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ABSTRACT: The prediction and optimization of pharmacoki-
netic properties are essential in lead optimization. Traditional
strategies mainly depend on the empirical chemical rules from
medicinal chemists. However, with the rising amount of data, it is
getting more difficult to manually extract useful medicinal
chemistry knowledge. To this end, we introduced IDL-PPBopt, a
computational strategy for predicting and optimizing the plasma
protein binding (PPB) property based on an interpretable deep
learning method. At first, a curated PPB data set was used to
construct an interpretable deep learning model, which showed
excellent predictive performance with a root mean squared error of
0.112 for the entire test set. Then, we designed a detection
protocol based on the model and Wilcoxon test to identify the
PPB-related substructures (named privileged substructures, PSubs)
for each molecule. In total, 22 general privileged substructures
(GPSubs) were identified, which shared some common features
such as nitrogen-containing groups, diamines with two carbon
units, and azetidine. Furthermore, a series of second-level chemical rules for each GPSub were derived through a statistical test and
then summarized into substructure pairs. We demonstrated that these substructure pairs were equally applicable outside the training
set and accordingly customized the structural modification schemes for each GPSub, which provided alternatives for the
optimization of the PPB property. Therefore, IDL-PPBopt provides a promising scheme for the prediction and optimization of the
PPB property and would be helpful for lead optimization of other pharmacokinetic properties.

1. INTRODUCTION

Pharmacokinetic properties are closely related to drug safety
and efficacy.1−3 During lead optimization, medicinal chemists
seek to design rational structural modification schemes for lead
compounds, aiming to obtain favorable pharmacokinetic
properties and sufficient bioactivity. Traditional strategies,
such as scaffold hopping4 and bioisosteric replacement,5

mainly depend on the empirical chemical rules from medicinal
chemists.4,5 However, given the rising amount of data and
complexity of chemical and biological systems, it is getting
more difficult for medicinal chemists to manually extract
related chemical rules.6 Accordingly, researchers developed
many computational methods to automatically learn hidden
medicinal chemistry knowledge from large data sets for the
prediction and optimization of pharmacokinetic properties,
such as machine learning-based quantitative structure−activity
relationship (QSAR) models7−9 and matched molecular pairs
analysis (MMPA).10−12 However, these strategies have certain
limitations. For example, QSAR models cannot provide

structural modification schemes,13 and MMPA can only be
used to extract practical transformations from molecules
sharing the same context.14 Therefore, more efficient attempts
to predict and optimize pharmacokinetic properties should be
considered.
As an important pharmacokinetic property, plasma protein

binding (PPB) shows the binding affinity of a drug with plasma
proteins, which can modulate the effective concentration of the
drug at the pharmacological target.15 When the drug is
absorbed into the body, it will selectively bind to plasma
proteins. In most cases, such binding is reversible and there is a
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balance between bound and free species.16 However, only the
unbound drug can bind to the specific pharmacological target
and exert its efficacy, while the bound form is stored in the
plasma proteins and released slowly to prolong the duration of
drug action.17,18 The higher affinity to plasma proteins can
increase the effective half-life of drugs, but higher dosing is
required to achieve the effective concentration for treatment.
From this perspective, the binding affinity of compounds and
plasma proteins can determine the apparent volume of
distribution of drugs, thus affecting drug absorption,
distribution, metabolism, and excretion (ADME) proper-
ties.19,20 In addition, drugs with high plasma protein affinity
may cause drug−drug interactions due to PPB displacement,
which can potentially precipitate side effects.21 Therefore, it is
extremely valuable to measure and optimize the PPB property
of new drug candidates in drug discovery.
In the past decade, significant progress has been made in the

field of machine learning methods, especially the proposals of
many deep learning algorithms with novel neural architec-
tures,22−24 which greatly promote drug discovery and develop-
ment.25 The special molecular representation way and
multilevel network architecture enable these algorithms to
automatically extract the most relevant information regarding
the properties of interest, which overcome the limitations of
manual selection of molecular descriptors and fingerprints.
More importantly, because of the utilization of model

interpretation algorithms,26−28 many QSAR models that are
built with deep graph neural network algorithms have gradually
gotten rid of the trap of the “black box model”29 and visualized
more learned knowledge to medicinal chemists.30−32 However,
most researchers focus on predictive ability while ignoring the
enlightenment that machine learning knowledge can bring us.
For example, interpretable deep learning models can help
determine task-related atoms (or substructures) for each
molecule,33−35 which is of great significance for structural
simplification to avoid “molecule obesity” in lead optimiza-
tion.36 Therefore, interpretable deep learning techniques show
great superiority in predicting pharmacokinetic properties and
should have more applications in the field of lead optimization.
In this study, we proposed a computational strategy named

IDL-PPBopt (interpretable deep learning for plasma protein
binding optimization) to predict and optimize the plasma
protein binding of compounds based on an interpretable deep
learning method (Figure 1). The workflow of this study
consists of three essential steps: (1) to construct a well-trained
interpretable deep learning model (Figure 1A,B); (2) to
identify PPB-related substructures (Figure 1C); (3) to learn
from the compounds containing privileged substructures and
get second-level chemical rules (Figure 1E), which can be used
to optimize the PPB property of compounds (Figure 1D). The
proposed strategy was validated by literature, a validation set,
and a test set, and obtained a satisfactory result, which

Figure 1. Whole workflow of this study, consisting of the following five steps: (A) data collection and preparation, (B) network architecture of
Attentive FP, (C) model evaluation and identification of privileged substructures, (D) data mining of general privileged substructures through
frequency analysis, and (E) definition of substructure pairs, namely ESub-GPSub pairs and RESub-GPSub pairs.
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provided a new perspective for lead optimization in drug
discovery and development.

2. MATERIALS AND METHODS

2.1. Data Collection and Preparation. The initial
records of human PPB data were collected from the
literature,37,38 and two publicly accessible databases,
ChEMBL39 (version 27) and DrugBank40 (version 5.1.6). All
PPB records from Votano’s data set,37 Zhu’s data set,38 and
DrugBank were obtained first. The PPB fractions in humans
and fractions unbound in human plasma (fu,p) from ChEMBL
were then integrated and transformed into uniform PPB
records.
The initial data set was then curated as follows. All

compounds were first converted into canonical SMILES
format. Then, mixtures and inorganic compounds were
removed, and salts were converted into corresponding acids
or bases by Pipeline Pilot Software 2017 R2 (BIOVIA, USA).
When there were multiple PPB records for a compound, the
standard deviation (SD) would be calculated. The average
value was calculated and taken if the calculated SD was less
than 0.02.9,41 Otherwise, the most appropriate record would be
manually selected or the compound would be removed.
Subsequently, we assigned the PPB records randomly into the
training set, validation set, and test set with the ratio of 8:1:1
and yielded three data sets that were identically distributed.
2.2. Overview of the IDL-PPBopt Strategy. The IDL-

PPBopt strategy has three important components: a well-
trained interpretable deep learning model that has accurate
predictions and meaningful model interpretations, a detection
protocol to identify substructures most relevant to the task,
and a practical protocol for the derivation of second-level
chemical rules. As described in Figure 2, for a given compound,
the IDL-PPBopt strategy utilizes an interpretable deep learning

model to make predictions and interpretations, followed by a
detection protocol to capture task-related substructure. Finally,
through learning from the compounds containing the
substructure, the second-level chemical rules are derived as
substructure pairs to guide structural modification of the given
compound. The task-related substructures learned by the
model are termed privileged substructures (PSubs). Sub-
structures from second-level chemical rules are termed
enhanced substructures (ESubs) and reverse enhanced
substructures (RESubs). Substructure pairs are composed of
a PSub and a second-level substructure, i.e., ESub or RESub.

2.3. Methods for Model Construction and Evaluation.
In this study, we constructed an interpretable deep learning
model with the attentive fingerprint algorithm (AFP).26 The
AFP algorithm is a special graph neural network architecture
with a graph attention mechanism (Figure 1B), which has been
proven to achieve excellent predictive performance on a variety
of data sets.26 More strikingly, this algorithm can extract
nonlocal intramolecular interactions and visualize the model-
learned knowledge.
First, a total of nine types of atomic features and four types

of bond features were calculated as the node and edge features
for each molecular graph. A fully connected layer was used to
generate an initial vector of uniform length for each atom and
its neighbors. During the next two hidden layers that contained
attention mechanisms, the initial vector was updated after
aggregating more neighborhood information, and a new state
vector for the whole molecule was generated by assembling the
state vector of each atom, where the attention weights were
assigned to the neighbors based on contribution. Finally, a fully
connected layer was used for task training and prediction. The
whole network architecture adopted the Bayesian optimization
method for hyper-parameter tuning and Adam optimizer for
gradient descent optimization. Notably, the attention weights
were also updated during the model iteration.

Figure 2. Diagram illustrating the workflow of the IDL-PPBopt strategy.
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In each iteration, a new model was generated and the
performance was evaluated with the validation set. To avoid
overfitting and determine the final model with excellent
performance, we applied an early stop strategy based on the
evaluation results of the training set and validation set. Thus, if
the model performance was not improved in 8 epochs on the
training set and 10 epochs on the validation set, the training
process would be terminated early.
The final well-trained model was evaluated by the validation

set and test set. Here, three statistical indexes, namely mean
absolute error (MAE, eq 1 in Table S1), root-mean-square
error (RMSE, eq 2 in Table S1), and determination coefficient
(R2, eq 3 in Table S1), were introduced to evaluate all models.
Both MAE and RMSE could measure the errors between
predicted and observed values, but the latter was more
sensitive to outliers. R2 was employed to calculate the degree of
linear correlation between predicted and observed values. In
general, the best-fitting model should have lower MAE and
RMSE values, while R2 is close to 1.
2.4. Identification of PPB-Related Substructure

Patterns. 2.4.1. Identification of Privileged Substructure
for a Single Molecule. The well-trained interpretable PPB
model (iPPB model) can output the contribution score of each
atom to the PPB fractions through atom attention weights.
The atom attention weights measure the contribution of each
atom to the final molecular representation, and the sum of
attention weights of all atoms in each molecule is 1. On this
basis, these substructures composed of atoms with significantly
higher atom attention weights are defined as privileged
substructures (PSubs). Here, we developed a detection
protocol based on the Wilcoxon test method to extract
PSubs from the iPPB model (Figure 1C). This protocol
contained three steps.

(1) Fragmentation. A recursive algorithm42 was used to
obtain all possible substructures (3−18 atoms) of a
given compound without breaking the ring bonds. In
addition, duplicate substructures were removed and
virtual atoms (denoted by “*” or “A”) were generated at
the broken bond.

(2) Statistical tests. Each substructure was matched to the
corresponding molecule, and the one-sided Wilcoxon
test was performed to detect whether the given
substructure had significantly higher atom attention
weights than the remaining part of the molecule (i.e., P <
0.05). Those substructures that passed the one-sided
Wilcoxon test were recorded for further analysis. The
Python packages of RDKit (version 2018.09.3.0, http://
www.rdkit.org) and SciPy (version 1.6.2, http://www.
scipy.org) were employed for substructure matching and
the Wilcoxon test.

(3) Elimination of redundancy. Redundancy was an
inevitable problem in the fragmentation phase, resulting
in a set of similar or partially repeated substructures. For
simplicity, only the largest substructure was kept as it
contained more structural information.

2.4.2. Data Mining of General Privileged Substructures
from Training Set. General privileged substructures (GPSubs)
are defined as the substructure patterns that are frequently
labeled as PSub by the iPPB model, representing a series of
model-learned important chemical rules. We first employed a
recursive algorithm to get all PSubs from the training set
compounds without breaking the ring bonds and then

calculated their frequencies. Each GPSub should meet the
following two rules: (1) to pass the one-sided Wilcoxon test in
at least 50 molecules; (2) to pass the one-sided Wilcoxon test
in more than half of the molecules containing this substructure.
In short, the former promised the universality of GPSub in the
training set, which helped eliminate contingency and system-
atic errors; while the latter followed the assumption that the
frequency of a random event could be approximated to
probability if the sample size was large enough.

2.5. Derivation of Second-Level Chemical Rules. The
second-level chemical rules for each PSub are derived from
compounds in the training set that contain the corresponding
PSub, divided into two types of substructures, enhanced
substructure (ESub) and reverse enhanced substructure
(RESub). ESub is defined as a special substructure that is
derived from the corresponding PSub but presents more often
in compounds with relatively higher PPB values. On the
contrary, RESub is defined as a special substructure that
appears together with corresponding PSub but occurs more
frequently in compounds with relatively lower PPB values. The
presence of ESub or RESub may induce the PPB fractions of
the compounds containing corresponding PSub to change in a
specific direction (Figure 1E). In this study, we designed a
derivation method based on a statistical test and took GPSub
as examples to derive second-level chemical rules and
summarize them into substructure pairs.
We first collected compounds containing specific GPSubs

from the training set and integrated them into a new data set.
A recursive algorithm42 was then employed to get all possible
new substructures (3−18 atoms) from the new data set. For
each new substructure, according to whether it was present in
the compounds or not, we divided the new data set into two
classes. Subsequently, the Wilcoxon test was performed on the
PPB fractions of these two classes and the substructure would
be recorded if the p-value was less than 0.05. For ESub,
compounds containing the substructure would have signifi-
cantly higher PPB fractions, whereas compounds with RESub
showed significantly lower PPB fractions. In this way, a set of
substructure pairs, namely ESub-GPSub pairs and RESub-
GPSub pairs, were obtained after eliminating redundant
substructures.
To customize suitable structural modification schemes for

each GPSub, we calculated and recorded the topological
distance of each substructure pair in different molecules. Figure
S1 illustrates the definition of topological distance in a
molecule, which meant the shortest path between two
substructures. If two substructures were partially or fully
overlapped, their topological distance should be 0; whereas if
two substructures were separated, the topological distance
would be greater than 1 bond. Subsequently, a scoring
function, namely SPPB (eq 1), was defined to evaluate the
impact of ESub (SPPB > 0) and RESub (SPPB < 0) on the
corresponding GPSub through the average PPB fractions
difference.

S F FPPB ER GP= ̅ − ̅ (1)

where F̅ER represents the average PPB fraction of compounds
containing the ESub-GPSub pairs or RESub-GPSub pairs, and
F̅GP represents the average PPB fraction of compounds only
containing the corresponding GPSub.
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3. RESULTS
3.1. Construction of Interpretable PPB Model.

3.1.1. Data Collection and Analysis. From the literature
and public databases, we collected 4926 PPB records. After
preparation, a total of 3921 PPB fraction data with structural
diversity were obtained. The comprehensive data set was then
split into a training set containing 3136 compounds, a
validation set of 392 compounds, and a test set of 393
compounds. These three data sets shared a similar and uneven
distribution. Specifically, 2625 (nearly 65%) molecules had
high plasma proteins binding affinities (PPB fraction > 80%),
while only 518 (nearly 14%) molecules were at low PPB
fraction levels (PPB fraction < 40%). All chemical information,
including SMILES, PPB records, and data set classifications, is
given in Table S2.
The t-distributed stochastic neighbor embedding (t-SNE)43

method and Tanimoto similarity index, both using Morgan
fingerprints as molecular features, were performed to visualize
the chemical space of the data set (Figure 3). The overall color
of the Tanimoto similarity heat map was light green with an
average similarity of 0.121, indicating the high diversity of the
compounds in the data set. On the other hand, according to t-
SNE analysis, the central regions of the validation set and test
set were highly overlapped with that of the training set, and
only very few molecules in the test set fell in the area beyond
the training set space, indicating that the validation set and test

set were reasonable for model optimization and evaluation.
These results showed the structural diversity of the data set
compounds and the applicability of the validation set and test
set.

3.1.2. Model Construction and Evaluation. On the basis of
the curated PPB data set, we constructed an interpretable deep
learning model for PPB prediction with the AFP method. All
hyper-parameters are shown in Table S3. Figure S2 illustrates
the learning curves of RMSE and R2 on the training set and
validation set during the whole iterative process. Overall,
during the training process, the RMSE of the training set was
getting lower and the R2 was gradually close to 1, which meant
that the model was continuously learning from the training set.
In addition, the R2 curve of the validation set reached a plateau
after 50 epochs, indicating enough knowledge had been
learned. Finally, the model at epoch 54 was considered as the
best model, with excellent performance for training set (RMSE
= 0.085, R2 = 0.907) and validation set (RMSE = 0.124, R2 =
0.802). Furthermore, 393 molecules in the test set were used
to evaluate the generalizability of the model, obtaining a
favorable RMSE of 0.112 and R2 of 0.841.
We further analyzed the scatter plots of observed values and

predicted values. As shown in Figure 4, compounds with high
binding affinities (PPB fraction > 80%) were around the
diagonal line, but a small number of compounds at moderate
PPB fraction levels (40% ≤ PPB fraction ≤ 80%) and low PPB

Figure 3. (A) Heat map of Tanimoto similarity of the total data set with Morgan fingerprint. (B) t-SNE of chemical diversity analysis across
training set, validation set, and test set.

Figure 4. Scatter plots of predicted PPB fractions and observed PPB fractions of the (A) training set, (B) validation set, and (C) test set.
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fraction levels (PPB fraction < 40%) were outside the diagonal
area, indicating a better predictive ability of the iPPB model in
high-binding data. Overall, the prediction results of the three
data sets demonstrated that the iPPB model achieved a
favorable fitting ability despite the unbalanced distribution of
the PPB fraction data set.
3.1.3. Comparison with Other Models. We further listed

the performance of other published PPB models (Table 1).

Those published models were mostly built with molecular
descriptors and machine learning algorithms and evaluated
with their test sets. It could be observed that the R2 value of
these models was between 0.7 and 0.8. However, because of
the unavailability of those models, we could not evaluate them
with the same test set. Thus, two public deep learning models,
the graph convolutional neural network (GCN) model44 and
the multitask graph attention framework (MGA)45 model,
were used in further comparison with our test set. As listed in
Table 2, our iPPB model and the MGA model performed

better than the GCN model across all evaluation indexes,
indicating that the graph neural network with graph attention
mechanism could achieve better performance. Overall, our
iPPB model achieved excellent performance in the field of PPB
prediction.
3.2. Evaluation of PPB-Related Substructures. On the

basis of the well-trained interpretable deep learning model and
Wilcoxon test, we designed a detection protocol to identify
PSub through atom attention weights for each compound. In
addition to PPB, we also tested the applicability of the
detection protocol in other end points, including chemical
Ames mutagenicity, human ether-a-go-go relate gene (hERG)
blockers, HIV-1 protease inhibitors, CYP2C8 inhibitors, and
Rho-associated protein kinases (ROCK) inhibitors. We
developed a well-trained interpretable deep learning model
for each end point, and their performances are summarized in
Table S4. Then, we visualized some molecules in each end
point and identified their PSubs with the detection protocol.
As shown in Figure S3, the detected PSubs for Ames
mutagenicity49 and hERG blockers50 were consistent with
the structural alerts (SAs) reported in the literature. In
addition, for the other end points with known PSubs, including

HIV-1 protease inhibitors,51 CYP2C8 inhibitors,52 and ROCK
inhibitors,53 the newly detected PSubs also shared similar
structural features. The results demonstrated that our detection
protocol combined with interpretable deep learning models
could indeed extract task-related substructures. However,
current interpretable deep learning models still had limitations,
such as we cannot get the information of whether the PSubs
were correlated positively or negatively with activity. In this
study, PSub represented the substructure within a given
molecule that had great contributions to the PPB effects, and
two case studies were used to prove the definition.

3.2.1. Case Study: PSub for a Single Molecule.
CHEMBL372443 (PubChem CID: 10181815) was reported
as a potent and selective αvβ3/αvβ5 antagonist with
subnanomolar in vitro affinity (Figure 5A). However, because
of its high binding affinity to serum albumin, its efficacy in
animal models was far from satisfactory. According to the
structure−activity analysis of human serum albumin (HSA)
binding data of organic acids, it was reported that the
incorporation of polar groups into a given molecule could
dramatically decrease the affinity toward HSA.54,55 Therefore,
several analogs were designed and synthesized, where the
introduction of N,N-dimethylaminomethyl pyridyl group
greatly reduced PPB fractions, while maintaining subnanomo-
lar activity (Figure 5B).56 Our iPPB model successfully
predicted the directionality of the PPB change of these two
molecules and highlighted important atoms and substructures
that might account for this change. By visualizing the atom
attention weights in two molecules, the new introduced N,N-
dimethylaminomethyl pyridyl group, especially the tertiary
amine atom, was given a darker red than the original phenyl
group (Figure 5A,B), indicating the newly introduced group
had great contributions on the binding affinity of human
plasma proteins. We further identified PSub for the newly
designed compound and highlighted it in red. The detected
PSub mainly contained a N,N-dimethylaminomethyl pyridyl
group, consistent with the results of Raboisson et al.56

In another case of influenza cap-dependent endonuclease
inhibitors, medicinal chemists disclosed the structure−activity
relationships for a novel series of carbamoylpyridine bicycle
compounds and found that the N-3 substituent was critical for
the PPB effect.57 Two representative compounds,
CHEMBL4465872 (PubChem CID: 68096717) and
CHEMBL4462899 (PubChem CID: 67471579), were selected
and predicted with our iPPB model. From the prediction
results (Figure 5C,D), the magnitude and directionality of PPB
change were similar to the result measured in the rat
experiment. Besides, the PSub detected from both compounds
contained the N-3 substituents, indicating that the iPPB model
had indeed learned the important structural information on the
compounds related to the PPB effect.
Overall, the above two case studies demonstrated that the

derivation of PSub from the iPPB model was reasonable and it
could help us to get insights into the model-learned knowledge
related to PPB property.

3.2.2. General Privileged Substructure Analysis. Different
from the PSub for a single molecule, GPSubs are a series of
important PPB-related substructure patterns extracted from
the data set. Through frequency analysis of all fragments from
the training set (Table S5), a total of 22 GPSubs were finally
obtained from the training set.
As shown in Figure 6, nitrogen-containing groups were

identified as the most important functional groups for the PPB

Table 1. Summary of the Optimal Performance of the
Published Models

year author MAE RMSE R2

2006 Votano37 0.141 0.186 0.700
2013 Zhu38 0.119 0.182
2017 Wang46 0.142 0.182 0.704
2018 Tajimi47 0.194 0.230
2018 Watanable48 0.100 0.145 0.728
2018 Sun9 0.114 0.145 0.817
2020 Yuan41 0.079 0.143 0.762
2021 Jimeńez-Luna33 0.208 0.520

Table 2. Comparison of Different Models with the Same
Test Set

model MAE RMSE R2

GCN model44 0.127 0.175 0.620
MGA model45 0.074 0.114 0.835
iPPB model 0.075 0.112 0.841
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effect because they were present in all GPSubs, which were
consistent with the conclusions reported in the previous
literature.58,59 For instance, Hajduk et al. reported a chemo-
metric analysis of ligand binding to human serum albumin with
74 chemical fragments and found that nitrogen-containing

groups were given the highest weighting coefficients.58 In
addition, Yun et al. evaluated three published QSAR models
for PPB prediction with molecular descriptors, of which the
number of basic functional groups was identified as one of the
most critical chemical characteristics.59 Thus, considering the

Figure 5. Structures of (A, B) two αvβ3/αvβ5 antagonists and (C, D) two influenza cap-dependent endonuclease inhibitors with experimental PPB
fractions and predicted PPB fractions. The atom attention weights learned from the iPPB model were used to highlight the atoms. The darker the
color is, the greater the attention weights are. The substructure highlighted in red represents the PSub and the red circle represents important
substructures reported in the literature.

Figure 6. Structures of 22 GPSubs, where “A” represents virtual atoms that can be replaced by any non-hydrogen atoms. Note: the 22 GPSubs are
in no particular order.
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interactions of drugs with proteins, we could presume that,
those nitrogen-containing groups may form hydrogen-bonding
or electrostatic interactions between drugs and plasma
proteins, promoting the reversible binding and maintaining
the concentrations of free species.
We further found that diamines with two carbon units

between two amino groups were another common structural
feature, where one of the amino groups could be replaced by
an oxygen atom, and two amino groups could form a cyclic
ring. Among these 22 GPSubs, such a structural feature of
diamines could be detected from 17 GPSubs, indicating that
great emphasis was placed on diamines by the iPPB model.
Furthermore, azetidine derivatives (GPSub_15, GPSub_16,
GPSub_17, GPSub_18, GPSub_19), 1-methyl-1,4-dihydropyr-
idin-4-ketone (GPSub_20), ethanimine (GPSub_21), and (3-
aminophenyl) amine (GPSub_22) were also highlighted as
relevant substructures corresponding to the binding affinity of
compounds and plasma proteins, of which the substructure of
azetidine derivatives had been reported to be used in PPB
optimization for a better half-life.60

In total, 22 GPSubs were identified from the model. Among
them, we found that nitrogen-containing groups, especially
diamines with two carbon units and azetidine, were important
structural features.
3.3. Second-Level Chemical Rules for PPB Optimiza-

tion. Given the important role of PSubs in the PPB effect, we
supposed that the structural modification around PSubs could
be an effective way for PPB optimization.
3.3.1. Relationships between Substructure Combinations

and PPB Fractions. Taking GPSub_17 as an example, we
analyzed the relationship between GPSub_17 and other
surrounding substructures within the molecule. We integrated
those compounds containing GPSub_17 and extracted another
interesting substructure from them. We found that those
compounds containing both GPSub_17 and 2-hydroxyethyl-1-
ketone substructure tended to have higher PPB fractions, and
the trend was more significant when coexisting with another
substructure (Figure S4). The results demonstrated that the
binding affinity of molecules and plasma proteins could not be
determined by a single substructure but by the results of
interactions between multiple substructures within the
molecule. Therefore, we derived the second-level chemical
rules, i.e., ESub and RESub, whose presence may affect the
function of PSub and induce PPB fractions to change in a
specific direction.
3.3.2. Derivation of ESubs and RESubs for 22 GPSubs. In

total, 225 ESubs and 312 RESubs were derived from the
training set corresponding to 22 GPSubs except for GPSub_8.
Each GPSub had at least 1 and at most 65 ESubs and RESubs
with different functional groups. All these substructure pairs,
namely ESub-GPSub pairs and RESub-GPSub pairs, and their
relationships are illustrated in Tables S6 and S7. Generally, it
was easier to derive second-level chemical rules when the
compounds containing specific GPSubs were of high structural
diversity. Notably, ESubs and RESubs were ordinary
substructures and not necessarily highlighted by the iPPB
model.
Taking GPSub_14 as an example, we finally extracted 23

ESubs and 15 RESubs. As shown in Figure 7, the substructure
of propan-2-ol (“*CC(C)O”) was identified as an ESub
corresponding to GPSub_14. The compounds with this
substructure pair showed significantly higher PPB fractions
(P < 0.05) than those only containing GPSub_14. We thought

that the propan-2-ol might increase the binding affinity by
providing new hydrogen donors for compounds. Meanwhile,
another substructure, (methylamino) acetic acid (“*C(NCC-
(O)O)*”), was extracted and regarded as the RESub
corresponding to GPSub_14. The box plot for two categories
of compounds revealed that the presence of (methylamino)
acetic acid in compounds may decrease the binding affinity to
plasma proteins (P < 0.05) (Figure 7). It was easy to
appreciate that the introduction of acetic acid could decrease
the lipophilicity of compounds, thus decreasing the PPB
fraction. On the basis of the results, we could presume that,
given a novel chemical entity containing highlighted
GPSub_14, we could improve the PPB fraction by introducing
the propan-2-ol or decrease the PPB fraction through directly
modifying GPSub_14 with (methylamino) acetic acid.

3.3.3. Analysis of Substructure Pairs. We calculated and
recorded the frequency of topological distance for each
substructure pair when they were present in compounds. It
could be seen that there were certain rules in some
substructure pairs, for example, “CN(C)C(O)CNCC*” and
“*C(NCC(O)O)*” were always overlapped or adjacent
when they appeared (topological distance ≤1), indicating
that there may be a direct interaction between substructures.
According to the frequency of topological distance, we could

establish schemes for GPSub modification: (1) to replace a
portion or fully replace GPSub with ESub or RESub
(topological distance ≤1 in most cases), (2) to change the
local chemical environment of GPSub by adding another
substructure, i.e., ESub or RESub, or remove ESub or RESub
within molecules (topological distance >1 in most cases), and
(3) otherwise both mentioned schemes could be considered.
Furthermore, SPPB provided an intuitive digital to evaluate

the different impacts of RESub/ESub on corresponding

Figure 7. PPB distribution of compounds containing specific
substructures. The pink box represents the compounds containing
GPSub_14 and (methylamino) acetic acid (RESub). The purple box
represents the compounds containing GPSub_14 and the green box
represents compounds containing GPSub_14 and propan-2-ol
(ESub).
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GPSub. For example, either “CCCC*” (SPPB = −0.117) or
“*CC(O)O” (SPPB = −0.239) could reduce the PPB
fractions when coexisted with GPSub_14, but the effect of
introducing the latter was much better as it had a lower SPPB.
3.3.4. Evaluation of the Applicability for ESub and RESub.

To evaluate the applicability of ESub and RESub, we analyzed
the PPB change of each ESub-GPSub pair and RESub-GPSub
pair with a one-sided Wilcoxon test through the mixed data set
(i.e., the combination of validation set and test set). For a total
set of 537 substructure pairs, there were 178 substructure pairs
(nearly 33%), including 87 ESub-GPSub pairs and 91 RESub-
GPSub pairs, which shared a similar magnitude and
directionality of PPB change (P < 0.05) as in the training
set. The results demonstrated that our derivation methods
could indeed extract useful underlying chemical rules.
Nevertheless, there were still 359 substructure pairs that had

not been verified, which could be attributed to the following
two reasons: (1) the limitation of the validation set and test
set. As mentioned in section 3.1.1, the number of compounds
in the training set was 4-fold that of the combination of the
validation set and test set. Such a large difference may result in
some substructure pairs that cannot be detected in the mixed
data set. (2) There were other substructures beyond the ESub
and RESub, which could also have a great impact on GPSub
simultaneously. In terms of ESub and RESub, we only
considered the interactions between two substructures, but it
was easy to speculate that new changes in binding affinity
would occur when other substructures were added to the
molecule.

4. DISCUSSION
In this study, we introduced a novel computational strategy,
termed IDL-PPBopt, for the prediction and optimization of the
PPB property. The strategy utilized interpretable deep learning
techniques to develop a PPB prediction model and identify
PPB-related substructure patterns (i.e., PSub). With these
important substructures, we proposed the concept of
substructure pairs, which were composed of a PSub and a
second-level substructure (i.e., ESub or RESub). More
importantly, in these substructure pairs, the second-level
substructure provided a promising structural modification
scheme for compounds with a corresponding PSub to obtain a
favorable PPB property. Overall, the strategy identified the
PPB-related substructures and then summarized a series of
chemical rules into substructure pairs to guide lead
optimization.
Compared with other methods such as QSAR models,8,9,61

MMPA,11,14,62 and scaffold hopping,13 there are several
advantages for IDL-PPBopt. The most significant advantage
of IDL-PPBopt is that it could provide a series of specific
structural modification schemes for lead compounds to obtain
a better PPB property, whereas traditional QSAR models could
not. For traditional QSAR models, one has to manually modify
the structure without posterior knowledge and repeat the
prediction until a favorable result was obtained.63 By contrast,
the utilization of interpretable deep learning techniques
enables us to get insight into the model-learned knowledge
of why makes such predictions, which helps to better
understand the molecular mechanisms and rationally design
the structural modification scheme.
Second, IDL-PPBopt has fewer data restrictions when

compared with MMPA. Matched molecular pair refers to a
pair of molecules that differ structurally at a single site, so

ideally the experiment data set should be as large as possible to
afford the data mining of structural transformation rules.11,14

Different from MMPA, IDL-PPBopt explores the relationship
between substructure combinations and PPB property. So even
if in a small data set, this strategy still works because each
substructure pair can be matched into molecules with different
scaffolds. In addition, IDL-PPBopt can extract second-level
chemical rules beyond matched molecular pairs.
Finally, IDL-PPBopt can identify important PPB-related

atoms and substructures. As described in the case study
(Figure 5C,D), both important functional groups and scaffolds
can be detected, which provide clues for setting up structural
modification schemes. Thus, IDL-PPBopt overcomes the
limitation of scaffold hopping strategies and more specifically
guides the optimization of the PPB property.

5. CONCLUSIONS
In the present study, we introduced a computational strategy
named IDL-PPBopt for the prediction and optimization of the
PPB property via an interpretable deep learning method. The
strategy captured important substructure patterns for lead
compounds and customized a series of unique structural
modification schemes through deriving second-level chemical
rules to obtain a favorable PPB property. Therefore, IDL-
PPBopt provided an alternative for the optimization of PPB
fractions of lead compounds and would be used in the
optimization of other pharmacokinetic properties. Never-
theless, there is still room for improvement. For example, the
present study focused on the interactions between two
substructures, but given the complexity of chemical systems,
the combination of more substructures should be considered
in the future.
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