
Solving Rummikub Problems by

Integer Linear Programming

D. den Hertog
1�

and P. B. Hulshof
2

1Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands
2Dianapad 17, 5042 LM Tilburg, The Netherlands

�Corresponding author: D.denHertog@uvt.nl

The Rummikub problem of finding the maximal number or value of the tiles that can be placed from

your rack onto the table is very difficult, since the number of possible combinations are enormous.

We show that this problem can be modeled as an integer linear programming problem. In this way

solutions can be found in 1 s. We extend the model such that unnecessary changes of the existing sets

on the table are minimized.

Keywords: Rummikub, game, integer linear programming

Received 15 July 2005; revised 14 March 2006

1. INTRODUCTION

Computers have frequently been used to solve different kinds

of puzzles or games. In many cases it appeared that the

combination of computer power and efficient mathematical

techniques is able to solve such problems. Wilson [1] used

integer linear programming (ILP) for compiling crossword

puzzles. Littman et al. [2] used a probabilistic approach to

solve crossword puzzles. Iterative algorithms to solve the

Hanoi or Reves puzzles are described by [3, 4, 5, 6, 7].

There are also many papers on optimal poker strategies,

e.g. [8, 9]. A mathematical investigation of optimal

algorithms for Mastermind is given in [10]. In INFORMS

Transactions on Education several papers appeared on

ILP formulations for several games and puzzles, e.g. The

Riddle of the Pilgrims [11], Peg Solitaire [12], n-Queens

problem [13], Einstein’s riddle [14], Nim [15], Raymond

Smullyan’s puzzles [16], 2-egg puzzle [17], SuDoku and

The Log Pile [18].

In this paper we will show how to solve combinatorial

problems arising in Rummikub using ILP techniques. By

using the combination of computer power and efficient

mathematical techniques we are able to solve the Rummikub

problems.

Rummikub is a well-known game for two to four players.

The aim of the game is to be the first player who eliminates

all the tiles from his rack by forming them into sets of runs

and groups. You have to try to keep as few points on your

rack as possible. Rummikub contains 106 tiles. There are two

sets of tiles numbered from 1 to 13 in 4 colors: black, red,

blue and orange. Furthermore, there are two joker tiles. There

are two kinds of sets. The first one is a group. A group is a set

of either three or four tiles of the same number but in different

colors. The second is a run. A run is a set of three or more

consecutive numbers, all in the same color. The jokers can be

used for any tile in a set.

Every player takes 14 tiles. The remaining tiles on the table

are the pool. Players must place sets valued at least 30 points

(add up the numbers of the tiles in the sets) onto the table in

the first move. This move is called the ‘initial meld’. If unable

to do an initial meld, or player chooses to delay initial meld, a

tile must be taken from the pool and this concludes the

player’s turn. During the initial meld sets on the table may

not be manipulated or built upon with tiles from player’s rack.

After players have made their initial plays, they can also

manipulate sets on the table to combine them with tiles

from their racks. Manipulation is the most exciting part of

playing Rummikub. Players try to table the greatest amount

of tiles, by rearranging or adding to sets that are already on

the table. Sets can be manipulated in many ways as long as at

the end of each round, only legitimate sets remain, and no

loose tiles are left over. If a player cannot add onto the other

sets, the player picks a tile from the pool and the turn ends.

The round continues until one player empties his rack and

calls ‘Rummikub’. That player wins the game and the other

players tally the numbers of the tiles they are holding on their

racks. The joker has a penalty value of 30 points. The score is

totaled as a negative amount. The winner receives a positive

score equal to the total of all the losers’ points. For a more

detailed description of Rummikub we refer to the website

http://www.rummikub.com.

The Computer Journal, Vol. 49 No. 6, 2006

� The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access published on June 20, 2006 doi:10.1093/comjnl/bxl033

http://www.rummikub.com


One of the problems for a Rummikub player is to find the

maximum number or value of the tiles you can place on

the table, such that all Rummikub rules are obeyed. Since

the number of possibilities can be astronomically high,

simply trying all possibilities is impossible, even when the

computer is used. Note that the number of possibilities can

be extremely high at the initial play, since the ‘30 points’ rule

often leads to players acquiring large racks of tiles.

In this paper we describe an ILP model to solve this prob-

lem. For the theory of ILP, see [19] or [20]. Often there are

many optimal solutions, i.e. the optimal number or value of

tiles can be placed onto the table in many different ways. To

save time for manipulating the existing sets on the table, one

may look for the optimal solution with minimal changes.

Hence, the main goal is still to maximize the number or

value of the tiles that can be placed onto the table, but as a

secondary goal the number of changes of the existing sets on

the table is minimized. We describe how the model can be

adjusted such that this can be accomplished. We give some

examples to show that optimal solutions can be obtained very

fast by using our model.

We emphasize that our model only optimizes the number

or value of the tiles that can be placed on the table. For

strategic reasons, a player can decide to place fewer tiles

on the table. For example, sometimes it is useful to hold

back the fourth tile of a group or run and lay only three, so

that on the next turn one can lay a tile instead of drawing from

the pool. However, for the player it is useful to know the

maximal number or value of the tiles that can be placed

onto the table.

2. ILP MODEL

Let us first count the number of possible different sets. The

game contains 52 tiles of 4 different colors plus 2 jokers.

Let us first consider sets without jokers. With every color

you can make 11 different runs with 3 consecutive numbers,

10 runs with 4 consecutive numbers and 9 runs with 5

consecutive numbers. Note that a run with six or more con-

secutive numbers can be divided into runs of length three,

four or five, and consequently need not to be considered

separately. There are 13 numbers. With every number you

can make four groups of three different colors and one

group with four different colors. These numbers are summa-

rized in the second column of Table 1.

Let us now consider sets containing exactly one joker. It is

easy to check that with every color you can make 23 different

runs with 3 consecutive numbers, 31 runs with 4 consecutive

numbers and 37 runs with 5 consecutive numbers, where each

run contains exactly one joker. There are 13 numbers. With

every number you can make six groups of three different

colors and four groups with four different colors, where

each group contains exactly one joker. These numbers are

summarized in the third column of Table 1.

Let us now consider sets containing exactly two jokers. It is

easy to check that with every color you can make 13 different

runs with 3 consecutive numbers, 33 runs with 4 consecutive

numbers and 58 runs with 5 consecutive numbers, where

each run contains exactly two jokers. There are 13 numbers.

With every number you can make six groups with four dif-

ferent colors, where each group contains exactly one joker.

Note that groups with three different colors and two jokers are

already counted as a run of three consecutive numbers! These

numbers are summarized in the fourth column of Table 1.

This means that there are in total 1174 possible different

sets. These possible sets play an important role in the model.

We first give the model:

Indices

i 2 I type of the tile (defined by color and number),

I ¼ {1, 2, . . . , 53},
j 2 J number of set (run or group), J ¼ {1, 2, . . . , 1174}.

Parameters

sij indicates whether tile i is in set j (yes ¼ 1, no ¼ 0),

ti tile i is 0, 1 or 2 times on the table,

ri tile i is 0, 1 or 2 times on your rack.

Variables

xj set j can be placed 0, 1 or 2 times onto the table,

yi tile i can be placed 0, 1 or 2 from your rack onto the

table.

Objective and constraints

Max
X53

i¼1

yi

subject to

X1174

j¼1

sijxj ¼ ti þ yi 8i

yi � ri 8i

xj 2 f0‚1‚2g 8j
yi 2 f0‚1‚2g 8i

TABLE 1. Numbers of possible sets

Run/group

Without

joker

With

1 joker

With

2 jokers Total

Three consecutive numbers 44 92 52 188

Four consecutive numbers 40 124 132 296

Five consecutive numbers 36 148 233 417

Same number/three

different colors

52 78 0 130

Same number/four

different colors

13 52 78 143

185 494 495 1174

666 D. den Hertog and P. B. Hulshof

The Computer Journal, Vol. 49 No. 6, 2006



The objective is the total number of tiles that can be placed

onto the table. The first constraint ensures that you can only

make sets of the tiles that are on your rack or on the table. The

right-hand side of this constraint denotes the number of tile

i that are already on the table plus that are placed from

the rack onto the table. The left-hand side adds up the number

of tile i present in the sets that are finally on the table. The

second constraint states that the tiles you can place from your

rack onto the table cannot be more than the tiles that are on

your rack.
This model contains at most 1174 variables and 53 real

constraints. Furthermore, note that this model is always

feasible: yi ¼ 0 and objective value 0 corresponds with the

current situation, i.e. no tiles are placed onto the table.

Instead of maximizing the total number of tiles, one can

also maximize the total value of the tiles. Only the objective

will change:

Max
X53

i¼1

viyi

in which vi is the value of tile i.

Now, the model is adjusted such that unnecessary changes

of the existing sets on the table are avoided. The main goal is

still to maximize the number or value of the tiles that can be

placed onto the table, but as a secondary goal the number of

changes of the existing sets is minimized. This is accomp-

lished by the following model:

Max
X53

i¼1

viyi þ
1

M

X1174

j¼1

zj

subject to

X1174

j¼1

sijxj ¼ ti þ yi 8i

yi � ri 8i
zj � xj 8j
zj � wj 8j

xj 2 f0‚1‚2g 8j
yj 2 f0‚1‚2g 8i
zj 2 f0‚1‚2g 8j

with the following new parameters:

wj set j is 0, 1 or 2 times on the table

M constant (default value 40), and the following new

variable:

zj set j occurs 0, 1 or 2 times in the old and in the new

solutions.

The second term in the objective is the sum of all sets that

were in the old situation and in the new situation, i.e. the sets

that are kept unchanged. Consequently, this term will mini-

mize the unnecessary changes. Observe that since we divide

by M, the value of the second term is always less than one:

there are 53 different tiles in the game and all of them are two

times available and a set of tiles exist of at least three tiles, so

there are atmost 35 ¼ b(53 � 2)/3c sets on the table. This

means that a solution with a higher total tile value is always

preferred, even if (many) more changes of the existing sets

are necessary. Note that zj ¼ min(xj, wj) and therefore we

have to add the two constraints zj � xj and zj � wj. Moreover,

observe that there are at most 35 relevant extra variables zj,

since there are atmost 35 sets on the table.

3. EXAMPLES

The ILP model is implemented in AIMMS (Advanced

Integrated Multi-Dimensional Modelling Software, see [21].

We used the embedded XA-solver to solve the resulting

ILP problems. The execution time (on a Pentium III)

appears to be less than a second. We will show the results

for two examples.

Example 1. This example will start with the following tiles,

see Figure 1. In all examples, the black tiles are marked with

a cross, the orange tiles with a circle, the blue tiles with a

square and the red tiles with a triangle.

The solution when the objective is the number of tiles is

given in Figure 2. The black 13 is added to the set ‘black 10,

11 and 12’ and the orange 8 is added before the orange 9.

Furthermore, you have a joker and could put them together

with the orange 1, 3 and 4 on the table.

The solution of Figure 3 is obtained by optimizing the total

value of the tiles and minimizing the unnecessary changes

on the tables. The joker is now used to put the black 10

onto the table. This is only one tile, but the value of this

tile is higher than the three tiles you put onto the table in

the previous solution. In Figure 3 you can see that the sets

are very different to the sets in Figure 1. This illustrates that

in our model the value of the tiles is more important than

avoiding unnecessary changes as much as possible.

FIGURE 1. Starting position of example 1.

Solving Rummikub Problems by ILP 667

The Computer Journal, Vol. 49 No. 6, 2006



Example 2. In the second example the player can place all

the tiles from his rack onto the table. The starting solution is

given in Figure 4, and the solutions of the two models are

given in Figures 5 and 6 respectively.

The difference between the two models is the formation of

new sets of tiles. The first model results into a solution

(Figure 5) in which two sets are the same as in the beginning

of the play (the group with the ones and the thirteen-group).

The solution of the second model (Figure 6) contains

one extra set which is the same as in the starting position

(the row blue 10, 11 and 12). The reason is of course that

in the second model also the unnecessary changes are

minimized.

ACKNOWLEDGEMENTS

The authors would like to thank the two anonymous referees

for a number of useful comments that were incorporated

into the finished article.

REFERENCES

[1] Wilson, J. M. (1989) Crossword compilation using integer

programming. Comput. J., 32(3), 273–275.

FIGURE 2. Solution of first model for example 1.

FIGURE 3. Solution of second model for example 1.

FIGURE 4. Starting position of example 2.

FIGURE 5. Solution of first model for example 2.

FIGURE 6. Solution of second model for example 2.

668 D. den Hertog and P. B. Hulshof

The Computer Journal, Vol. 49 No. 6, 2006



[2] Littman, M. L., Keim, G. A. and Shazeer, N. (2002) A proba-

bilistic approach to solving crossword puzzles. Artif. Intell.,
134, 23–55.

[3] Gedeon, T. D. (1996) An iterative solution produced by trans-

formation. Comput. J., 39(4), 353–356.

[4] Majumdar, A. A. K. (1994) A note on the iterative algorithm

for the Reves puzzle. Comput. J., 37(5), 463–464.

[5] Sapir, A. (2004) The tower of Hanoi with forbidden moves.

Comput. J., 47(1), 20–24.

[6] Vandeliefvoort, A. (1992) An iterative algorithm for the Reve

puzzle. Comput. J., 35(1), 91–92.

[7] Sniedovich, M. (2002) OR/MS games: 2. Towers of Hanoi.

INFORMS Trans. Educ., 3(1), 34–51.

[8] Cutler, W. H. (1975) An optimal strategy for pot limit poker.

Am. Math. Mon., 82, 368–376.

[9] Cassidy, J. (1998) The last round of betting in Poker.

Am. Math. Mon., 105(9), 825–831.

[10] Chen, S. T. and Lin, S. S. (2004) Optimal algorithms for 2 · n

Mastermind games—graph-partition approach. Comput. J.,
47(5), 602–611.

[11] Chlond, M. J. (2002) The riddle of the pilgrims. INFORMS
Trans. Educ., 2(2), 56–57.

[12] Chlond, M. J. (2002) Unconstrained Peg Solitaire. INFORMS
Trans. Educ., 2(3), 99–100.

[13] Letavec, C. and Ruggiero, J. (2002) The n-Queens problem.

INFORMS Trans. Educ., 2(3), 101–103.

[14] Yeomans, J. S. (2003) Solving ‘Einstein’s Riddle’ using

spreadsheet optimization. INFORMS Trans. Educ., 3(2),

55–63.

[15] Chlond, M. J. and Akyol, O. (2003) A Nimatron. INFORMS
Trans. Educ., 3(3), 90–99.

[16] Chlond, M. J. and Toase, C. M. (2003) IP modeling and the

logical puzzles of Raymond Smullyan. INFORMS Trans.
Educ., 3(3), 1–12.

[17] Sniedovich, M. (2003) OR/MS games: 4. The joy of egg-

dropping in Braunschweig and Hong Kong. INFORMS Trans.
Educ., 4(1), 48–64.

[18] Chlond, M. J. (2005) Classroom exercises in IP modeling:

Su Doku and the Log Pile. INFORMS Trans. Educ., 5(2).

[19] Schrijver, A. (1986) Theory of Linear and Integer
Programming. Wiley, New York.

[20] Wolsey, L. A. (1998) Integer Programming. Wiley, New York.

[21] Bisschop, J. and Roelofs, M. (2003) AIMMS: The User’s Guide.
Paragon Decision Technology, Haarlem, The Netherlands.

Solving Rummikub Problems by ILP 669

The Computer Journal, Vol. 49 No. 6, 2006


