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Large-scale Parentage Inference with SNPs: an
Efficient Algorithm for Statistical Confidence

of Parent Pair Allocations
Eric C. Anderson

Abstract
Advances in genotyping that allow tens of thousands of individuals to be genotyped at a

moderate number of single nucleotide polymorphisms (SNPs) permit parentage inference to be
pursued on a very large scale. The intergenerational tagging this capacity allows is revolutionizing
the management of cultured organisms (cows, salmon, etc.) and is poised to do the same for
scientific studies of natural populations. Currently, however, there are no likelihood-based methods
of parentage inference which are implemented in a manner that allows them to quickly handle a
very large number of potential parents or parent pairs. Here we introduce an efficient likelihood-
based method applicable to the specialized case of cultured organisms in which both parents can
be reliably sampled. We develop a Markov chain representation for the cumulative number of
Mendelian incompatibilities between an offspring and its putative parents and we exploit it to
develop a fast algorithm for simulation-based estimates of statistical confidence in SNP-based
assignments of offspring to pairs of parents. The method is implemented in the freely available
software SNPPIT. We describe the method in detail, then assess its performance in a large
simulation study using known allele frequencies at 96 SNPs from ten hatchery salmon populations.
The simulations verify that the method is fast and accurate and that 96 well-chosen SNPs can
provide sufficient power to identify the correct pair of parents from amongst millions of candidate
pairs.
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1 Introduction
Likelihood-based pedigree reconstruction methods are increasingly used in studies
of natural populations (Pemberton, 2008). The scale of these studies is growing as
molecular ecologists adopt new and more efficient genotyping technologies from
the fields of human and medical genetics. In particular, the recent development
of single nucleotide polymorphism (SNP) markers in non-model organisms has
enabled the rapid genotyping of many thousands of individuals in commercially
important species such as Pacific salmon (Elfstrom, Smith, and Seeb, 2006), At-
lantic salmon (Hayes, Nilsen, Berg, Grindflek, and Lien, 2007), beef cattle (Heaton,
Harhay, Bennett, Stone, Grosse, Casas, Keele, Smith, Chitko-McKown, and Lae-
greid, 2002), and pigs (Fahrenkrug, Freking, Smith, Rohrer, and Keele, 2002).
This capacity makes it possible to reconstruct pedigree relationships with genetic
data from amongst tens of thousands of candidate parents (Anderson and Garza,
2006) and is revolutionizing the management of livestock operations and hatchery-
propagated fish populations. It is only a matter of time before similar genotyping
capacity is realized in many other species; however, the likelihood-based meth-
ods in use today were not designed for parentage inference on a very large scale,
and many are not computationally efficient enough to handle large quantities of
data. This paper introduces a novel computational approach that allows the rapid
and accurate calculation of statistical confidence for likelihood-based, individual
parentage assignments, even when the number of candidate parents is very large. It
is specifically tailored to situations, as are often encountered with cultured organ-
isms, where a large fraction of parent pairs (as opposed to just single parents) can
be sampled, even if the total sampling rate is not high.

Thompson (1976) introduced likelihood methods for pedigree reconstruc-
tion in human populations. These methods were first adapted and applied to non-
human populations by Meagher and Thompson (1987) who identified likely par-
ents by means of the LOD score: the log of the probability of the offspring and
putative-parent genotypes under the hypothesis of parentage divided by the prob-
ability under the hypothesis that the offspring is unrelated to the putative parents.
Marshall, Slate, Kruuk, and Pemberton (1998) extended the likelihood-based ap-
proaches of Meagher and Thompson (1987) by allowing for genotyping error and
by developing a Monte Carlo scheme to estimate statistical confidence in parent-
age assignments. Their method and its revisions (Kalinowski, Taper, and Marshall,
2007), implemented in the software program CERVUS, are the best-known of a class
of parentage inference methods called “categorical allocation” methods (Jones and
Ardren, 2003) and have been used in hundreds (if not thousands) of natural popula-
tion studies.
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Operationally, the approach implemented in CERVUS first allocates an off-
spring to the candidate parent (or parent pair) with the highest LOD, say LOD∗.
Then, the confidence of that assignment is assessed by simulating genotypes, con-
ditional on the sample allele frequencies, and recording the fraction X of simulated,
non-parentally-related pairs (or trios) that have a LOD score that exceeds LOD∗.
The confidence in the assignment is then expressed as a posterior predictive value
which is computed assuming that the fraction of offspring whose parents are ex-
pected to be included in the pool of candidates is known (see Marshall et al. 1998
for details).

Here we develop a method for assigning offspring to parent pairs using SNP
markers. Our target application is the identification of parent pairs of hatchery-born
Pacific salmon. Our approach is similar in spirit to CERVUS in that it is a categorical
allocation method that assesses confidence using Monte Carlo techniques; however
it is efficient enough to handle parentage problems with a large number of candi-
date pairs of parents. For example, in the management of populations of Pacific
salmon, it is conceivable that as many as 100 million candidate parent-pairs must
be investigated for every offspring. Current implementations of parentage inference
software such as CERVUS, COLONY (Wang, 2003, Wang and Santure, 2009), and
FRANZ (Riester, Stadler, and Klemm, 2009) either run out of RAM or require a
prohibitive amount of time to analyze such data sets.

We achieve computational efficiency by ensuring that both our search for
likely parent pairs and our Monte Carlo simulations to assess confidence are per-
formed conditional on the putative parental trios possessing a small number of
Mendelian incompatibilities. We introduce a hidden Markov representation of the
number of Mendelian incompatibilities in a trio that permits this to be done quickly.
In addition, we implement a False Discovery Rate approach that allows confidence
in parent-pair allocations to be assessed without assuming that the fraction of sam-
pled parents is known, and we allow for parents to be derived from multiple pop-
ulations with different allele frequencies. We assess the method, implemented in
our software SNPPIT (SNP Program for Intergenerational Tagging) with a large
scale simulation demonstrating that it is possible to accurately identify the parents
of individual salmon caught in the ocean with only 96 SNPs.

2 Methods

2.1 Data, notational conventions, and preliminaries

We assume that individuals in the study are diploids with genetic data at L indepen-
dently segregating SNP loci. At each locus ` there are two alleles: one labeled 0
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and having frequency q` in the population under study and the other labeled 1 and
having the frequency p` = 1−q`. At each locus the genotype g of an individual is
the number of 1 alleles it carries (i.e., g = 0, 1, or 2), or, if the individual was not
successfully genotyped at the locus, g = •. We have a list O of offspring individ-
uals whose parents we wish to infer from amongst a collection of possible fathers
S (for “sires”) and mothers D (for “dams”). There may be individuals in O whose
parents are not in S or D . Our goal is to infer, for every individual i in O the pair
of i’s parents, if present in both S and D . In our application, we are not interested,
for example, in inferring only the father when the mother is not in D because in fish
hatcheries one can ensure that the mates of every female included in D are in S ,
and vice-versa. There might additionally be information about the possible matings
C (for “crosses”) between the members of S and D and there may be additional
data, collectively H , such as age information, that can be used to exclude certain
individuals from parentage.

A basic unit of interest is a trio of putative youth, father, and mother. At the
`th locus the genotype of such a trio is the triplet a` = (gkid

` ,gpa
` ,gma

` ), the values of
which we will write without commas (e.g., a` = 000 or a` = 10•). Note that the
superscript kid, pa, and ma refer to the putative youth, putative father and putative
mother, respectively. When all individuals are successfully genotyped the 27 possi-
ble states of a` are the set A = {000,001,002,010, . . . ,221,222}. When as many as
three individuals in the trio can have missing data at the locus the 64 possible states
are the set A • = {000,001, 002,00•,010, . . . ,••2,•••}. For a` ∈A the probabil-
ity of a` depends on the allele frequency p`, the genotyping error rate at the locus
µ`, and the true relationship r of the members of the trio. We denote this probability
P(a`|r) taking the dependence on p` and µ` as implicit. These probabilities are eas-
ily computed for any possible single-locus model of genotyping error and any r by
simply summing over the genotypes of any relevant but unobserved individuals in
the pedigree describing r and over the unobserved true genotypic states underlying
the observed, possibly erroneous genotypes. Details can be found in the appendix of
Anderson and Garza (2006). We will also make use of P(a`|r,gkid

` ), the conditional
probability of a` given r and the genotype of the kid in the trio. This probability
is proportional to P(a`|r) for all states a` consistent with gkid

` and 0 otherwise, so
is also computed easily. Over L independently-segregating loci which are not in
linkage disequilibrium in the population, the probability of a = (a1, . . . ,aL) given r
is simply a product, P(a|r) = ∏

L
`=1 P(a`|r). Dependence on µµµ = (µ1, . . . ,µL) and

p = (p1, . . . , pL) is implicit in that notation.
We assume that whether or not data are missing at a locus is independent

of the unobserved genotype at that locus. If the data are missing amongst some
members of the trio at a locus then we compute the probability of the observed data
at that locus by summing the values of P(a`|r) for a` ∈ A over the unobserved
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members. For example, in the situation where pa is missing data at locus `, we
define

P(a` = 1•2|r) =
2

∑
k=0

P(gkid = 1,gpa = k,gma = 2|r)

and the extensions to data missing at other members (or at more members) of the
trio or to conditioning on gkid are obvious.

Let v(a`) be a binary 3-vector whose values indicate the manner in which the
observed genotypes of a trio are, or are not, compatible with Mendelian inheritance
between a mother, father, and offspring. v(a`) always depends on a`, and so the
a` may sometimes be dropped from the notation. The first element of v is 1 if pa
and kid are Mendelian-incompatible and 0 otherwise; the second element of v is 1
if ma and kid are incompatible and 0 otherwise; the third element of v is 1 if either
pa or ma are incompatible, considered alone, with kid, or, when taken together, pa
and ma are not compatible as a pair of parents for kid. Values of v are written with
commas like v = (1,0,1). An individual with missing data at a locus is deemed to
provide no evidence that can be used to declare Mendelian incompatibility. There
are 5 possible values of v, each one corresponding to a subset of A and A • as
summarized in Table 1.

The probability that v at locus ` takes a value v∗ is computed by a sum over
genotype states a`:

P(v(a`) = v∗|r) = ∑
a′:v(a′`)=v∗

P(a′`|r). (1)

The same holds when conditioning on gkid
` :

P(v(a`) = v∗|r,gkid
` ) = ∑

a′:v(a′`)=v∗
P(a′`|r,gkid

` ).

The quantity v(`)(a) = ∑
`
k=1 v(ak) is the cumulative number of Mendelian incom-

patibilities observed at the first ` SNP loci in a trio having genotypes a. It may be
written simply as v(`). The components of this vector are written as v(`)1 , v(`)2 , and
v(`)3 , and if we write v(`)≤ v(`)∗ it means that v(`)1 ≤ v(`)∗1 , v(`)2 ≤ v(`)∗2 , and v(`)3 ≤ v(`)∗3
for some value v(`)∗. The analogous convention holds if we write v(`) ≥ v(`)∗.

In many parentage applications, the log likelihood ratio or LOD, Λ(a) =
log[P(a|CSe

Se)/P(a|CU
U)], is employed to compare candidate parents of an individ-

ual. Following Anderson and Garza (2006), CSe
Se denotes the hypothesis that pa and

ma are the true parents of kid and CU
U denotes the hypothesis that pa and ma are

completely unrelated to kid. This statistic is most appropriate when all trios in the
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Table 1: Patterns of Mendelian incompatibility, v, with corresponding trio genotype
states a`.

v a` ∈A Additional a` ∈A •

(0,0,0) 000 001 010 00• 01• 0•0 0•1 0•• 10•
011 101 102 11• 12• 1•0 1•1 1•2 1••
110 111 112 21• 22• 2•1 2•2 2•• •00
120 121 211 •01 •02 •0• •10 •11 •12
212 221 222 •1• •20 •21 •22 •2• ••0

••1 ••2 •••

(0,0,1) 100 122

(0,1,1) 002 012 210 0•2 2•0
220

(1,0,1) 020 021 201 02• 20•
202

(1,1,1) 022 200

sampleare either CSe
Se or CU

U, which will seldom be the case because many individu-
als in a finite population will be related to some degree. In such cases a preferable
test statistic will be the posterior probability of parentage for a trio, as suggested by
Thompson and Meagher (1987). Denoting by R the set of relationships amongst a
trio that will be considered, and assuming that a prior probability πr is available for
all r ∈R, and ∑r∈R πr = 1, the posterior probability of parentage is:

P(CSe
Se|a,πππ) =

πCSe
Se

P(a|CSe
Se)

∑r∈R πrP(a|r)
. (2)

Using (2) as a test statistic is functionally equivalent to using a LOD or a likelihood
ratio criterion for an alternative hypothesis of CSe

Se versus a null hypothesis of “non-
parental” relationship (i.e., {R\CSe

Se}) because (2) is monotonically increasing with
the likelihood ratio

P(a|CSe
Se)

(1−πCSe
Se
)−1 ∑r∈{RashCSe

Se}πrP(a|r)
.
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In fish hatchery applications, there is typically enough information on sizes of
spawning populations in the past that a reasonable estimate of πππ = (πr)r∈R can
be made. In the populations that we study, we determined by simulation that there
are 18 trio relationship categories which, given their expected chances of occur-
rence and their probability of being mistaken for a parental trio, should be included
in R (See Appendix A). Note that a summary of notation appears in Table 2.

2.2 Overview of the method

Here we give an overview of our method, providing further detail on certain aspects
and calculations in subsequent sections. The main steps are as follows:

1. Data are read in and values of parameters are initialized:
• The genotypes of the individuals in S and D are used together to make

an estimate of p` for each locus by the posterior mean given a Beta(1
2 ,

1
2)

prior and the data in S and D . This estimate is taken to be the value
p` used in all probability calculations in the preceding and following
sections.
• Values of µ`, ` = 1, . . . ,L, are assumed known from other sources of

data, experiments, or prior beliefs.
• Values of πππ are estimated from demographic data and from assumptions

or estimates of variance in reproductive success. These estimates of πππ

are used in the method as if known without error.
2. A value of v(L), denoted v(L)max, is chosen such that given µµµ and p there is

only a small probability, β MI, that a truly parental trio will have a v(L) >
v(L)max. That is:

1−β
MI = ∑

a`∈A , `=1,...,L
δ [v(L)(a)≤ v(L)max]P(a|CSe

Se) (3)

where δ [x] is the indicator function returning 1 if x is true and 0 otherwise.
β MI is the rate at which truly parental trios will not be identified because they
have too many Mendelian incompatibilities. In practice, we use values of β MI

on the order of 0.001. The sum in (3) is calculated efficiently via a recursion
which is the forward step of the forward-backward algorithm described in
Section 2.3.

3. Each individual i in O is compared against every male in S that is a potential
father of i according to H , and a list Pas(i) is maintained of potential fathers
having no more than v(L)max

1 Mendelian incompatibilities with i. Likewise,
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each i is compared to every female in D that is a potential mother of i accord-
ing to H , and a list Mas(i) is made of potential mothers with no more than
v(L)max

2 Mendelian incompatibilities with i.
4. The genotype of each i in O is compared to every pair ( j,k) of j ∈ Pas(i)

and k ∈Mas(i) such that j and k are a possible mated pair according to C ,
and a list Pairs(i) is maintained of all parent pairs such that the trio they form
with i has v(L) ≤ v(L)max. Let N(i) denote the number of elements in Pairs(i),
and take the elements of Pairs(i) to be sorted by the largest to smallest value
of P(CSe

Se|a,πππ). Thus, Pairs(i)1 is the pair of potential parents with highest
posterior probability of parentage to offspring i.

5. The pair Pairs(i)1 is assigned parentage to i, and the statistical confidence
in that assignment is assessed by comparison to a “null” distribution ap-
proximated via Monte Carlo by simulating for M replicates N(i) pairs of
non-parental genotypes drawn conditional on πππ and the fact that they must
have no more than v(L)max incompatibilities with i. For each of the M repli-
cates the highest value of P(CSe

Se|a,πππ) amongst the N(i) simulated values is
recorded and the fraction (out of M) of these which exceed the value of
P(CSe

Se|a,πππ) achieved by Pairs(i)1 is interpreted as a p-value for the confidence
in the parentage assignment. This simulation, described fully in Section 2.4,
makes extensive use of the forward-backward algorithm of Section 2.3.

6. The p-values of Step 5 are used control the false discovery rate (Benjamini
and Hochberg, 1995). Even when an estimate of the fraction of sampled
parents is not available, use of the adaptive procedure of Benjamini and
Hochberg (2000) provides a reasonable estimate of the fraction of Pairsi ob-
served that are true parent pairs, and this allows for more powerful control of
the rate of incorrect parentage assignments. This is described in Section 2.5.

As in most methods for inferring parent pairs, we first identify individual
males and females with a good chance of being parents, and then we restrict our
attention to the pairs formed from that small group of males and females. However,
instead of using both Mendelian incompatibility and the parent-offspring LOD to
initially screen individual males and females (as done in Meagher and Thompson
1987), we screen candidate males and females solely on the basis of the number of
loci with Mendelian incompatibilities. At first this may seem disadvantageous com-
pared to using LODs, however it allows the assessment of statistical significance of
individual parentage assignments by performing simulations while conditioning on
the fact that only N(i) pairs had sufficiently few Mendelian incompatibilities to be
included in Pairs(i). By contrast, it is not clear how one could efficiently simulate
genotypes while conditioning on the LOD exceeding a certain amount.
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Typically N(i) is substantially smaller than the number of candidate males
or females in the study, so each Monte Carlo replicate from the null distribution
requires simulating the genotypes of only N(i) pairs. In large studies this becomes
quite important. For example, if there are 104 candidate males and 104 candidate
females, but N(i) is only 10, then each Monte Carlo replicate requires only 10 re-
alizations of genotype pairs. Contrast this with the standard simulation routine of
CERVUS: each Monte Carlo replicate requires simulating 104 male and 104 female
genotypes, each of those genotypes must be compared to a single offspring geno-
type, then all 104 males and females must be sorted, and finally some very large
number of simulated male-female pairs are compared to an individual offspring
genotype.

2.3 Forward-backward algorithm

In this section we show how to evaluate (3) and simulate a pair of genotypes condi-
tional on r and v(L)(a)≤ v(L)max. For convenience we define v(0) = (0,0,0), which
asserts merely that, “Before looking at the genetic data at any loci, there are zero
Mendelian incompatibilities of any type.” It is apparent that, conditional on r, µµµ ,
and p, the variables v(`), `= 1, . . . ,L, form a Markov chain. That is,

P(v(`)|v(0), . . . ,v(`−1)) = P(v(`)|v(`−1)) for `= 1, . . . ,L.

The joint distribution of a and all the v(`)’s respects the directed graph shown in
Figure 1(a). The arrows from each µ` and p` into each v(`) run in the reverse
direction of a typical hidden Markov chain, but the moralized undirected graph
(Figure 1(b)) is easily recognized as having the same undirected graphical structure
as a simple hidden Markov chain, especially when collapsing each v(`) and a`, and
each µ` and p` into single (composite) variables, as in Figure 1(c). Therefore,
we can employ the familiar forward-backward family of algorithms (Baum, Petrie,
Soules, and Weiss, 1970) to efficiently compute the marginal probability of v(L) and
to simulate values of a conditional on v(L)(a)≤ v(L)max.

Let V , with no superscript, refers to the five possible values of v (see Ta-
ble 1). When adorned with a locus superscript, V (`) refers to sets of vectors repre-
senting the cumulative number of Mendelian incompatibilities up to and including
the locus. V (`)↓ denotes the set of all vectors v(`)≤ v(L)max that have non-zero prob-
ability. Likewise, V (`)↑ denotes the set of all vectors v(`) such that v(`) > v(L)max.
For the current discussion, we will assume that data are not missing at any loci
at any of the trio members (i.e., a` ∈A ). We discuss treatment of missing data in
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Table 2: Notation used in the paper

g` genotype at locus `: the number of “1” alleles, or • if missing.
p` the relative frequency of the “1” allele at locus ` in the popula-

tion.
q` relative frequency of the “0” allele at locus `. q` = 1− p`.
O list of offspring whose parents are to be inferred.
S list of possible fathers (sires).
D list of possible mothers (dams).
C information, if available, detailing which members of S and D

could have mated (crosses).
H other information, like age data, which, if available, could be

used to exclude some parents from parentage with particular off-
spring.

kid, pa, pa an offspring and a putative father and mother respectively.
a` genotypes at locus ` in a kid, pa, and ma: (gkid

` ,gpa
` ,gma

` ).
A the 27 possible states a` can take with no missing data.
A • the 64 possible states of a` when missing data are allowed.
µ` the rate of genotyping error at locus `.
L the total number of SNPs in the data set.
p, a, µµµ (a1, . . . ,aL), (p1, . . . , pL), and (µ1, . . . ,µL), respectively.
r generically, a relationship between a trio of kid, pa, and ma.
R the set of relationships r given positive prior probability.
πr the prior probability that a kid, pa, and ma drawn at random from

the population have relationship r.
v(a`) or v vector of three binary indicators describing patterns of

Mendelian incompatibility in a kid-pa-ma trio at locus `.
v(`)(a) or v(`) cumulative number of Mendelian incompatibilities (of certain

types) at loci 1 through `. v(`)(a) = v(`) = ∑
`
k=1 v(ak).

v(k) ≤ v(k)∗ shorthand for componentwise equality/inequality, meaning:
v(k)1 ≤ v(k)∗1 , v(k)2 ≤ v(k)∗2 , and v(k)3 ≤ v(k)∗3 .

v(L)max max allowed number of Mendelian incompatibilities in a trio.
V Possible states of v(a`). See Table 1
V (`)↓ All possible values of v(`) ≤ v(L)max

V (`)↑ All possible values of v(`) > v(L)max

9

Anderson: Efficient Parent-Pair Inference with SNPs

Published by De Gruyter, 2012



· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
(a)

(b)

(c)

(d)

v(0)

v(0)

v(0)

v(0)

v(1)

v(1)

v(1)

v(1)

v(2)

v(2)

v(2)

v(2)

v(3)

v(3)

v(3)

v(3)

v(L−1)

v(L−1)

v(L−1)

v(L−1)

v(L)

v(L)

v(L)

v(L)

a1

a1

a1

a1

a2

a2

a2

a2

a3

a3

a3

a3

aL−1

aL−1

aL−1

aL−1

aL

aL

aL

aL

µ1

µ1

µ1

µ1

p1

p1

p1

p1

g1

µ2

µ2

µ2

µ2

p2

p2

p2

p2

g2

µ3

µ3

µ3

µ3

p3

p3

p3

p3

g3

µL−1

µL−1

µL−1

µL−1

pL−1

pL−1

pL−1

pL−1

gL−1

µL

µL

µL

µL

pL

pL

pL

pL

gL

Figure 1: Graphical depictions of the dependence between trio genotypic states,
(a1, . . . ,aL), and the vectors, v(`). Shaded nodes (µ` = mutation rate, p` = allele
frequency) represent known or fixed quantities to be conditioned upon; unshaded
nodes represent variables that we wish to do inference for or that we shall sum over.
The dependence on some trio relationship category r is implicit. (a) The directed
graph. (b) Moralized undirected graph. (c) With variables merged into nodes repre-
senting several variables together, this more obviously has a hidden Markov chain
structure. (d) Conditioning on the offspring genotype is straightforward with the
addition of nodes g` for the offspring genotype.
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Section 2.6. The probability that v(L) takes a certain value in V (L)↓ can be computed
by the forward step recursion:

P(v(`) = v(`)∗|r) =
∑

v(`−1)∈V (`−1)↓
∑

v′∈V
P(v(`−1)|r)P(v(a`) = v′|r)δ [v(`−1)+ v′ = v(`)∗] (4)

for any value v(`)∗ ∈ V (`)↓, for ` = 1, . . . ,L. In practice this sum can be calculated
for all values of v(`)∗ ∈ V (`)↓ by iterating over all the terms in the sum only once.
Additionally, it is important to note that since v(`) ≥ v(`−1) for all `, there is zero
probability of reaching any state in V (t)↓ from any state in V (`)↑ for any t, `. Hence,
so long as the elements of v(L)max are not large, the sums in (4) can be evaluated
quite rapidly.

This recursion is evaluated from ` = 1 to L, and the values of P(v(`) =
v(`)∗|r) are stored for later use in the backward step. At the end of the forward step,
one has obtained P(v(L) = v(L)∗|r) for v(L)∗ ∈ V (L)↓. Summing these values yields
the probability that a trio of relationship r, given allele frequencies p and genotyping
error rates µµµ , will have no more than v(L)max Mendelian incompatibilities:

P(v(L) ≤ v(L)max|r) = ∑
v(L)∗∈V (L)↓

P(v(L) = v(L)∗|r). (5)

The conditional probability of each v(L), given that it is in V (L)↓ is

P(v(L) = v(L)∗|r,v(L) ∈ V (L)↓) =
P(v(L) = v(L)∗|r)

P(v(L) ≤ v(L)max|r) . (6)

With (6) specified, we now proceed to the backward step.
The goal of the backward step is to simulate a realization of a from its

distribution given r, p, µµµ , and conditional on v(L) ≤ v(L)max. The backward step
commences by simulating a value of v(L)∗ from P(v(L) = v(L)∗|r,v(L) ∈ V (L)↓). It
proceeds iteratively with two steps for each ` from L to 1:

1. Simulate a value v∗(a`) for the pattern of Mendelian incompatibility in the
trio at locus `, given the realized cumulative value v(`)∗ and the probabilities
of P(v(`−1) = v(`−1)∗|r) computed and stored in the forward step. v∗(a`) is
drawn from:

P(v(a`) = v∗(a`)|r,v(`)∗) ∝ P(v(`−1) = v(`)∗− v∗(a`)|r)P(v(a`) = v∗(a`)|r),
where the first term on the right hand side is computed and stored during the
forward step, and the second term is computed with (1). The value of v∗(a`),
once realized, also determines the value of v(`−1)∗ for the next iteration.
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2. Simulate a∗` from the conditional probability of the observed trio genotypes
given the pattern of Mendelian incompatibility at the single locus `:

P(a` = a∗` |r,v(a`) = v∗(a`)) =
P(a` = a∗` |r)

∑a′:v(a′)=v∗(a`)P(a` = a′|r) . (7)

At the end of this, a∗ = (a∗1, . . . ,a
∗
L) is a realization from P(a|r,v(L)(a)≤ v(L)max)—

the distribution of a conditional on having no more than v(L)max Mendelian incom-
patibilities.

As is evident in the graphical structure of Figure 1d, the forward-backward
algorithm above extends immediately to the case of conditioning both on r and gkid,
rather than simply conditioning on r alone. Thus, the meaning of expressions like
P(v(L) ≤ v(L)max|r,gkid) and P(a|r,gkid,v(L)(a)≤ v(L)max) should be clear.

2.4 Simulation assessment of error rates for a single kid i

For a given kid, i, the ma and pa in Pairs(i)1 are designated as the best candidates to
be the true parents. Let P(CSe

Se|a,πππ) (equation 2) of this pair have the value P(1). If
we declare ma and pa in Pairs(i)1 the true parents, we risk making the (Type I) error
of incorrectly rejecting the null hypothesis of non-parentage, when, in fact Pairs(i)1
are not the true parents of i. To assess this possibility, we compute a Type I er-
ror rate or “p-value” associated with assigning parentage of each kid, i, to Pairs(i)1 .
This p-value is the probability that at least one pair of potential parents that are not
both parents of i has a value of P(CSe

Se|a,πππ) with kid i that exceeds P(1). In typical
implementations of likelihood based parentage (e.g. CERVUS) this probability is
approximated via Monte Carlo methods by repeatedly simulating X genotypes of
pairs of individuals that are not parents of kid i and recording the fraction of simu-
lations in which at least one pair P(CSe

Se|a,πππ) exceeds P(1). Traditionally, X is the
number of all possible parent pairs in the actual data set. This is computationally
very demanding for large scale problems. In our approach, because we can sim-
ulate genotypes for trios conditional on v(L)(a) ≤ v(L)max, we need only focus on
simulating a number of parent pairs equal to the number of pairs not excluded by
Mendelian incompatibility with kid i. The procedure for doing so is as follows:

1. Initialize variables. Set EXCEED to 0. Recall that N(i) is the number of
possible parent pairs having fewer than v(L)max Mendelian incompatibilities
with kid i.
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2. Perform the forward step calculations. For each r ∈ R compute P(v(L) ≤
v(L)max|r,gkid i). Note that this probability is conditional on the offspring
genotype.

3. Compute π∗r the expected fraction of trios with relationship r conditional on
them having fewer than v(L)max Mendelian incompatibilities with kid i. This
involves a simple reweighting of π:

π
∗
r =

πrP(v(L) ≤ v(L)max|r,gkid i)

∑k∈R πkP(v(L) ≤ v(L)max|r = k,gkid i)
, ∀r ∈R

4. Repeat the following steps REPS times:
• Repeat the following N(i) times:

– Simulate a relationship r∗ from π∗

– Using the backward algorithm, simulate the genotypes a∗ of a trio
from the distribution P(a|r∗,gkid i,v(L)(a∗)≤ v(L)max)

– Compute P(CSe
Se|a∗,πππ) (using πππ , not πππ∗) for this simulated geno-

type.
• If any of the N(i) values of P(CSe

Se|a∗) exceeded P(i), add 1 to EXCEED.
5. Compute the p-value. At the end, EXCEED/REPS is a Monte Carlo estimate

of the Type I error for assigning kid i to the ma and pa of Pairs(i).

2.5 Using p-values in the False Discovery Rate procedure

After computing p values as described above for every fish i in O , we use the False
Discovery Rate procedure (FDR) to control our rate of False Discoveries (i.e., the
fraction of offspring assigned to parent pairs that are not both parents of i). Let m
be the total number of offspring with v(L) ≤ v(L)max for at least one pair of putative
parents, and let m0 ≤ m be the unknown number of those offspring for whom pa
and ma in Pairs(1) are not the true parental pair. Then, order these m offspring from
smallest to largest p-value, letting (i) denote the offspring with the ith smallest p-
value, p(i). Benjamini and Hochberg (1995) showed that, in expectation, a false
discovery rate less than αfdr can be achieved by declaring parentage to offspring
(1), . . . ,(k), where (k) is the largest value such that

p(i) <
i
m

αfdr.

A more powerful approach is possible if the number m0 is known or can be esti-
mated. Benjamini and Hochberg (2000) provide an ad hoc, but general, graphically-
inspired method for estimating m0 that we use. With an estimate of m0 the FDR can
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be controlled by assigning parentage to offspring (1), . . . ,(k) where (k) is the largest
value such that:

p(i) <
i

m0
αfdr.

The above expressions can be easily inverted to express the FDR as a function of
p(i):

αfdr ≈ p(i)
m0

i
.

This quantity is reported in the output of SNPPIT, so users can see the FDR implied
by any choice of i.

2.6 Treatment of missing data and extension to multiple popu-
lations

There are many ways in which missing data might be handled in the above pro-
cedures. We have chosen a way that gives reasonable results without creating too
much computational overhead. First, as described above, we can compute the prob-
ability of a trio, given r, with missing data by simply marginalizing over the missing
genotypes. For the forward step while assesssing p-values, however, we condition
only on the missing data in the offspring. This is done via a straightforward side ef-
fect of the fact that we condition on the offspring genotype when doing the forward
step for assessing p-values. In the backward step, we incorporate the occurrence of
missing data in the members of the Pairsi list by masking the genotypes of the simu-
lated trios by the pattern of missing data found in each member of Pairsi. To be more
explicit, on each of the REPS replicates, each of the trio genotypes j ∈ 1, . . . ,N(i)

is first simulated by the backward algorithm, then holes are created in each simu-
lated genotype j according to where data are missing in the trio formed by gkid and
Pairs( j)

i . If there is more than a small amount of missing data in any individual,
we find that the genotype calls in that individual are prone to high rates of error,
so we have a missing data threshhold that the user may set in our software. If an
individual has more missing data than this threshold (set by default to be 10 SNPs)
then it is discarded from further consideration.

The extension to multiple populations of parents in the parent data base
is also quite simple. If it is unknown a priori which population a collection of
offspring came from, then each offspring in that collection is compared to every
parent from every population in the parent data base. Each individual i is assigned
to the population that Pairs(1)i belongs to, and then the analysis proceeds as before,
assuming that all N(i) pairs in Pairsi are from the same population as Pairs(1)i , even
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Table 3: Population allele frequencies used in simulations. Columns headed by a
give the number of SNPs with minor allele frequency ≥ a and < a+0.1.

Namea Size ID 0.0 0.1 0.2 0.3 0.4

Feather R H Fa Large L1 13 15 22 20 27
Kalama R H Large L2 15 13 19 22 28
Cowlitz R H Large L3 14 17 15 30 21
Feather R H Sp Medium M1 10 16 19 25 27
Klamath R Iron Gate H Medium M2 22 16 15 21 23
Trinity R H Fa Medium M3 23 19 18 17 20
Rogue R Sp Medium M4 15 13 24 23 22
Upper Sacramento R LF Small S1 13 16 23 26 19
Sacramento R Wi Small S2 26 17 13 25 16
Chetco R Small S3 10 16 27 26 18

aR = river, H = hatchery, Fa = fall run, Sp = spring run, LF = late fall run, Wi = winter run

if they were not. The false discovery rates are then accordingly computed as FDRs
for the individuals non-excluded from a particular population.

3 Simulation Study
A simulation was undertaken to ensure that SNPPIT can handle large inference prob-
lems and to assess the expected accuracy of a set of SNP markers available for Chi-
nook salmon. These simulations were parameterized with allele frequencies at 96
SNPs estimated from 10 hatchery salmon populations (Table 3) from California to
Washington screened by the Southwest Fisheries Science Center (Clemento et al. in
prep). Three hatcheries were designated as large (≈11,000 fish spawned per year),
four as medium (≈4,400 fish/yr), and three as small (≈1,100 fish/yr), reflecting the
range of actual hatchery sizes (Table 4) in California.

Pedigrees and genetic data were simulated at each hatchery using the pro-
gram SPIP (Anderson and Dunham, 2005). Parameters chosen reflect a typical Chi-
nook salmon life history in the southern part of their range: maximum age of 5
years; fish spawning at a later age produce more offspring; all fish die after spawn-
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Table 4: Average number of spawners in each of the Large, Medium, and Small
hatchery scenarios.

Large Medium Small
Age Male Female Male Female Male Female

2 336 0 135 0 31 0
3 2,594 1,823 1,038 723 253 182
4 1,767 2,314 696 915 174 230
5 999 1,373 401 541 97 136

Total 5,696 5,510 2,270 2,179 555 548

ing; variance in reproductive success between families is such that the effective
number of spawners is one fourth of the census number, etc. Approximately 100
males and 100 females were spawned each day in each hatchery. Crosses between
parents were either made “1 to 1” between males and females (called SG1), or in a
fashion in which 4 males are mated to 4 different females in all 16 possible ways
(SG4). A chosen fraction G ∈ {1/4, 1/2, 1} of the fish spawned at each hatchery
were included in the parent data base by sampling genotypes on one fourth, one half,
or all of the spawning days. Any male and female spawned on the same day were
assumed to be potential mates in C . Thus, for each spawning day with complete
sampling (G = 1) at a hatchery, an additional 104 parent pairs must be considered
in the data base (Table 5). See Anderson (2010) for more explicit details of the
simulations.

Each simulation was run for 21 years. This provides several generations
for the accrual of relatedness between members of the population which should
make it more difficult to correctly infer parentage. Every year, fish ≥ 2 years old
were subjected to a 10% probability of being captured in a fishery, removed from
the population, and sampled. The genotypes of fish sampled this way in spawning
year 19 (i.e., those fish that could be 2-year-olds born of parents that spawned at
year 17, 3-year-olds from year 16, 4-year-olds from year 15, or 5-year-olds from
year 14) were included in the data set. On average there were 18,900 fish in these
fishery samples (≈3,850, 1,530, and 390 from each of the Large, Medium, and
Small hatcheries, respectively) . We then attempted to infer the parentage of these
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Table 5: Representative numbers of fish, N, and possible parent pairs, P (in 1,000s),
according to C in the parent data base from each hatchery of a given size under
the approximate sampling fractions G. These are rounded numbers from a single
replicate simulation experiment. The total parent data base size is the number of
parent genotypes from all possible years of spawners at all the hatcheries.

G = 1.0 G = 0.5 G = 0.25
Hatchery Size N P N P N P
Large 44,750 2,210 22,600 1,120 11,500 560
Medium 17,800 875 9,100 450 4,800 240
Small 4,400 207 2,400 119 1,600 79

Total Parent
Data Base 219,000 10,760 111,500 5,490 58,600 2,880

fish from amongst the spawners in years 14–17. This represents a difficult case
in which the fishery sample is a mixture of unknown proportions of fish from 10
different hatcheries.

For each replicate of the simulation, a data set was compiled in SNPPIT for-
mat that included both the parent data base and the fishery sample. With complete
sampling (G = 1.0), the size of each of these files was about 100 Mb in text format.
Genotyping error was simulated by processing the data set once it was in SNPPIT

format with a program written in C that changed the type of each SNP allele in
the data set, independently, with probability 0.005. This corresponds to a per-locus
genotyping error rate of about 1%. Additionally, with probability 2%, each lo-
cus was designated as missing data. With complete sampling (G = 1.0) SNPPIT

required roughly 1.5 hours on a single core of a 2.8 GHz Quad-Core Intel Xeon
chip in a Mac Pro computer to analyze each data set. For smaller values of G the
size of the parent data base was smaller, and each replicate took less time (roughly
30 minutes for G = 0.5 and 10 for G = 0.25). We used the --mi-fnr option of
SNPPIT to set β MI ≤ 0.005, and we chose a desired FDR of 1 in 200 (0.005). The
results were compared with the true simulated pedigrees, and the accuracy of the
parentage assignments was compared. Additionally, the number of individuals in
the fishery with parents in the parent data base that were not included amongst the
set of parentage assignments was recorded.
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SNPPIT can take, as an advanced input, the fraction of trios, formed by ran-
domly drawing individuals from the parental generation and from the fishery sam-
ple, expected to be of different relationship types r ∈R. These fractions were es-
timated by a simple recursive program (not described here) using the demographic
parameters and observed numbers of spawners in the simulated hatchery each year.
Thus, the probabilities πr (for r ∈R) were estimated for Large, Medium, and Small
hatcheries using data that will typically be available in hatchery programs (approx-
imate number of spawners of different ages each year, average number of male
mates per female spawned, approximate Ne/N ratio, etc.).

In every simulation, nearly 19,000 fish were compared to the parent data
base. Depending on G, 100%, 50% or 25% of these fish had both parents in the
parent data base. The fraction of offspring allocated to parents that were allocated
to incorrect parents (i.e., the false discovery rate) was less than 1 in 200 in almost
all replicates (Figures 2 and 3). As is apparent in the figures, the average realized
rate of false discoveries is clearly less than 0.005, as we hope it should be, since the
desired false discovery rate was set to 1 in 200. Additionally, in almost all cases the
rate at which offspring whose parents were in the parent data base were not assigned
parentage (the false negative rate) was less than 0.1. With 100% sampling of the
parents, this false negative rate was appreciably lower. There was not a remarkable
difference in accuracy between the SG1 and SG4 mating policies.

4 Conclusions
Anderson and Garza (2006) introduced calculations demonstrating that very large
parentage inference problems could be solved with relatively few SNPs. Further-
more, they showed that a likelihood-based approach to parentage inference with
SNPs would require 30% fewer markers to achieve power comparable to that of a
method that relied exclusively on Mendelian incompatibility. However, the scale
of such parentage problems is well beyond the capacity of current implementations
of likelihood-based parentage inference software. The method presented here rep-
resents one possible solution to the large-scale parentage inference problem that
combines the speed of a Mendelian incompatibility approach with the accuracy of a
likelihood-based approach and which provides a statistical measure of uncertainly
in the parent allocations.

The method has been implemented in the software SNPPIT (source and
binaries are available for free download from tinyurl.com/snppit). We assessed
SNPPIT with a simulation study that is, to our knowledge, the largest likelihood-
based parentage inference exercise (real or simulated) that has been reported. A
comparison of SNPPIT’s performance to that of competing softwares (COLONY,
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Figure 2: Results from SG1 mating policy. Left column of panels shows the true
rate of false discovery (i.e., true fraction of all parentage assignments that were
incorrect); right column shows the fraction of offspring with parents in the data
base that were not assigned to their parents (the false negative rate). Top row is for
G = 1.0, middle is G = 0.5, and bottom is G = 0.25. Each dot in a plot is the result
specific to one of the ten hatcheries (indicated by ID on the y-axis, see Table 3) in
one of the replicate runs.
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Figure 3: Results from SG4 mating policy. Left column of panels shows the true
rate of false discovery (i.e., true fraction of all parentage assignments that were
incorrect); right column shows the fraction of offspring with parents in the data
base that were not assigned to their parents (the false negative rate). Top row is for
G = 1.0, middle is G = 0.5, and bottom is G = 0.25. Each dot in a plot is the result
specific to one of the ten hatcheries (indicated by ID on the y-axis, see Table 3) in
one of the replicate runs.
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FRANZ, CERVUS) on these simulated data sets was not possible because no other
software was able to complete the inference. However, the accuracy of SNPPIT for
parent pair inference from smaller, real data sets has been found to be comparable to
that of other available software (Hauser, Baird, Hilborn, Seeb, and Seeb, 2011). In a
small set of simulations on modestly-sized data sets, SNPPIT performed as well or
better than FRANz for inference of (and assessment of uncertainty in) parent pairs
(unpublished result).

The heart of our method is the forward-backward algorithm for simulating
genotypes conditional on the number of Mendelian incompatibilities. The forward
step can be seen to be an elaboration of the recursive method of Chakraborty and
Schull (1976) for computing the distribution of the number of Mendelian incom-
patibilities between a pair of individuals. The backward step may prove useful in
other contexts where simulating from the distribution of genotypes conditional on
the number of Mendelian incompatibilities is desired.

There are broadly three approaches to likelihood-based parentage infer-
ence: 1) “categorical allocation” as pursued here and exemplified by Marshall
et al. (1998), which essentially treats each comparison of an offspring to possi-
ble parents as a hypothesis test of parentage versus non-parentage, 2) “fractional
allocation” (Devlin, Roeder, and Ellstrand, 1988, Nielsen, Mattila, Clapham, and
Palsboll, 2001, Hadfield, Richardson, and Burke, 2006, Jones, Grossman, Walsh,
Porter, Avise, and Fiumera, 2007) in which the genotype of every parent or pair
of parents is treated as the parameter of a separate component-specific distribu-
tion in a finite mixture model from which the offspring are exchangeable samples,
and 3) full pedigree reconstruction (Almudevar, 2003, Riester et al., 2009, Cowell,
2009, Wang and Santure, 2009, Almudevar and LaCombe, 2012), which casts the
problem of reconstructing the (possibly multigenerational) pedigree connecting a
group of samples as a problem in model selection.

We pursued categorical allocation in the hopes that the simplicity of the
approach would lend itself to optimization for computational efficiency; however,
categorical allocation is unsatisfying for a number of reasons. For example, cate-
gorical allocations of offspring are made independently of one another, which dis-
cards some information, especially when parents have widely disparate fertilities
(Roeder, Devlin, and Lindsay, 1989). Furthermore, the FDR correction used here,
with Benjamini and Hochberg (2000)’s estimate of m0 is an ad hoc approach which
could almost certainly be improved upon by a fractional allocation approach which
directly estimates the fraction of offspring whose parents are included in the data
base (Nielsen et al., 2001). The latter would have the advantage of providing a
direct estimate of the false negative rate, which does not seem straightforward in
our framework after having conditioned on trios having fewer than β MI Mendelian
incompatibilities. A reliable estimate of the false negative rate would be particu-
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larly beneficial, as it is clear from Figures 2 and 3 that the false negative rates can
be moderately high and also variable depending on the fraction of parents sampled
and the size of the hatchery, etc.

It thus seems it would be beneficial to pursue a fractional allocation ap-
proach to large scale parentage inference. Doing so would require some approxi-
mation to eliminate the very large sums over all possible parent pairs. Furthermore,
in the fractional allocation framework, there is not a simple analog to Equation 2;
that is, it is not clear how to efficiently deal with the occurrence of individuals who
are not parentally related to a putative offspring, but are nonetheless related to it.
Such relationships can be dealt with explicitly in the framework of full pedigree re-
construction, but, since such approaches depend on optimization or integration over
complex discrete spaces (the space of possible pedigrees) which grow quickly with
the sample size, it seems that the extension of full pedigree reconstruction methods
to very large scale problems will be problematic, at least in the near future.

Finally, two features of SNPPIT’s current implementation may restrict its
utility in some sampling contexts. First, it only identifies parent pairs, not single
parents whose mates might be absent from the data base. This makes the software
most appropriate for controlled breeding situations where all the potential parents
can be sampled, rather than sampling in wild populations; although even in con-
trolled situations (like salmon hatcheries), missing data and sample handling prob-
lems can reduce the fraction of completely sampled parent pairs in the data base.
Second, the forward-backward calculations are linear in the number of markers but
quadratic in the cardinality of V (L)↓, and, with constant genotyping error rate, the
appropriate cardinality of V (L)↓ increases faster than linearly in L. With higher
genotyping error rates (as might be encountered with next-generation genotyping-
by-sequencing) the cardinality of V (L)↓ will increase even faster. Thus, as the num-
ber of available SNPs increases (especially if they are based on fast but less reliable
sequencing technologies), the forward-backward calculations may become cumber-
some.

Data sets with more markers may strongly violate the assumption that mark-
ers are not physically linked. When loci are not independently segregating, then it is
not generally the case that the probability of data at L SNP loci in a trio can be writ-
ten as a product over loci of the single-locus probabilities. Additionally the state of
Mendelian compatibility versus incompatibility is not generally independent across
loci. Methods to compute the data at linked markers over a set of related individuals
given general pedigrees are available (see, for instance, Thompson 2000), though
such methods are considerably more computationally intensive than methods for
independent segregation. Fortunately, so long as markers are not in linkage dise-
quilibrium (LD), the genotype probability of a trio of individuals can be written as
a product over loci, even in the presence of physical linkage, in two very important
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cases: CSe
Se and CU

U (as can be shown by the fact that for each relationship all pos-
sible lines of descent yield the same node-unlabeled founder tree graph (Sobel and
Lange, 1996)). Accordingly, the forward calculations related to screening individ-
uals on the basis of Mendelian incompatibility will be correct for CSe

Se and CU
U trios,

even with linked markers (not in LD). Since most trios will be of the CU
U category in

large problems, this will still provide a principled way of eliminating non-parental
trios. Ultimately this will reduce the number of likelihood evaluations necessary
while accounting for physical linkage, and represents an interesting direction for
future work.

In conclusion, there is still considerable work to be done on the large-scale
parentage inference problem, but this paper has introduced one novel approach. The
simulations in this paper, as well as ongoing work in Chinook (Clemento et al. in
prep) and coho (Starks et al. in prep) salmon and steelhead trout (Abadı́a-Cardoso
et al. in prep) have also demonstrated that parentage at such scales using SNPs is
feasible. The intergenerational tagging of individuals that such parentage inference
will enable will continue to revolutionize the management of cultured organisms as
well as, ultimately, the scientific study of wild populations.

Appendix A: trio relationships
For salmon populations, we included, in R, 18 distinct relationships amongst the
three members of a kid-pa-ma trio. In all 18 of these, the individuals are assumed to
be noninbred, so we do not consider categories in which, for example, a candidate
father is both a sibling and the true father of the putative offspring; however, such
trio categories could be accommodated without great difficulty. The first nine trio
relationships involve situations in which ma or pa share a unilineal relationship to a
noninbred kid through the true parents. Following Anderson and Garza (2006) these
are the C-type relationships, all of which may be denoted by Cpa

ma where pa and ma
are placeholders for the relationship (Se for self, Si for full sibling, U for unrelated)
between pa and a true parent and ma and the other true parent, respectively. For
example, CSe

Se denotes a trio with two parents and an offspring and CU
U denotes a trio

of unrelated individuals. The next eight trio relationship categories that we consider
are those in which exactly one of ma or pa is related as a full sibling or as a half
sibling with kid and the other candidate parent is related, as Se or Si, or is unrelated,
U, to a single one of the true parents of kid. We denote these trio relationships by F
(for full sibling) or H (for half sibling) adorned with a superscript or subscript Se,
Si, or U, if the candidate that does not have the full- or half-sibling relationship with
kid is pa or ma, respectively. For example, FSi indicates that pa is the full sibling of
kid and ma is the full sibling of the true mother (or the true father), and HU indicates
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that ma is a half-sibling of kid and pa is unrelated to either of the true parents. The
final trio relationship that we consider is FF—both pa and ma are full siblings of
kid. Some of these 18 relationship categories may contain up to two underlying
pedigree relationships owing to the fact that, in some cases, the candidate parents
may be related to the true parents of like or opposite sex. This distinction becomes
important when predicting πππ . The 18 categories we used in R can now be listed as:
CSe

Se, CSe
Si , CSi

Se, CSe
U , CU

Se, CSi
Si, CSi

U , CU
Si, CU

U, FSe, FSe, HSe, HSe, FSi, FSi, FU, FU, FF.
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