
Supplementary Information for:
DeepPurpose: A Deep Learning Library for
Drug-Target Interaction Prediction
Kexin Huang1, Tianfan Fu2, Lucas M. Glass3, Marinka Zitnik4, Cao Xiao3, and Jimeng
Sun5,*

1Health Data Science, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
2College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
3Analytic Center of Excellence, IQVIA, Cambridge, MA 02139, USA
4Department of Biomedical Informatics, Harvard University, Boston, MA 02115, USA
5Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*e-mail: jimeng@illinois.edu

ABSTRACT

Accurate prediction of drug-target interactions (DTI) enables drug discovery tasks, including virtual screening and drug
repurposing, which can shorten the time to identify promising compound candidates and provide cures to patients. Recently,
there is a growing number of research that developed deep learning (DL) models for DTI. Despite their superior performance,
these research models are difficult to use in real drug discovery practice due to the complexity of deploying the research code
as well as the restricted data formatting, model capacity, and evaluation setting. We present DeepPurpose, a comprehensive
and easy-to-use deep learning library for DTI prediction. DeepPurpose enables training of customized DTI prediction models
with 15 compound and protein encoders and over 50 neural architectures. To address the challenge of method performance
evaluation and comparison, DeepPurpose provides a variety of data splits and automatic data loaders for popular benchmark
datasets. We demonstrate state-of-the-art prediction performance of DeepPurpose on several benchmark datasets.

1 Further Details on DeepPurpose
Overview of DeepPurpose Framework. DeepPurpose uses an encoder-decoder framework for DTI prediction. The input of
DeepPurpose is a compound SMILES string and protein amino acid sequence pair. The output of DeepPurpose is a score that
measures the binding activity of the input compound protein pair. The power of deep learning models comes from its ability to
create predictive feature vectors also called embeddings. In particular, DeepPurpose encodes both input compound and protein
through various deep learning encoders to obtain their deep embeddings, then concatenates and feed them into a decoder, which
is another deep neural network that aims to classify whether the input compound and target protein bind.

Encoders Implemented in DeepPurpose. DeepPurpose provides 8 compound encoders and 7 protein encoders with numer-
ous variants, ranging from classic chemical informatics fingerprints to various deep neural networks. DeepPurpose feed two
latent vectors generated from compound and protein encoders into the decoder to produce the final prediction score. With such
a pipeline design, switching encoders is very simple in DeepPurpose. By configuring a different encoder name DeepPurpose
will automatically switch to the required encoder model and connect them with the decoder for prediction.

Compound Encoders. The input compound is represented by SMILES strings corresponding to molecule graphs (Figure. 1).

1. Morgan Fingerprint1 is a 1024-length bits vector that encodes circular radius-2 substructures. A multi-layer perceptron
is then applied on the binary fingerprint vector.

2. Pubchem2 is a 881-length bits vector, where each bit corrresponds to a hand-crafted important substructures. A
multi-layer perceptron is then applied on top of the vector.

3. Daylight 1 is a 2048-length vector that encodes path-based substructures. A multi-layer perceptron is then applied on top
of the vector.

1Daylight chemical information systems: https://www.daylight.com/

1

Ritonavir: CC(C)C1=NC(=CS1)CN(C)C(=O)NC(C(C)C)C(=O)NC(CC2=CC=CC=C2)CC(C(CC3=CC=CC=C3)NC(=O)OCC4=CN=CS4)O

SARS-CoV2-3CL Protease: SGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVYCPRHVICTSEDMLNPNYEDLLIRKSNHNFLVQA
GNVQLRVIGHSMQNCVLKLKVDTANPKTPKYKFVRIQPGQTFSVLACYNGSPSGVYQCAMRPNFTIKGSFLNGSCGSVGFNIDYDCVSFCYMHH
MELPTGVHAGTDLEGNFYGPFVDRQTAQAAGTDTTITVNVLAWLYAAVINGDRWFLNRFTTTLNDFNLVAMKYNYEPLTQDHVDILGPLSAQTG
IAVLDMCASLKELLQNGMNGRTILGSALLEDEFTPFDVVRQCSGVTFQ

Figure 1. Examples of input representation. Compound is represented as SMILES string and protein is represented as amino
acid sequence. The length distribution of the input are provided.

4. RDKit-2D 2 is a 200-length vector that describes global pharmacophore descriptor. It is normalized to make the range of
the features in the same scale using cumulative density function fit given a sample of the molecules.

5. CNN3 is a multi-layer 1D convolutional neural network. The SMILES characters are first encoded with an embedding
layer and then fed into the CNN convolutions. A global max pooling layer is then attached and a latent vector describe
the compound is generated.

6. CNN+RNN4, 5 attaches a bidirectional recurrent neural network (GRU or LSTM) on top of the 1D CNN output to
leverage the more global temporal dimension of compound. The input is also the SMILES character embedding.

7. Transformer6 uses a self-attention based transformer encoder that operates on the sub-structure partition fingerprint7.

8. MPNN8 is a message-passing graph neural network that operate on the compound molecular graph. It transmits latent
information among the atoms and edges, where the input features incorporate atom/edge level chemical descriptors and
the connection message. After obtaining embedding vector for each atom and edge, a readout function (mean/sum) is
used to obtain a (molecular) graph-level embedding vector.

Protein Encoders. The input targets are proteins represented as sequences of 20 different kinds of amino acids (Figure. 1).

1. AAC9 is a 8,420-length vector where each position correpsonds to an amino acid k-mers and k is up to 3.

2. PseAAC10 includes the protein hydrophobicity and hydrophilicity patterns information in addition to the composition.

3. Conjoint Triad11 uses the continuous three amino acids frequency distribution from a hand-crafted 7-letter alphabet.

4. Quasi Sequence12 takes account for the sequence order effect using a set of sequence-order-coupling numbers.

5. CNN3 is a multi-layer 1D convolutional neural network. The target amino acid is decomposed to each individual
character and is encoded with an embedding layer and then fed into the CNN convolutions. It follows a global max
pooling layer.

6. CNN+RNN4, 5 attaches a bidirectional recurrent neural network (GRU or LSTM) on top of the 1D CNN output to
leverage the sequence order information.

7. Transformer6 uses a self-attention based transformer encoder that operates on the sub-structure partition fingerprint7 of
proteins. Since transformer’s computation time and memory is quadratic on the input size, it is computational infeasible
to treat each amino acid symbol as a token. The partition fingerprint decomposes amino acid sequence into protein
substructures of moderate sized such as motifs and then each of the partition is considered as a token and fed into the
model.

2https: //github.com/bp-kelley/descriptastorus

2/6

Note on Feature-Architecture Combinations During implementation, we notice that all of the architectures require specific
input features, which means other input features are incompatible with the architecture. DeepPurpose currently supports five
architectures: MLP, CNN, CNN+RNN, Transformer, and MPNN, and it supports five types of features: fingerprints, SMILES
string, ESPF fingerprint, and molecular graph. Notice that these architectures are not suitable for alternative features. MLP
can take in fingerprints vectors, but one-hot matrices of SMILES or graphs are incompatible. CNN/CNN+RNN expect a
matrix where each row is a one-hot vector for an entity in the SMILES/Amino Acids, but cannot take a single fingerprint
vector or graphs. Transformer is quadratic to the input length, which makes the long fingerprints and SMILES/Amino acids
computationally expensive. MPNN operates on graphs, thus, it is incompatible with fingerprints, SMILES, ESPF. In addition,
the current included features encoders combinations are not randomly assembled but are previously included in the literature
and have shown strong performance for molecular modeling with compounds and targets.

Programming Framework The functionality of DeepPurpose is modularized into six key steps where a single line of code
can invoke each step: a) Load the dataset from a local file or load a DeepPurpose benchmark dataset. b) Specify the names of
compound and protein encoders. c) Split the dataset into training, validation and testing sets using data_process function,
which implements a variety of data-split strategies. d) Create a configuration file and specify model parameters. If needed,
DeepPurpose can automatically search for optimal values of hyper-parameters. e) Initialize a model using the configuration
file. Alternatively, the user can load a pre-trained model or a previously saved model. f) Finally, train the model using train
function and monitor the progress of training and performance metrics.

Downstream Prediction, Objective Function, and Inference. After DeepPurpose obtains latent compound and protein
embedding, both are fed into a multi-layer perceptron decoder. There are two classes of tasks/datasets in drug target interaction
prediction. One’s label is binding score such as Kd, IC50, and they are continuous values while the other one’s label is binary,
whether or not they can bind. DeepPurpose is able to automatically detect whether the task is regression for continuous label or
classification for binary label by counting the number of unique labels in the data. For binding affinity score prediction, it uses
mean squared error (MSE) loss (Eq. 1). For binary interaction prediction, it uses binary cross entropy (BCE) loss (Eq. 2).

LMSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

LBCE =
1
n

n

∑
i=1

yilog(ŷi)+(1−yi) log(1− ŷi) , (2)

where yi is the true label and ŷi is the predicted label for i-th compound-protein pair. For evaluation metrics, we use MSE,
Concordance Index, and Pearson Correlation for continuous regression and Receiver Operating Characteristics-Area Under the
Curve (ROC-AUC), Precision Recall-Area Under the Curve (PR-AUC) and F1 score at threshold 0.5 for binary classification.
During inference, given new proteins or new compounds, the model prediction is used as the predicted binding score/interaction
probability.

2 Demonstration of DeepPurpose for Drug-Target Prediction
Next, we show how to reproduce results shown in the main paper. In this example, we will use the CNN model to embed
compounds and proteins from the DAVIS dataset13. We will train the CNN encoder model from scratch. Here are the necessary
steps in DeepPurpose:

1. Start by using the DeepPurpose.dataset to load the DAVIS dataset:

>>> from DeepPurpose import DTI
>>> from DeepPurpose.utils import *
>>> from DeepPurpose.dataset import *
>>>
>>> X_drug, X_target, y = load_process_DAVIS(SAVE_PATH, binary=False)

2. Select the encoder models. Here, we use CNN to embed both compounds and proteins. Users can specify a variety of
encoder models, which are implemented in DeepPurpose:

>>> drug_encoding, target_encoding = 'CNN', 'CNN'

3. Split data into training and test sets:

3/6

Morgan
Pubchem
Daylight
RDKit 2D

DNN CNN

max
pool

C
C
(
C…
C

…

x 3

...

C
C
(
C
…
C

…
...

CNN + RNN

x 3

..

....

Transformer

..

. ..
.

[CLS]

..

.

MPNN

Compound Encoders

AAC

PseAAC

ConTriad

Quasi-seq

DNN CNN

max
pool

M
G
S
L
…
C

…

x 3

...
…

...

CNN + RNN

x 3

M
G
S
L
…

C
..
. ...

Transformer

..

...
.

[CLS]

..

.

MGSL

QPDAG

NAS

Protein Encoders

Protein
Embedding

Compound
Embedding

Compound
CC(C(C1=CC=CC=C1)O)NC

Protein
MFRQEQPLAEGSFAPMG
SLQPDAGNASWNGTEAP
………………
GYCNSSLNPVIYTIFNHDF
RRAFKKILCRGDRKRIV

Molecular Encoding Module

Compound
Encoder

Compound
Encoder

Drug Property Prediction

Compound
Encoder

QSAR,
HTS,
QM

Decoder

Protein Function Prediction

Protein
Encoder

Structure,
GO Term,
HTS

Decoder

Drug-Drug Interaction Prediction

DDI Type,
Side Effect

Compound
Encoder

Protein
Encoder

Drug-Target Interaction Prediction

Binding
Affinity

Compound
Encoder

Protein-Protein Interaction Prediction

Binding
Affinity

Protein
Encoder

Protein
Encoder

Decoder =

Decoder Decoder

Decoder

Problem Framework

Figure 2. DeepPurpose supports DTI, DDI, PPI, Drug Property and Protein Function Prediction tasks.

>>> train, val, test = data_process(X_drug, X_target, y, drug_encoding, \
target_encoding, split_method='random', \
frac=[0.7,0.1,0.2], random_seed = 1)

4. Generate customized model configurations. Users can adjust model parameters and specify model hyperparameters. We
use the DeepDTA’s configuration14:

>>> config = generate_config(drug_encoding, target_encoding, \
cls_hidden_dims = [1024,1024,512], \
train_epoch = 100, LR = 0.001, batch_size = 256, \
cnn_drug_filters = [32,64,96], \
cnn_drug_kernels = [4,8,12], \
cnn_target_filters = [32,64,96], \
cnn_target_kernels = [4,8,12])

5. Initialize the model:

>>> model = models.model_initialize(**config)

6. Train the model. DeepPurpose prints the output of training process and saves testing metrics and figures in a directory
with results:

>>> model.train(train, val, test)

Note that steps 2-6 are needed when we train deep models from scratch. Alternatively, we can use DeepPurpose’s pre-trained
models:

>>> models.model_pretrained(model = 'CNN_CNN_DAVIS')

DeepPurpose provides a variety of pre-trained models, which further increase the applicability of DeepPurpose package to
downstream prediction tasks.

3 Illustration of DeepPurpose for Other Tasks Related to Compound and Protein
In addition to DTI prediction, DeepPurpose also supports user-friendly programming frameworks for other molecular modeling
tasks, namely, drug/protein property prediction, drug-drug interaction prediction, protein-protein interaction prediction tasks.
We provide a framework illustration in Figure. 2. The programming framework is similar to the DTI prediction illustrated
above. We describe the sample programming codes below.

4/6

• Drug Property Prediction:

>>> from DeepPurpose import CompoundPred
>>> from DeepPurpose.utils import *
>>> from DeepPurpose.dataset import *
>>>
>>> X_drug, y = read_file_compound_property(PATH)

>>> drug_encoding = 'CNN'
>>> train, val, test = data_process(X_drug, y, drug_encoding, split_method='random', \

frac=[0.7,0.1,0.2], random_seed = 1)
>>> config = generate_config(drug_encoding)
>>> model = CompoundPred.model_initialize(**config)
>>> model.train(train, val, test)

• Drug Drug Interaction Prediction:

>>> from DeepPurpose import DDI
>>> from DeepPurpose.utils import *
>>> from DeepPurpose.dataset import *
>>>
>>> X_drug, X_drug_, y = read_file_training_dataset_drug_drug_pairs(PATH)

>>> drug_encoding = 'CNN'
>>> train, val, test = data_process(X_drug, X_drug_, y, \

drug_encoding, split_method='random', \
frac=[0.7,0.1,0.2], random_seed = 1)

>>> config = generate_config(drug_encoding)
>>> model = DDI.model_initialize(**config)
>>> model.train(train, val, test)

• Protein Protein Interaction Prediction:

>>> from DeepPurpose import PPI
>>> from DeepPurpose.utils import *
>>> from DeepPurpose.dataset import *
>>>
>>> X_target, X_target_, y = read_file_training_dataset_protein_protein_pairs(PATH)

>>> target_encoding = 'CNN'
>>> train, val, test = data_process(X_target, X_target_, y, \

target_encoding, split_method='random', \
frac=[0.7,0.1,0.2], random_seed = 1)

>>> config = generate_config(target_encoding)
>>> model = PPI.model_initialize(**config)
>>> model.train(train, val, test)

• Protein Function Prediction:

>>> from DeepPurpose import ProteinPred
>>> from DeepPurpose.utils import *
>>> from DeepPurpose.dataset import *
>>>
>>> X_target, y = read_file_training_dataset_protein_property(PATH)

>>> target_encoding = 'CNN'
>>> train, val, test = data_process(X_target, y, \

target_encoding, split_method='random', \

5/6

frac=[0.7,0.1,0.2], random_seed = 1)
>>> config = generate_config(target_encoding)
>>> model = ProteinPred.model_initialize(**config)
>>> model.train(train, val, test)

4 Illustration of using Gradio and DeepPurpose for Web UI
>>from DeepPurpose import utils
>>from DeepPurpose import DTI as models
>>import gradio

>>model = models.model_pretrained(model = 'MPNN_CNN_BindingDB')

>>def DTI_pred(drug, target):
>> X_pred = utils.data_process(X_drug = [drug], X_target = [target], y = [0],

drug_encoding = 'MPNN', target_encoding = 'CNN',
split_method='no_split')

>> y_pred = model.predict(X_pred)
>> return str(y_pred[0])

>> gradio.Interface(DTI_pred,
[gradio.inputs.Textbox(lines = 5, label = "Drug SMILES"),
gradio.inputs.Textbox(lines = 5, label = "Target Amino Acid Sequence")],
gradio.outputs.Textbox(label = "Predicted Affinity")).launch(share=True)

References
1. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. chemical information modeling 50, 742–754 (2010).

2. Kim, S. et al. Pubchem 2019 update: improved access to chemical data. Nucleic Acids Research 47, D1102–D1109 (2019).

3. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In NeurIPS,
1097–1105 (2012).

4. Cho, K. et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In EMNLP,
1724–1734 (2014).

5. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Computation 9, 1735–1780 (1997).

6. Vaswani, A. et al. Attention is all you need. In NeurIPS, 5998–6008 (2017).

7. Huang, K., Xiao, C., Hoang, T. N., Glass, L. M. & Sun, J. Caster: Predicting drug interactions with chemical substructure
representation. AAAI (2020).

8. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In
ICML, 1263–1272 (2017).

9. Reczko, M. & Bohr, H. The DEF data base of sequence based protein fold class predictions. Nucleic Acids Research 22,
3616 (1994).

10. Chou, K.-C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21,
10–19 (2005).

11. Shen, J. et al. Predicting protein–protein interactions based only on sequences information. Proc. Natl. Acad. Sci. 104,
4337–4341 (2007).

12. Chou, K.-C. Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochemical and
Biophysical Research Communications 278, 477–483 (2000).

13. Davis, M. I. et al. Comprehensive analysis of kinase inhibitor selectivity. Nat. biotechnology 29, 1046 (2011).

14. Öztürk, H., Özgür, A. & Ozkirimli, E. Deepdta: deep drug–target binding affinity prediction. Bioinformatics 34, i821–i829
(2018).

6/6

	Further Details on DeepPurpose
	Demonstration of DeepPurpose for Drug-Target Prediction
	Illustration of DeepPurpose for Other Tasks Related to Compound and Protein
	Illustration of using Gradio and DeepPurpose for Web UI
	References

