Mapping the toric code to the rotated toric code

July 28, 2022

Abstract

In this short note, we describe how the transformation from the hypergraph product code of two classical Tanner codes to a quantum Tanner code specializes to the toric code. In this case, the resulting code is the rotated toric code. This observation was first made by N. Breuckmann.

Let us consider a repetition code $[n, 1, n]$ of even length $n=2 m$. It is a Tanner code defined on the cycle graph (V, E) of length n, with local parity codes. Both sets V and E are indexed by the integers $0,1, \ldots, n-1$. Bits are associated with edges E, and the constraint on vertex $i \in[n]$ enforces the values of the bits $i-1$ and i to sum to zero: $x_{i-1}+x_{i}=0$. Note that the indices are understood modulo n.

Because the graph has even length, it is bipartite and it is convenient to consider the partition $V=V_{e} \cup V_{o}$ of the vertices where V_{e} (resp. V_{o}) consists of vertices with an even (resp. odd) index.

The toric code is obtained by applying the hypergraph product construction to two copies of the repetition code [TZ14]. It is a CSS code with parameters $\llbracket 2 n^{2}, 2, n \rrbracket$ and

- $2 n^{2}$ qubits indexed by $E \times E \cup V \times V=E \times E \cup\left(V_{e} \cup V_{o}\right) \times\left(V_{e} \cup V_{o}\right)$,
- $n^{2} \sigma_{X}$-type generators $g_{p, q}^{X}$ indexed by $\left(V_{e} \cup V_{o}\right) \times E$,
- $n^{2} \sigma_{Z}$-type generators $g_{p, q}^{Z}$ indexed by $E \times\left(V_{e} \cup V_{o}\right)$.

The support of the various generators is given by:

- Supp $\left.g_{2 i, 2 k}^{X}=\{(2 i-1,2 k),(2 i, 2 k)\} \in E \times E,(2 i, 2 k) \in V_{e} \times V_{e},(2 i, 2 k+1) \in V_{e} \times V_{o}\right\}$
- Supp $g_{2 i, 2 k+1}^{X}=\left\{(2 i-1,2 k+1),(2 i, 2 k+1) \in E \times E,(2 i, 2 k+2) \in V_{e} \times V_{e},(2 i, 2 k+1) \in\right.$ $\left.V_{e} \times V_{o}\right\}$
- Supp $g_{2 i+1,2 k}^{X}=\left\{(2 i, 2 k),(2 i+1,2 k) \in E \times E,(2 i+1,2 k) \in V_{o} \times V_{e},(2 i+1,2 k+1) \epsilon\right.$ $\left.V_{o} \times V_{o}\right\}$
- $\operatorname{Supp} g_{2 i+1,2 k+1}^{X}=\left\{(2 i, 2 k+1),(2 i+1,2 k+1) \in E \times E,(2 i+1,2 k+2) \in V_{o} \times V_{e},(2 i+\right.$ $\left.1,2 k+1) \in V_{o} \times V_{o}\right\}$
- $\left.\operatorname{Supp} g_{2 i, 2 k}^{Z}=\{(2 i, 2 k-1),(2 i, 2 k)\} \in E \times E,(2 i, 2 k) \in V_{e} \times V_{e},(2 i+1,2 k) \in V_{o} \times V_{e}\right\}$
- Supp $g_{2 i, 2 k+1}^{Z}=\left\{(2 i, 2 k),(2 i, 2 k+1) \in E \times E,(2 i, 2 k+1) \in V_{e} \times V_{o},(2 i+1,2 k+1) \epsilon\right.$ $\left.V_{o} \times V_{o}\right\}$
- Supp $g_{2 i+1,2 k}^{Z}=\left\{(2 i+1,2 k-1),(2 i+1,2 k) \in E \times E,(2 i+1,2 k) \in V_{o} \times V_{e},(2 i+2,2 k) \epsilon\right.$ $\left.V_{e} \times V_{e}\right\}$
- $\operatorname{Supp} g_{2 i+1,2 k+1}^{Z}=\left\{(2 i+1,2 k),(2 i+1,2 k+1) \in E \times E,(2 i+1,2 k+1) \in V_{o} \times V_{o},(2 i+\right.$ $\left.2,2 k+1) \in V_{e} \times V_{o}\right\}$.
The idea behind the construction of quantum Tanner codes (detailed in Section 7 of [LZ22a]) is to modify the set of generators so as to keep only qubits in $E \times E$. To achieve this, the generators are modified in a way that avoids the supports of σ_{X}-type and σ_{Z}-type generators to overlap on the qubits in $\left(V_{e} \cup V_{o}\right) \times\left(V_{e} \cup V_{o}\right)$. One possibility is to choose new σ_{X}-type generators that will only have support on $E \times E \cup V_{e} \times V_{e} \cup V_{o} \times V_{o}$ and new σ_{Z}-type generators that will only have support on $E \times E \cup V_{e} \times V_{o} \cup V_{e} \times V_{o}$. If this is the case, since the generators still commute pairwise, it means that they commute when restricted to $E \times E$ since they do not overlap elsewhere. In particular, by discarding the qubits in $\left(V_{e} \cup V_{o}\right) \times\left(V_{e} \cup V_{o}\right)$, one obtains a new CSS code with qubits on $E \times E$ and generators given by the new ones. We now explain how to do this transformation when starting from the toric code. Applying this transformation to the expander liftedproduct codes of Panteleev and Kalachev [PK21] gives the family of quantum Tanner codes [LZ22b]. The same transformation can also be applied to any hypergraph product code of two classical Tanner codes.

We now define our new generators, which will belong to 4 families:

- for $(2 i, 2 k) \in V_{e} \times V_{e}$, define $\tilde{g}_{2 i, 2 k}^{X}:=g_{2 i, 2 k}^{X} g_{2 i, 2 k+1}^{X}$. Its support is

Supp $\tilde{g}_{2 i, 2 k}^{X}=$
$\left\{(2 i-1,2 k),(2 i, 2 k),(2 i-1,2 k+1),(2 i, 2 k+1) \in E \times E,(2 i, 2 k),(2 i, 2 k+2) \in V_{e} \times V_{e}\right\}$.

- for $(2 i+1,2 k+1) \in V_{o} \times V_{o}$, define $\tilde{g}_{2 i+1,2 k+1}^{X}:=g_{2 i+1,2 k}^{X} g_{2 i+1,2 k+1}^{X}$. Its support is

Supp $\tilde{g}_{2 i+1,2 k-1}^{X}=$
$\left\{(2 i, 2 k),(2 i+1,2 k),(2 i, 2 k-1),(2 i+1,2 k-1) \in E \times E,(2 i+1,2 k-1),(2 i+1,2 k+1) \in V_{o} \times V_{o}\right\}$.

- for $(2 i, 2 k+1) \in V_{e} \times V_{o}$, define $\tilde{g}_{2 i, 2 k+1}^{Z}:=g_{2 i, 2 k+1}^{Z} g_{2 i+1,2 k+1}^{Z}$. Its support is

Supp $\tilde{g}_{2 i, 2 k-1}^{Z}=$
$\left\{(2 i, 2 k),(2 i, 2 k+1),(2 i+1,2 k),(2 i+1,2 k+1) \in E \times E,(2 i, 2 k+1),(2 i+2,2 k+1) \in V_{e} \times V_{o}\right\}$.

- for $(2 i+1,2 k) \in V_{o} \times V_{e}$, define $\tilde{g}_{2 i+1,2 k}^{Z}:=g_{2 i, 2 k}^{Z} g_{2 i-1,2 k}^{Z}$. Its support is

Supp $\tilde{g}_{2 i+1,2 k}^{Z}=$
$\left\{(2 i-1,2 k-1),(2 i-1,2 k),(2 i, 2 k-1),(2 i, 2 k) \in E \times E,(2 i+1,2 k),(2 i-1,2 k) \in V_{o} \times V_{e}\right\}$.

One can observe as promised that the σ_{X}-type generators don't have support on $V_{e} \times V_{o}$ or $V_{o} \times V_{e}$ and that the σ_{Z}-type generators don't have support on $V_{e} \times V_{e}$ or $V_{o} \times V_{o}$.

We can therefore define generators with a support restricted to $E \times E$:

- for $(2 i, 2 k) \in V_{e} \times V_{e}$, define $G_{2 i, 2 k}^{X}$ with support

$$
\{(2 i-1,2 k),(2 i, 2 k),(2 i-1,2 k+1),(2 i, 2 k+1)\} \subset E \times E .
$$

- for $(2 i+1,2 k+1) \in V_{o} \times V_{o}$, define $G_{2 i+1,2 k+1}^{X}$ with support

$$
\{(2 i, 2 k),(2 i+1,2 k),(2 i, 2 k-1),(2 i+1,2 k-1)\} \subset E \times E .
$$

- for $(2 i, 2 k+1) \in V_{e} \times V_{o}$, define $G_{2 i, 2 k+1}^{Z}$ with support

$$
\{(2 i, 2 k),(2 i, 2 k+1),(2 i+1,2 k),(2 i+1,2 k+1)\} \subset E \times E .
$$

- for $(2 i+1,2 k) \in V_{o} \times V_{e}$, define $G_{2 i+1,2 k}^{Z}$ with support

$$
\{(2 i-1,2 k-1),(2 i-1,2 k),(2 i, 2 k-1),(2 i, 2 k)\} \subset E \times E .
$$

These generators correspond to those of the rotated toric code of length n^{2}.

References

[LZ22a] Anthony Leverrier and Gilles Zémor. Efficient decoding up to a constant fraction of the code length for asymptotically good quantum codes. arXiv preprint arXiv:2206.07571, 2022. 2
[LZ22b] Anthony Leverrier and Gilles Zémor. Quantum Tanner codes. arXiv preprint arXiv:2202.13641, 2022. 2
[PK21] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally testable classical LDPC codes. arXiv preprint arXiv:2111.03654, 2021. 2
[TZ14] Jean-Pierre Tillich and Gilles Zémor. Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Transactions on Information Theory, 60(2):1193-1202, 2014. 1

