Udacity - Deep Learning Nanodegree Foundation
Clone or download
Érico Perez Neto
Latest commit 2aa7dd9 Jul 28, 2017
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
README.md Add project files. Jul 28, 2017
dlnd_face_generation.html Add project files. Jul 28, 2017
dlnd_face_generation.ipynb Add project files. Jul 28, 2017
floyd_requirements.txt Add project files. Jul 28, 2017
helper.py Add project files. Jul 28, 2017
problem_unittests.py Add project files. Jul 28, 2017

README.md

Udacity Deep Laerning Foundations Nanodegree

Project 5: Face Generation

In this project, i'll use generative adversarial networks to generate new images of faces.

Running using conda!

Run this in command line

Step 1: Create a new environment

conda create --name face-generation python=3

Step 2: Use the new env

source activate face-generation

Step 3: Install dependencies

pip install pillow
conda install -c conda-forge tensorflow=1.2.0
conda install -c conda-forge tqdm=4.11.2
conda install matplotlib scikit-learn jupyter notebook

Step 4: Open the notebook to run it

jupyter notebook dlnd_face_generation.ipynb

Project structure

This folder contains files for Udacity Deep Laerning Foundations Nanodegree Project 5: Face Generation.

dlnd_face_generation.ipynb - Main project file.

dlnd_face_generation.html - Face generation results file.

problem_unittests.py - Unit tests provided by Udacity.

helper.py - Help functions provided by Udacity.

data/simpsons/mnist/ - MNIST image dataset.

data/simpsons/img_align_celeba/ - CelebA image datase.

Notes

Both datasets will be downloaded from the Internet.

  • MNIST: 9.9 MB
  • CelebA: 1.44 GB