Skip to content
No description, website, or topics provided.
Branch: master
Clone or download
Latest commit 053dd3a Feb 25, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
data
examples
methods update readme and code Feb 25, 2019
scripts update readme and code Feb 25, 2019
.gitignore update readme and code Feb 25, 2019
README.md
adult.data.txt update readme and code Feb 25, 2019
adult.names.txt update readme and code Feb 25, 2019
adult.test.txt
adult_binary.pkl update readme and code Feb 25, 2019
adult_test_binary.pkl
german.data-numerical.txt
german.data.txt update readme and code Feb 25, 2019
health.csv
slurm.py
utils.py update readme and code Feb 25, 2019

README.md

Learning Controllable Fair Representations

TensorFlow implementation for the paper Learning Controllable Fair Representations, AISTATS 2019.

Overview

Running the experiments

Requirements:

  • Tensorflow
  • pandas
  • numpy
  • tf_utils

How to install tf_utils

git clone git@github.com:jiamings/tf_utils.git
cd tf_utils
pip install -e .

Running MIFR (Adult)

python -m exmaples.adult

Running L-MIFR (Adult)

python -m examples.adult --lag

Options

If MIFR then the e hyperparameter values corresponds to individual lambda parameters, if L-MIFR then they correspond to epsilon contraints in the paper.

  • e1: Upper bound for MI
  • e2: Adversarial approximation to Demographic parity
  • e4: Adversarial approximation to Equalized odds
  • e5: Adversarial approximation to Equalized opportunity
  • disc: discriminator iterations

References

If you find the idea or code useful for your research, please consider citing our paper:

@article{song2019learning,
  title={Learning Controllable Fair Representations},
  author={Song, Jiaming and and Grover, Aditya and Zhao, Shengjia and Ermon, Stefano},
  journal={arXiv preprint arXiv:1812.04218},
  year={2018}
}

Acknowledgements

utils/logger.py is based on an implementation in OpenAI Baselines.

Contact

tsong [at] cs [dot] stanford [dot] edu

You can’t perform that action at this time.