Mapping the toric code to the rotated toric code
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Abstract

In this short note, we describe how the transformation from the hypergraph
product code of two classical Tanner codes to a quantum Tanner code specializes
to the toric code. In this case, the resulting code is the rotated toric code. This
observation was first made by N. Breuckmann.

Let us consider a repetition code [n,1,n] of even length n = 2m. It is a Tanner code
defined on the cycle graph (V| E) of length n, with local parity codes. Both sets V' and
FE are indexed by the integers 0,1,...,n — 1. Bits are associated with edges F, and the
constraint on vertex i € [n] enforces the values of the bits i — 1 and ¢ to sum to zero:
z;_1 +x; =0. Note that the indices are understood modulo n.

Because the graph has even length, it is bipartite and it is convenient to consider the
partition V =V, UV}, of the vertices where V. (resp. V,) consists of vertices with an even
(resp. odd) index.

The toric code is obtained by applying the hypergraph product construction to two
copies of the repetition code [TZ14]. It is a CSS code with parameters [2n2,2,n] and

e 2n? qubits indexed by Ex EuV xV =ExEu(V,uV,) x (V.uV,),

e n? ox-type generators g;fq indexed by (VeuV,) x E,

e n? o,-type generators ng7 q Indexed by E x (VeuVy).

The support of the various generators is given by:

e Supp g3t o, = {(2i - 1,2k), (2i,2k)} € E x E, (2i,2k) € Ve x Ve, (2i,2k +1) € Vo x Vo

® SUpp gy, gpy1 = {(20-1,2k+1),(2i,2k +1) € Ex E, (2i,2k +2) € Vo x V,, (2i,2k +1) €
Ve x Vo)

o Supp 935, 1 = {(20,2k), (20 + 1,2k) € B x B, (2i + 1,2k) € V, x Vi, (20 + 1,2k + 1) ¢
Vox V,}

o Suppgﬁ%mkﬂ={(2i,2k‘+1),(2z’+1,2k;+1)eExE,(2i+1,2k+2)eVOxVe,(2i+
1,2k +1) €V, x V,}

o Supp g% o, = {(20,2k - 1), (20,2k)} € E x E, (2i,2k) € Ve x Ve, (20 +1,2k) € V, x Vo)
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o Supp 94 o1 = {(2i,2k), (2i,2k +1) € Ex E, (2i,2k +1) € Vo x Vo, (2i + 1,2k + 1) €
Vo x Vo}

o Supp 92,1 o, = {(2i+1,2k-1), (2i+1,2k) € Ex E,(2i+1,2k) € V, x Ve, (2i+2,2k) €
Vex Vet

. SupngZiJrL%+1 ={(2i+1,2k), (20 + 1,2k +1) e ExE, (20 + 1,2k +1) e Vo x V,,, (20 +
2,2k +1) e Ve x V,}.

The idea behind the construction of quantum Tanner codes (detailed in Section 7
of [LZ22a]) is to modify the set of generators so as to keep only qubits in E' x E. To
achieve this, the generators are modified in a way that avoids the supports of ox-type
and oz-type generators to overlap on the qubits in (VouV,)x (VeuV,). One possibility is
to choose new ox-type generators that will only have support on Ex FuV, xV,uV, xV,
and new oz-type generators that will only have support on £ x EuV, x V,uV, x V,. If
this is the case, since the generators still commute pairwise, it means that they commute
when restricted to F x E since they do not overlap elsewhere. In particular, by discarding
the qubits in (V. uV,) x (V. uUV,), one obtains a new CSS code with qubits on E x E
and generators given by the new ones. We now explain how to do this transformation
when starting from the toric code. Applying this transformation to the expander lifted-
product codes of Panteleev and Kalachev [PK21| gives the family of quantum Tanner
codes [LZ22b]. The same transformation can also be applied to any hypergraph product
code of two classical Tanner codes.

We now define our new generators, which will belong to 4 families:

o for (2i,2k) € V, x V, define G5 5, == g 5493 o4y Its support is

Supp éﬁizk =
{(2i - 1,2k), (2i,2k), (20 = 1,2k + 1), (24,2k + 1) € E x E, (2i,2k), (2i,2k +2) € V, x V. }.

o for (20 +1,2k+1) eV, xV,, define ggirl’%“ = g§+1,2k95§+1,2k+1' Its support is

ST
((20,2Kk), (20 +1,2k), (20,2k — 1), (20 + 1,2k~ 1) e Ex B, (2i + 1,2k - 1), (2i + 1,2k + 1) € V, x V).

o for (2i,2k+1) € V., x V,, define gQZi okl -= g2Zi %Hg%ﬂ ok+1- Its support is

Supp §2Zi,2k—1 =
((20,2k), (20,2 + 1), (20 + 1,2k), (20 + 1,2k + 1) ¢ Ex E, (20,2k + 1), (2 + 2,2k + 1) € Vi x V).

o for (2i+1,2k) € V, x V,, define G2, o). := 92 5192 1 o 1ts support is

Supp §QZ¢+1,2k =
{(20-1,2k-1),(2i - 1,2k),(2i,2k - 1),(2i,2k) e Ex E,(2i + 1,2k), (2i - 1,2k) € V, x V. }.



One can observe as promised that the ox-type generators don’t have support on
Ve xV, or V, x V, and that the oz-type generators don’t have support on V. x V. or
Vo x V.

We can therefore define generators with a support restricted to £ x E:

o for (2i,2k) e V. x Vg, define G;,zk with support
((2i - 1,2k), (2i,2k), (2i - 1,2k + 1), (2i,2k + 1)} c Ex E.
o for (20+1,2k+1) eV, xV,, define Gggﬂ,%” with support

{(2i,2k), (2i +1,2k), (2i,2k - 1), (21 + 1,2k - 1)} c E x E.

o for (2i,2k +1) € V. x V,, define Gzzi’%+1 with support

{(2i,2k), (2i,2k + 1), (2i +1,2k), (20 + 1,2k + 1)} c E x E.

o for (2i+1,2k) e V, x V., define GQZHL% with support

{(2i - 1,2k - 1), (2i - 1,2k), (2i,2k - 1), (2i,2k)} c E x E.

These generators correspond to those of the rotated toric code of length n?.
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