3.x)) return(OUTSIDE);
if (p.y < MIN3(t.v1.y, t.v2.y, t.v3.y)) return(OUTSIDE);
if (p.z < MIN3(t.v1.z, t.v2.z, t.v3.z)) return(OUTSIDE);
/* For each triangle side, make a vector out of it by subtracting vertexes; */
/* make another vector from one vertex to point P. */
/* The crossproduct of these two vectors is orthogonal to both and the */
/* signs of its X,Y,Z components indicate whether P was to the inside or */
/* to the outside of this triangle side. */
SUB(t.v1, t.v2, vect12)
SUB(t.v1, p, vect1h);
CROSS(vect12, vect1h, cross12_1p)
sign12 = SIGN3(cross12_1p); /* Extract X,Y,Z signs as 0..7 or 0...63 integer */
SUB(t.v2, t.v3, vect23)
SUB(t.v2, p, vect2h);
CROSS(vect23, vect2h, cross23_2p)
sign23 = SIGN3(cross23_2p);
SUB(t.v3, t.v1, vect31)
SUB(t.v3, p, vect3h);
CROSS(vect31, vect3h, cross31_3p)
sign31 = SIGN3(cross31_3p);
/* If all three crossproduct vectors agree in their component signs, */
/* then the point must be inside all three. */
/* P cannot be OUTSIDE all three sides simultaneously. */
/* this is the old test; with the revised SIGN3() macro, the test
* needs to be revised. */
#ifdef OLD_TEST
if ((sign12 == sign23) && (sign23 == sign31))
return(INSIDE);
else
return(OUTSIDE);
#else
return ((sign12 & sign23 & sign31) == 0) ? OUTSIDE : INSIDE;
#endif
}
/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */
/**********************************************/
/* This is the main algorithm procedure. */
/* Triangle t is compared with a unit cube, */
/* centered on the origin. */
/* It returns INSIDE (0) or OUTSIDE(1) if t */
/* intersects or does not intersect the cube. */
/**********************************************/
long t_c_intersection(Triangle3 t)
{
long v1_test,v2_test,v3_test;
float d,denom;
Point3 vect12,vect13,norm;
Point3 hitpp,hitpn,hitnp,hitnn;
/* First compare all three vertexes with all six face-planes */
/* If any vertex is inside the cube, return immediately! */
if ((v1_test = face_plane(t.v1)) == INSIDE) return(INSIDE);
if ((v2_test = face_plane(t.v2)) == INSIDE) return(INSIDE);
if ((v3_test = face_plane(t.v3)) == INSIDE) return(INSIDE);
/* If all three vertexes were outside of one or more face-planes, */
/* return immediately with a trivial rejection! */
if ((v1_test & v2_test & v3_test) != 0) return(OUTSIDE);
/* Now do the same trivial rejection test for the 12 edge planes */
v1_test |= bevel_2d(t.v1) << 8;
v2_test |= bevel_2d(t.v2) << 8;
v3_test |= bevel_2d(t.v3) << 8;
if ((v1_test & v2_test & v3_test) != 0) return(OUTSIDE);
/* Now do the same trivial rejection test for the 8 corner planes */
v1_test |= bevel_3d(t.v1) << 24;
v2_test |= bevel_3d(t.v2) << 24;
v3_test |= bevel_3d(t.v3) << 24;
if ((v1_test & v2_test & v3_test) != 0) return(OUTSIDE);
/* If vertex 1 and 2, as a pair, cannot be trivially rejected */
/* by the above tests, then see if the v1-->v2 triangle edge */
/* intersects the cube. Do the same for v1-->v3 and v2-->v3. */
/* Pass to the intersection algorithm the "OR" of the outcode */
/* bits, so that only those cube faces which are spanned by */
/* each triangle edge need be tested. */
if ((v1_test & v2_test) == 0)
if (check_line(t.v1,t.v2,v1_test|v2_test) == INSIDE) return(INSIDE);
if ((v1_test & v3_test) == 0)
if (check_line(t.v1,t.v3,v1_test|v3_test) == INSIDE) return(INSIDE);
if ((v2_test & v3_test) == 0)
if (check_line(t.v2,t.v3,v2_test|v3_test) == INSIDE) return(INSIDE);
/* By now, we know that the triangle is not off to any side, */
/* and that its sides do not penetrate the cube. We must now */
/* test for the cube intersecting the interior of the triangle. */
/* We do this by looking for intersections between the cube */
/* diagonals and the triangle...first finding the intersection */
/* of the four diagonals with the plane of the triangle, and */
/* then if that intersection is inside the cube, pursuing */
/* whether the intersection point is inside the triangle itself. */
/* To find plane of the triangle, first perform crossproduct on */
/* two triangle side vectors to compute the normal vector. */
SUB(t.v1,t.v2,vect12);
SUB(t.v1,t.v3,vect13);
CROSS(vect12,vect13,norm)
/* The normal vector "norm" X,Y,Z components are the coefficients */
/* of the triangles AX + BY + CZ + D = 0 plane equation. If we */
/* solve the plane equation for X=Y=Z (a diagonal), we get */
/* -D/(A+B+C) as a metric of the distance from cube center to the */
/* diagonal/plane intersection. If this is between -0.5 and 0.5, */
/* the intersection is inside the cube. If so, we continue by */
/* doing a point/triangle intersection. */
/* Do this for all four diagonals. */
d = norm.x * t.v1.x + norm.y * t.v1.y + norm.z * t.v1.z;
/* if one of the diagonals is parallel to the plane, the other will intersect the plane */
if(fabs(denom=(norm.x + norm.y + norm.z))>EPS)
/* skip parallel diagonals to the plane; division by 0 can occur */
{
hitpp.x = hitpp.y = hitpp.z = d / denom;
if (fabs(hitpp.x) <= 0.5)
if (point_triangle_intersection(hitpp,t) == INSIDE) return(INSIDE);
}
if(fabs(denom=(norm.x + norm.y - norm.z))>EPS)
{
hitpn.z = -(hitpn.x = hitpn.y = d / denom);
if (fabs(hitpn.x) <= 0.5)
if (point_triangle_intersection(hitpn,t) == INSIDE) return(INSIDE);
}
if(fabs(denom=(norm.x - norm.y + norm.z))>EPS)
{
hitnp.y = -(hitnp.x = hitnp.z = d / denom);
if (fabs(hitnp.x) <= 0.5)
if (point_triangle_intersection(hitnp,t) == INSIDE) return(INSIDE);
}
if(fabs(denom=(norm.x - norm.y - norm.z))>EPS)
{
hitnn.y = hitnn.z = -(hitnn.x = d / denom);
if (fabs(hitnn.x) <= 0.5)
if (point_triangle_intersection(hitnn,t) == INSIDE) return(INSIDE);
}
/* No edge touched the cube; no cube diagonal touched the triangle. */
/* We're done...there was no intersection. */
return(OUTSIDE);
}