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The disruptive impact deep generative models have delivered 
over the past couple of years has found applications in vari-
ous aspects of content creation. Neural networks have proven 

potent in generating news headlines1, synthesizing music2 or poems3 
and drawing realistic paintings4. In the life sciences, they have 
driven innovation in tasks such as bioactivity and synthesis pre-
diction5, segmentation of biological images6 and de novo design of 
molecules7. In the latter domain, in particular, deep learning serves 
as a prominent stakeholder by offering the capability to direct the 
generative process towards chemical regions of interest8–10. A chal-
lenging task deep networks are trying to address is inverse molec-
ular design11—the generation of molecular structures that meet 
desired conditions, such as specific physicochemical properties or 
properties predicted by quantitative structure–activity relationship 
(QSAR) models.

The ‘simplified molecular-input line-entry system’ (SMILES)12 
is a popular choice13 to represent molecules when using recur-
rent neural networks (RNNs). The alphanumeric nature of 
SMILES strings makes them compatible with state-of-the-art 
natural language-processing algorithms, such as RNNs, perform-
ing sequence modelling and generation. In particular, RNNs are a 
widely accepted approach to the task of sequence modelling because 
of their ability to memorize previously predicted characters of a par-
tially finished SMILES string and incorporate them into their infer-
ence while building up the complete sequence14.

Unbiased RNN generative models trained on a relatively small 
number of SMILES strings have been shown to be able to cover a 
much larger chemical space15. Moreover, augmentation of a data-
set using SMILES with randomized atom order has demonstrated 
state-of-the-art performance with respect to the uniformity and 
completeness of the coverage of chemical regions, compared to 

simply using their canonical variants16. After learning the general 
rules of the chemical space, for example atom type, bond type and 
size of molecules, the prior network can be further specialized using 
smaller datasets in a transfer learning fashion17 or using reinforce-
ment learning18–20.

More complicated architectures, such as autoencoders21, which 
include two jointly trained neural networks responsible for convert-
ing the input to and back from a latent representation, have been 
extensively benchmarked22,23. The quality of the latent space of an 
autoencoder was also proven to benefit from the usage of random-
ized SMILES strings24–26. Moreover, the latent space representation 
of a molecule can be used in optimizing QSAR endpoints using 
generative adversarial networks (GANs)27, Bayesian optimization21 
or particle swarm optimization28. The combination of a heteroen-
coder25, trained on pairs of randomized SMILES strings of the same 
molecule, with a GAN29 has further demonstrated automatic navi-
gation towards properties of interest.

Alternatively, learning to precondition structure generation elim-
inates the need for optimization loops. One approach demonstrated 
this capability by concatenating SMILES strings with the proper-
ties of interest as input to a variational autoencoder30. Molecular 
graphs31 have also been used in pairs along with the desired  
change in properties as conditions on which to train a variational 
autoencoder. Latent representations that are generated by a GAN 
architecture may also be exploited as input conditions for decoding 
neural networks29.

In this work, we demonstrate that molecule-side informa-
tion, such as molecular descriptors, can be incorporated into the 
RNN-based generative process. We construct conditional recur-
rent neural networks (cRNNs) by setting the internal states of long 
short-term memory cells (LSTMs32) after some input conditions. 
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The architecture is related to, but conceptually simpler than, a con-
ditional autoencoder, as we only utilize an RNN-based decoder part. 
The generation is conditioned with properties calculated directly 
from the molecular structure or QSAR models, so the encoder 
part is no longer needed. The conditional seed successfully steers 
the focus of the RNN towards a particular subset of the chemical 
domain, such as bioactive compounds, with respect to a specific 
protein target. Our approach complements existing state-of-the-art 
conditional generative models such as conditional variational auto-
encoders, reinforcement learning and so on, and may be used for 
populating of specialized molecular libraries. We also demonstrate a 
novel way of assessing the focus of a probabilistic sequence genera-
tor using negative log-likelihood (NLL) plots. Owing to the nature 
of the problem for which our method is showcased, it may also be 
generalized to other applications where conditioning of sequential 
data is needed, such as natural language generation or time-series 
forecasting.

Results and discussion
Resulting datasets. The filtering process described in the Methods 
resulted in the sizes of datasets shown in Table 1. The QSAR support 
vector classification model with parameters C = 5.53 and γ = 0.022 
was selected as the one with the highest F1-score (0.92) towards the 
DRD2 validation set. This model was used to label all compounds in 
the ChEMBL dataset, leading to 2.3% of the ChEMBL compounds 
being classified with a probability greater than 50% of being active 
against the DRD2 receptor (Table 1). As shown in Extended Data 
Fig. 1, the property distributions of the two datasets largely follow 
each other, except that the QED score of the DRD2 dataset is shifted 
towards higher values because those molecules are expected to be 
a priori drug-like.

NLL distributions of datasets. The NLL of sampling molecules 
from the ChEMBL25 dataset and from the known active com-
pounds of the DRD2 dataset was calculated for all different models.  

In total, 1,000 molecules were randomly selected from each of the 
ChEMBL25 train and ChEMBL25 test datasets and the active com-
pounds of the DRD2 train and DRD2 test datasets. After performing 
10,000 randomization operations per molecule, all unique random 
strings per molecule were collected. Then, by using equation (5), 
the NLL of sampling a molecule was approximated as the cumula-
tive likelihood over all its uniquely derived random representations, 
given each model.

Figure 2 shows all different NLL distributions using the smooth-
ened estimate of the density function of the underlying histograms. 
As showcased in Supplementary section ‘Likelihood of sampling 
of canonical SMILES’, selecting the canonical form to calculate the 
NLL plots of Fig. 2 is not expected to alter the quantitative conclu-
sions that can be drawn from them.

The FPB model results in the sharpest distribution of NLL  
values with the lowest mean and variance compared to the other 
three models with respect to all datasets. Similarly, the PCB model 
shows the second lowest NLL mean value per dataset. The arrange-
ment of the plots is as expected, because the amount of chemical 
information in the 2,048 bits of a Morgan fingerprint exceeds the 
information that is contained within the seven scalar descrip-
tors used in the PCB model, especially from a structural point 

Table 1 | Size and percentage of active compounds per dataset

Dataset Total samples Active %

DRD2_TRAIN 71,512 6.7a

DRD2_VALID 17,800 6.3a

DRD2_TEST 17,817 6.4a

ChEMBL25_TRAIN 1,347,173 2.3b

ChEMBL25_TEST 149,679 2.3b

aKnown active compounds. bPredicted active compounds (P ≥ 0.5) by the QSAR model.
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Fig. 1 | cRNN models based on different conditions. a, The physchem-based (PCB) model accepts six scalar properties: the Wildman–Crippen partition 
coefficient (logP), topological polar surface area (TPSA), molecular weight (MW), drug-likeness (QED), number of hydrogen-bond acceptors (HBA) 
and donors (HBD) as calculated by the RDKit Python library, concatenated with the probabilistic bioactivity prediction of the QSAR model. b, The 
fingerprint-based (FPB) model accepts a 2,048 bit Morgan fingerprint vector calculated by RDKit. Both models are trained on randomized SMILES strings 
as targets. c, Model inference is biased by the conditional seed and triggered by the starting character ‘^’. Inference stops when ‘$’ is generated.
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of view. The graphs of the conditional models show a slight shift  
towards higher values for the DRD2 datasets due to the uncertainty 
that is inherent to unseen data. Nevertheless, both conditional 
models have a lower mean NLL—and thus a higher probability—
of sampling a SMILES string representation corresponding to  
the molecule from which the conditions originated, compared to 
the prior network both before and after being trained with trans-
fer learning. The transfer learning model curve exchanges its  
relative position with the prior model curve between the two 
datasets because the focus of the model trained with transfer 
learning has been shifted away from the majority of molecules in 
ChEMBL and thus it is more difficult to sample their respective  
SMILES strings.

Ideally, all models should be able to sample the intended chemi-
cal space uniformly and this would be expressed by zero variance 
of the NLL distribution, which should approximate a Dirac distri-
bution. Under such ideal conditions, it would be possible to esti-
mate the size of the output space by simply inverting the (constant) 
probability of sampling any molecule; for example, a probability of 
0.01 would mean that, in total, 100 molecules could be sampled. As 
an example, a sharp NLL distribution around a value of 10 would 
imply a uniform probability distribution at a value of 4.54 × 10−5 or 
an equiprobable output space of 22,000 unique molecules. Similarly, 
NLL values of 20 and 30 would point to output domains of ~108 
and 1013 molecules, respectively. Even though the distributions of 
Fig. 2 are far from Dirac distributions, a comparison of the distribu-
tions may serve as a qualitative insight into the relative change in the 
order of magnitude of their output space.

Additionally, the position of the distributions can be interpreted 
in two ways. First, the closer to zero the NLL distribution moves, 
the more deterministic the output of the model gets. This can be 
due to either limited generalizability of the model or a more detailed 
description of the target, such as in the case of a conditional net-
work. Second, differences in NLL distributions between train and 
test sets can be a sign of overfitting or mode collapse15. This seems 
to be the case with the transfer learning model, which exhibits a 
distribution with a lower mean NLL towards the active compounds 
in the DRD2 train dataset compared to the unseen active ones in 
the DRD2 test set. In contrast, the NLL distributions of sampling all 
four datasets with either of the conditional networks, regardless of 
the dataset, are on par, which makes overfitting a less likely cause. 
Here, the similar distributions, regardless of the dataset, demon-
strate that the conditional models can generate valid SMILES that 
correspond to both active and inactive compounds with equal ease, 
given that the states are set accordingly.

Sampling of active molecules. The structures shown in Fig. 3 were 
suggested by the two conditional networks using known active com-
pounds from the DRD2 test set as conditional seeds, which were 
selected randomly (shown in the centre). The SMILES strings cor-
responding to the exemplified molecules in the dashed circle were 
generated by the FPB model, whereas those outside it were gener-
ated by the PCB model. A batch of 256 SMILES strings was sampled 
per model per  seed, and all molecules displayed were filtered to 
have a QED score greater than 0.8 and were predicted to be active 
by the QSAR model with a probability greater than 0.8, given that 
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Fig. 2 | NLL of sampling known molecules. a–d, The NLL values of 1,000 molecules randomly drawn from each of four datasets (ChEMBL25_TRAIN (a), 
ChEMBL25_TEST (b), DRD2_TRAIN_ACTIVES (c) and DRD2_TEST_ACTIVES (d)) were calculated using the PCB, FPB, transfer learning (TL) and prior 
models. For each molecule, 10,000 randomizations were performed, and its NLL was approximated as the cumulative NLL of sampling all unique random 
strings obtained for that molecule out of the 10,000 randomization attempts. The plots show the estimate of the density of the underlying NLL histograms 
using the kdeplot function of the seaborn Python library with a bandwidth value of 3.0. The mean and standard deviation of the sampled data distributions 
are annotated. The ChEMBL25 sets consist of both predicted active and inactive compounds, whereas only the known actives were selected from the 
DRD2 sets for this test. The graphs are truncated at a maximum NLL value of 70.
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both seeds met those values. Of all 256 generated SMILES strings 
in each batch sampled by the FPB model, ~5% referred to unique 
molecules that jointly satisfy these challenging constraints, because 
of high repeatability in the output (discussed in the next section). 
Similarly, ~5% and 22% of the PCB-generated SMILES strings cor-
responded to unique molecules that meet the specifications of the 
first and second seed, respectively. The rest of the unique molecules 
corresponding to valid generated SMILES strings for those two 
given seeds are shown in Supplementary Figs. 4–11.

The FPB-based generations demonstrate almost identical struc-
ture to the seed, at least at a scaffold level. On the other hand, the 
PCB-generated molecules have clearly different scaffolds from the 
seed, which can be attributed to the fact that the selected physico-
chemical descriptors do not encode structural information directly.

The correlation between the seed and the output of the models 
was further investigated by calculating the Tanimoto similarity of 
multiple batches of generated SMILES strings. For that purpose, 100 
seeds were randomly selected from the unseen active compounds of 
the DRD2 test set and, for each one, 256 SMILES strings were gen-
erated in a batch by each of the conditional models, yielding a total 
of 25,600 SMILES strings. For each batch, the pairwise Tanimoto 
similarities were calculated between the Murcko scaffolds of the 
associated seed and of all unique molecules behind the generated 
SMILES strings. Given that fingerprints are not a complete molecu-
lar representation, they may be decoded to different molecules than 
the ones from which they originated, yet frequently with the same 
scaffold. To account for fingerprints that are not naturally decoded 
to the exact seeding molecule, the similarity of scaffolds is shown 
because it enjoys higher values even when scaffold decoration is 
slightly different. By doing this, we emphasize even more the fact 
that the FPB model maintains the structural characteristics of the 
input whereas the output of the PCB is structurally dissimilar to the 
molecule (and the scaffold of the molecule) from which the seeding 
conditions originated. The exact reconstructability of the two mod-
els on a molecular level is reported in Table 2.

The resulting Tanimoto similarity histograms are plotted in 
Extended Data Fig. 2a, while histograms of the predicted probability  

of them being active towards DRD2 are plotted in Extended Data 
Fig. 2b. The PCB-generated scaffolds tend to be dissimilar to their 
seeds, in contrast to the FPB-generated ones, the similarity of which 
to the seeding scaffold follows a bimodal distribution that is shifted 

Table 2 | Comparison of cRNN and transfer learning models 
with respect to custom metrics and the MOSES suite

Metrics Models

PCB FPB TL

MOSES

 Valid ↑ 0.881 0.951 0.968

 Unique@1k ↑ 0.996 0.276 1.000

 Unique@10k ↑ 0.996 0.304 0.996

 FCD ↓ 7.981 5.590 8.438

 SNN ↑ 0.341 0.774 0.375

 Frag ↑ 0.920 0.966 0.938

 Scaf ↑ 0.094 0.491 0.193

 IntDiv ↑ 0.845 0.834 0.846

Custom

 Noveltya ↑ 0.878 0.299 0.953

 Predicted active fractionb ↑ 0.536 0.194 0.474

 Reconstructabilityc – ≤0.001 0.630 –

The DRD2 test set was used as a reference set for the MOSES framework and the seed conditions 
were drawn from it to be used by the PCB and the FPB cRNN models. Upwards-pointing arrows 
show that higher scores are considered better. Downwards-pointing arrows show that lower scores 
are considered better. Numbers in bold show the best score for that metric. Molecules with a 
predicted probability greater than 0.5 by the QSAR model were considered active. Uniqueness, 
novelty, predicted active fraction and reconstructability were assessed on a molecular level 
using the underlying canonical SMILES behind all generated strings. aCalculated with respect 
to the molecules behind the generated SMILES strings and the merged active molecules of the 
DRD2_TRAIN and ChEMBL25_TRAIN datasets only. bFraction of 25,600 generated SMILES strings 
that are valid and refer to unique and predicted active molecules. cCalculated based on the most 
frequently sampled SMILES string out of 256 strings per conditional seed.

Fig. 3 | Unique structures corresponding to generated SMILES strings from two different known active seeds. The seeds were randomly selected from 
the DRD2 test set and are shown in the centre. The selected FPB (within the dashed circle) and PCB (outside the dashed circle) generations shown 
have QED values of ≥0.8 and a predicted active probability of ≥0.8. The FPB-generated molecules mostly maintain the seeding scaffold whereas the 
PCB-generated ones change scaffolds. A quantitative investigation of more structures is reported in Table 2 and the rest of the unique generated molecules 
for those two given seeds are shown in Supplementary Figs. 4–11.
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to the right, showing that similar or identical scaffolds are gener-
ated. However, in both cases, the distribution of active probabilities 
is comparable (Extended Data Fig. 2b), proving that both models 
can generate SMILES strings that refer to predicted active com-
pounds given the appropriate conditions. Evaluation of the perfor-
mance of the QSAR model on all ‘unseen’ known active molecules 
of the DRD2 test set shows that it misclassifies 10% of all cases as 
inactive (with a predicted active probability less than 0.5), whereas 
in 4% of all cases it mis-assigns a probability of being active in the 
range of 0.0–0.1. This implies that the inherent imperfections in 
the QSAR model may be responsible for the respective mode col-
lapse observed in Extended Data Fig. 2b. The reason why the peak 
around an active probability of 0 of the FPB curve is higher than for 
PCB is because the FPB model offers a substantially lower number 
of unique molecules behind its generated SMILES strings and, thus, 
misclassification errors are enhanced when normalizing the plots 
with the histogram density instead of bin count.

This supports the previous observation that the PCB model can 
generate different scaffolds from the same seed. Additionally, it iden-
tifies the sampling domain of each model. The main advantage of 
using fingerprints is that structural restrictions are directly encoded, 
a fact that is of use when scaffolds that are similar or identical to the 
seed need to be generated. On the other hand, using physicochemi-
cal properties as conditions offers a more versatile sampling, so this 
model could thus be applicable to explorations outside of a known 
scaffold, yet within the boundaries of the desired property setpoints.

Benchmarking. To quantitatively assess the performance of the 
proposed cRNN architecture against the selected baseline as well as 
other published work in the field, it was run through relevant and 
compatible metrics from the two main benchmarking suites in the 
field of de novo molecular generation: MOSES22 and GuacaMol23.

MOSES benchmark. The two cRNN models, along with the baseline 
trained with transfer learning, were tested with respect to the met-
rics provided by the MOSES framework22. For that purpose, 25,600 
SMILES were additionally sampled by the model trained with trans-
fer learning, similar to the sampling done for the other models as 
described in the previous sections. The metrics were calculated with 
respect to the active compounds of the DRD2 test set that was used 
as a reference dataset.

The PCB model performs the worst with respect to most met-
rics, except for the predicted active fraction and uniqueness of 
underlying canonical SMILES among 10,000 sampled SMILES 
strings. However, the metrics need to be interpreted carefully. The 
seed conditions used for the generation were extracted from active 
compounds of the DRD2 test set, which were not included in the 
training set of both conditional models. The active class is heavily 
under-represented in the datasets on which they were trained (only 
2.3% of predicted actives in ChEMBL; Table 1) and thus the set of 
conditional seeds corresponds to a demanding task, which becomes 
even harder for the PCB model to fulfil because much less informa-
tion is included in the physicochemical descriptors than in the fin-
gerprints. On the contrary, the transfer learning model was trained 
directly on known actives and it is independent of any input dur-
ing generation, while trying to replicate what has been seen during 
training. Lacking input conditions offers an implicit advantage over 
the conditional models in terms of valid generated SMILES strings, 
because specific input combinations may cause a consistent drop in 
generated validity. However, within a sample of 10,000 generated 
SMILES strings, the PCB and the transfer learning models are on par 
regarding uniqueness of the underlying canonical SMILES behind 
their sampled strings. This metric is a performance indicator, yet 
it does not fully expose the differences between the models, sim-
ply because the output space is too large to generate enough strings 
with duplicate canonical forms within only 10,000 sampled SMILES 

strings. On the other hand, the FPB model has low uniqueness, but 
this is expected as the more deterministic nature and the lower num-
ber of possible SMILES to sample from a single fingerprint naturally 
leads to duplicated outputs and penalized uniqueness.

The Fréchet ChemNet distance33 (FCD) underlines the chemi-
cal distance between the reference and the generated distributions. 
As such, it is heavily in favour of the conditional models, because 
the seeds drawn from the test set purposely force the generated dis-
tributions towards it and consequently towards lower FCD values. 
Moreover, because the DRD2 train and test sets had been clustered 
and the fact that the transfer learning model was further trained on 
one of them explains the deviation from the other with respect to 
the FCD metric. Internal diversity also exhibits expected behaviour 
for a similar reason; the seeds narrow the output down compared to 
an ideally random sampler in the DRD2 active domain, such as the 
transfer learning model.

Among all 25,600 SMILES generations, a higher novelty of 
underlying canonical SMILES was achieved by the transfer learn-
ing model. This was due to the lower validity and uniqueness of the 
conditional models because the upper novelty boundary is defined 
by the product of validity and uniqueness. For the PCB model  
that boundary is ~0.881 × 0.996 = 0.877, which is reached as seen 
in Table 2. This is an indicator that the PCB model, even though it 
suffers from lower validity compared to the transfer learning model, 
does not copy the training dataset. Similarly, the upper novelty 
boundary for the FPB is around 0.951 × 0.304 = 0.289, which was 
slightly exceeded because uniqueness@10k calculated by MOSES is 
probably lower than the complete uniqueness of all 25,600 generated 
SMILES strings. For the transfer learning model, the upper bound-
ary 0.968 × 0.996 = 0.964 was almost reached as well. As observed, 
even though the absolute number of novel compounds was higher 
for the transfer learning model, none of the models replicated the 
training datasets.

It is noteworthy that a higher fraction of predicted active mol-
ecules on the basis of the underlying unique canonical SMILES 
strings was sampled by the PCB model, whereas the least of them 
were generated by the FPB model. The FPB model was punished 
because of its high reconstructability, which negatively affects its 
uniqueness score.

More specifically, the molecular reconstructability of the input 
descriptors was assessed by trying to retrieve the molecule that was 
represented by them at each batch. By identifying the most fre-
quently sampled canonical SMILES string in batches of 256 gen-
erated strings given a single conditional seed, almost 65% of the 
FPB-generated batches primarily consisted of strings with the same 
canonical form as the molecule behind the seeding fingerprint. 
Those were considered successful reconstructions. Further experi-
mentation with a deeper FPB model with four decoding layers and 
512 LSTM units each made it possible to increase the reconstruc-
tability to 72%. Fingerprints are commonly thought of as being 
non-invertible (Table 19) due to information loss in the embedding 
and hashing operations. However, as Morgan fingerprints can be 
understood as graph convolutional embeddings34, they are in fact 
partly invertible when considered in the scope of the training set. 
Nonetheless, reconstructions were very scarce when using the phys-
icochemical descriptors in the PCB model, because 256 sampled 
SMILES strings were not enough to identify a specific molecule in 
the diverse chemical space behind a set of given input conditions.

To investigate whether novelty of the conditional models is influ-
enced by the training or seeding dataset, 100 new conditions were 
drawn from each one of the training and test subsets of ChEMBL. 
Then, the novelty of the unique canonical forms behind all valid 
SMILES strings out of 256 generated strings (one batch) per set of 
conditions was assessed with respect to both datasets. The results 
are shown in Extended Data Fig. 3. As hypothesized, both models  
may use the conditions stemming from unseen molecules and  
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generate strings that describe structures that are not present in 
either dataset. For any of the models, the difference between data-
sets is insignificant, reflecting a consistent generation of SMILES 
strings that point to novel molecules, regardless of the origin of the 
seeding conditions.

GuacaMol benchmark. To compare the cRNN architecture against 
more generative models other than the chosen baseline, we chose to 
test it on all applicable goal-directed tasks defined in the GuacaMol23 
scoring suite considering the selected input descriptors for the PCB 
and FPB models.

For the FPB model, the tasks corresponding to rediscovery of 
celecoxib, troglitazone and thiothixene were employed. Rediscovery 
is defined as a maximization of the similarity score (1.0) between 
the calculated ECFC4 fingerprints of the generated structures and 
the target molecule. It is important to underline that, even though 
the FPB model has been trained on Morgan fingerprints, rediscov-
ery is awarded a score of 1.0, regardless of the fingerprint represen-
tation, if the correct structure is generated. Moreover, the models 
tested with GuacaMol used prior knowledge, where applicable, in 
the form of 100–300 known highest-scoring molecules from the 
ChEMBL dataset as initial points for the optimization. They were 
also exposed to the target of interest via the scoring function in 
a feedback loop. To account for the benefit of steering the output 
using the feedback loop and to ensure a fair comparison, the FPB 
cRNN was preconditioned with the Morgan fingerprint of the  
target. According to GuacaMol, a maximum of approximately 
10,000 generations (SMILES or graphs) took place using each 
model, and an early stop was allowed if the maximum score  
was achieved. Similarly, the FPB model was asked to generate  
39 batches of 256 SMILES strings using the same conditional  
seed, for each of the three targets. It is noteworthy that it rediscov-
ered all three targets even from the very first batch of 256 generated 
SMILES strings.

Regarding property satisfaction benchmarks, the ones that were 
applicable to the input descriptors with which the PCB cRNN was 
trained were the two logP targets and the TPSA, QED and the  
central nervous system multi-parameter optimization (CNS MPO) 
tasks. Similarly, the 100 top-scoring molecules from the ChEMBL25 
test dataset were selected as conditional seeds for the PCB model to 
generate a single batch of 256 SMILES strings from. It is noteworthy 
that all molecules in ChEMBL and all virtual compounds generated 
by the models of the GuacaMol suite could not exceed a QED score 
of 0.948; this was also observed with the results of our method. 
Additionally, no molecule with a QED score higher than this value 
is reported in ref. 35, meaning that there might be an inherent natu-
ral upper bound of QED around 0.948, regardless of its definition. 
Given that high QED scores are scarce, only 54 known molecules in 

the ChEMBL25 test dataset had a value of ~0.948, thus fewer seeds 
were used. All the results are summarized in Table 3.

Overall, the results demonstrate that the cRNN architecture per-
forms on par with the best scoring literature algorithms featured in 
the GuacaMol benchmarking suite, achieving a maximum score for 
all eight given tasks.

Control of generated properties. The primary advantage of the 
PCB model is the ability to generate SMILES strings of molecules 
that follow the desirable properties. This was tested by using 10 
conditional seeds derived from randomly selected active com-
pounds from the DRD2 test set whose QED scores are all greater 
than 0.5. For each conditional seed, a batch of 256 SMILES were 
generated and the physicochemical properties defined in the input 
conditions were calculated for all valid SMILES using RDKit. 
As shown in Fig. 4, most of the properties of the generated valid 
SMILES exhibit only a small deviation from the defined condi-
tional setpoint, with the QED property having relatively large vari-
ance around the reference level.

All 10 property combinations that were used as a reference for 
this experiment were drawn from known active molecules from 
the DRD2 test set to challenge the PCB model with truly rare com-
binations, because the active molecules of the DRD2 test set have 
been excluded from ChEMBL and were also clustered to be dis-
similar from the training and validation sets of the QSAR model. 
The DRD2 activity setpoint for this experiment, instead of being 
set to active for all 10 seeding conditions due to prior knowledge, 
was set according to the QSAR model’s prediction for each of the 
10 known active seeds because the generated SMILES strings would 
be evaluated by the QSAR model anyway. Due to the QSAR model’s 
imperfection, two of the known active seeds (5 and 8) were falsely 
predicted as inactive, and the setpoint for those two was set as inac-
tive. Therefore, the upper limit of the percentage of predicted active 
SMILES strings is expected to be 80%. After evaluating the prob-
ability of all generated SMILES strings that corresponded to valid 
molecules, ~40% of them were predicted as active with a probability 
not less than 0.5.

To further investigate the capability of a cRNN to control the 
properties of the molecules corresponding to its generated SMILES 
strings, more experiments were conducted where single properties 
were varied in both directions while keeping the rest of them fixed. 
A molecule from within the first and third quartiles with respect 
to all properties of the DRD2 test dataset was selected from which 
to obtain the initial conditions. Then, for each of the descriptors 
apart from the active probability, five values were tried out in a step-
wise ascending fashion, spanning the value range between the first 
and third quartiles of each property, while keeping the rest of the 
conditions at the initial level. The tested conditions correspond to 

Table 3 | Comparison of the cRNN models with the generative models benchmarked in the GuacaMol suite

Benchmark Best of dataset SMILES LSTM SMILES GA Graph GA Graph MCTS cRNN (ours)

Celecoxib red. 0.505 1.000 0.607 1.000 0.378 1.000a

Troglitazone red. 0.419 1.000 0.558 1.000 0.312 1.000a

Thiothixene red. 0.456 1.000 0.495 1.000 0.308 1.000a

logP (−1.0) 1.000 1.000 1.000 1.000 0.980 1.000b

logP (8.0) 1.000 1.000 1.000 1.000 0.979 1.000b

TPSA (150.0) 1.000 1.000 1.000 1.000 1.000 1.000b

CNS MPO 1.000 1.000 1.000 1.000 1.000 1.000b

QED 0.948 0.948 0.948 0.948 0.944 0.948b

The cRNN architecture (rightmost) achieves a maximum score in all relevant test cases. Best scores per metric are highlighted in bold. GA, genetic algorithm; MCTS, Monte Carlo tree search. aConsidering 
the FPB cRNN. bConsidering the PCB cRNN.
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arbitrary property setpoints, unlike the ones shown in Fig. 4. The 
reference (red line) and generated (blue dots) properties of all valid 
SMILES strings are shown in Extended Data Fig. 4. Each column of 
cells per plot corresponds to the tuning of a single property while 
keeping the other five conditions fixed at the initial values. Overall, 
logP, TPSA, molecular weight and HBD setpoints were adequately 
matched in the generated molecular properties, followed by HBA, 
which seems to be unstable for low values of logP and high values 
of MW. The QED formula contains the weighted sum35 of all the 
other five properties; consequently, the requested conditions along 
with the QED setpoint may render it impossible for that equation 
to be satisfied. Therefore, the QED property was hard to keep at the 
reference value as shown by the large spread around the target value 
(Extended Data Fig. 4).

This is particularly evident in the region around low values of 
MW or requested high values of QED for the given seed. In the 
first case, logP and QED decreased under the influence of the value 
of MW, which was controlled by the cRNN. From the short length 
of the step, it is observed that this batch of SMILES suffered from 
high invalidity and, as far as the valid examples are concerned, 
their logP and QED values were much lower than the setpoint. 
Similarly, requested high values of QED, given the values of the 
other five properties, were impossible to achieve, which affected 
the values of all properties and eventually led to none of their set-
points being respected, as annotated with the arrow markings in 
Extended Data Fig. 4.

These are the cases for which input combinations were 
ill-defined and resulted in either unattractive or invalid structures, 
something that has also been observed in the latent space vectors 
of autoencoders27. In the cRNN context, such combinations may 
refer to under-represented regions in the training dataset due either 
to a lack of relevant samples in the source or conflicts between the 

requested descriptor ranges. The conditions are entangled because 
they depend on each other, as observed from the behaviour of the 
QED score. In most cases, the user is probably interested in tuning 
only one of the properties rather than restraining many of them; 
nonetheless, all property conditions ought to be set at reasonable 
values to avoid the entanglement problem. More sophisticated 
sampling approaches, such as the LatentGAN architecture29, could 
potentially address the entanglement problem. In particular, the 
generator component of LatentGAN may be used to autonomously 
propose a valid combination of input properties that lead to active 
generations towards bioactivity targets.

Exclusivity of sampling. Sampling the cRNN model with the seed 
conditions derived from a query structure should theoretically 
make it more likely to generate structures similar to the seed (Fig. 2)  
and less likely to sample dissimilar molecules. To investigate this 
hypothesis, 100,000 molecules were randomly selected from the 
ChEMBL test set and clustered using the DBSCAN algorithm36, 
based on the Euclidean distance of their five scaled physicochemi-
cal properties (logP, TPSA, MW, HBA and HBD). A value of the 
maximum neighbour distance, ε = 0.1 and 10 minimum samples 
for associating core points were selected as parameters of the 
DBSCAN algorithm.

Next, two clusters of molecules (with sizes of 53 and 57, respec-
tively) were manually selected to keep the variance of their descrip-
tors within a range as narrow as possible, with preferably small 
overlap. The distributions of logP, TPSA and MW of the selected 
clusters are shown in Fig. 5a–c. All the molecules of the first cluster 
resulted in an HBA count of four and an HBD count of zero, while 
all molecules of the second cluster resulted in counts of four and 
one, respectively. The selected clusters show minimal or no overlap-
ping with respect to logP, TPSA and HBD count, whereas they share 
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the same count of HBA and similar values of MW. The values of 
QED and predicted probability of being active were not considered 
during clustering.

A total of 10,000 randomization attempts were performed on 
each molecule and all resulting unique randomized strings per mol-
ecule were considered when calculating the NLL using equation (5). 
The seed conditions were selected as the coordinates of the geomet-
ric centre of each cluster. The conditional NLL of sampling the mol-
ecules of each cluster under different seeds was calculated according 
to equation (5) (Fig. 5d). The cross-conditional NLL was calculated 
for each cluster by swapping the conditional seeds of both clusters. 
Theoretically, the generation of molecules from these two clusters 
during conditional sampling should be mutually exclusive using 
their own cluster centre as seed. In other words, using each cluster 
centre as the seed should give a higher probability to sample mol-
ecules within the relevant cluster.

This hypothesis is supported by Fig. 5d. When the conditional 
vector is derived from the seed of cluster 1, it is more likely to 
sample SMILES from the same molecular cluster (dark blue curve) 
than the ones from the second cluster (light red curve, Fig. 5d).  
The same applies when conditioning the generation with the 
molecules of the second cluster (dark red and light blue curves,  
Fig. 5d). Even though there is an overlap between the self-conditional 
and cross-conditional NLL curves, in both cases the former ones 
describe lower NLL values, thus showing that relevant molecules 
are more likely to be sampled. Overall, both clusters are comparably 
probable to be sampled when their own seeds are used as condi-
tions (dark blue and dark red curves, Fig. 5d). Finally, by comparing 
the self-conditional NLL curves of Fig. 5d to the curves of Fig. 2, it 
is observed that the NLL curves of Fig. 5d are all shifted towards 
higher NLL values. This is expected though, because the conditions 
considered for each molecule were not derived from its own proper-
ties but instead from the mean properties of the cluster.

On the use of NLL for conditional model assessment. Given the 
size of the chemical subspace that generative models represent, sam-
pling 1,000 or 10,000 molecules, as the main benchmarking suites22,23 
propose, may not sufficiently exemplify a model’s capacity. For uni-
formly trained models16 with a potential target space of zillions of 

equiprobable molecular strings, the expectation of rediscovering a 
particular molecule of interest from a left-out testing dataset as a 
proof of concept may be unrealistic. One may argue that the ability 
of a model (or the lack of it) to find a specific molecule in a finite 
number of attempts is indicative of the probability of distinguishing 
it from all other molecules and, thus, of the model’s focus on that tar-
get. However, in such an experimental set-up, we can either reject a 
model’s inability or fail to reject it, because accepting this hypothesis 
would require a significantly larger number of attempts.

In this work, we have attempted to gain insight into different 
aspects of the proposed cRNN architecture using distributions of 
CNLL values, as described by equation (1). In Fig. 2a,b, we employ 
the CNLL values to assess the training quality of the cRNN mod-
els, effectively bridging the gap between unbiased and conditional 
models. Instead of attempting to rediscover some known active 
molecules from the DRD2 training and testing datasets, we prove 
that they would be almost as easy to sample as molecules from 
ChEMBL using the cRNN models as shown in Fig. 2c,d. By retro-
spectively calculating the NLL values for all SMILES sequences in 
the complete DRD2 datasets, we demonstrate the correct focus of 
the output of the model in a transparent fashion while exhaustively 
using all the available ground truth.

Consequently, we see two main benefits. First, evaluation of the 
output is independent of any custom scoring (QSAR) model that 
induces additional noise to the results, which otherwise reflect the 
multiplicative performance of the generative and QSAR models. 
This also deals with potential mode-collapsing problems of the 
QSAR model when applied on unseen or novel data by eliminating 
them from the evaluation process. Second, the CNLL formula will 
yield an interpretable score for any arbitrary sequence, regardless 
of the size of the output space of a model. By using a meaningful 
threshold, this score would directly reflect the model’s ability to 
reach the sequence of interest.

Moreover, by exchanging conditional seeds between clusters as 
shown in Fig. 5d, the cross-conditional NLL values can indicate the 
exclusivity of the focus of a model. In the field of de novo design, 
this could be translated to probabilistic avoidance of structural 
alerts, such as toxic substructures, and could serve as a meaningful 
test case during benchmarking of different models.

The definition of the CNLL as proposed in equation (1) allows 
for the evaluation of the probability of generating a sequence given 
a fixed set of descriptors. As evinced by the experiments in this 
work, the more information that is induced into the network by the 
choice of descriptors, the more deterministic its output becomes. 
Through this operationalization, one may appreciate the stochastic-
ity in the learnt decision process of an RNN. Thus, the combina-
tion of manually selecting the input features to train on, along with 
post-processing of the results using CNLL plots, could be an alter-
native approach to assess the collective feature importance between 
discrete sets of inputs of an RNN for sequence generation—a field 
that is under research for black box models37,38.

All in all, we believe that such an analysis based on NLL sta-
tistics is essential for a fair comparison between models and can 
be adopted by all probabilistic sequence generators, regardless of 
domain. Yet, to extend existing benchmarks to the proposed novel 
direction, except for predicting a sequence, all relevant models 
should be modified to deliver the joint probability of sampling that 
sequence, or its equivalent NLL.

Applications to drug discovery and beyond. Among the core con-
tributions of this manuscript lies the controlled specificity of the 
output space of the proposed cRNN architecture. The FPB cRNN, as 
seen from Fig. 2, has the least stochastic output of all the models, a 
behaviour that is close to what would be expected from autoencod-
ing networks. The PCB NLL values for all datasets lie between the 
NLL values of the FPB and the unbiased models. This is significant,  

2.5

2.5

2.5

3.0

3.0

3.0

4.0

4.0 0 10 20 30 40 50 60 70 80

NLLMW

H
is

to
gr

am
 d

en
si

ty

3.5

3.5

3.5

logP

TPSA

a d

Cluster 1/seed 1

Cluster 1
Cluster 2

Cluster 2/seed 2

Cluster 2/seed 1
Cluster 1/seed 2

c

b

Fig. 5 | Exclusivity of sampling. a–c, Distribution of logP (a), TPSA (b) 
and MW (c) of each cluster. d, Distribution of calculated NLL of sampling 
each cluster using the two cluster centres as seeds, interchangeably. All 
distribution curves were fit using the kdeplot method of the seaborn Python 
library and default settings. A total of 10,000 randomization operations 
were performed on each molecule and all resulting unique randomized 
strings per molecule were considered when calculating the NLL using 
equation (5). It is shown that using a relevant seed makes it more probable 
to sample SMILES strings that correspond to chemically neighbouring 
molecules than molecules from another cluster.

Nature Machine Intelligence | VOL 2 | May 2020 | 254–265 | www.nature.com/natmachintell 261

http://www.nature.com/natmachintell


Articles Nature Machine Intelligence

because it implies that the PCB model has a more diverse out-
put space than the FPB (or similar autoencoding networks) while 
maintaining its focus on the property setpoints, as shown in Fig. 4 
and Extended Data Fig. 4. This offers an incomparable advantage 
over the baseline model trained with transfer learning, because the 
baseline does not provide any degrees of freedom to the user to 
shape the output after it has been trained on a dataset. This means 
that the PCB model is able to find multiple near solutions to the 
multi-objective optimization problem at hand, whereas most cur-
rent work in the literature focuses on optimization of just a single 
property at a time, that is, maximization of logP.

Moreover, we have shown that a cRNN can learn either physi-
cochemical or structural characteristics, depending on the set of 
descriptors that are chosen by the user to expose the network to 
during training. Here, the selected properties consist of five physi-
cochemical properties, a well-defined weighted average of them 
(QED) and a data-driven scoring function (QSAR model) based on 
public data. This diverse selection showcases the method in a trans-
parent and reproducible way, while at the same time underlining the 
versatility of the algorithm for drug design purposes. Therefore, the 
cRNN architecture provides a way of addressing the inverse QSAR 
problem directly as the PCB cRNN is able to generate molecular 
structures with desired properties.

On the contrary, other available methods suggest the use of opti-
mization algorithms21,28 or reinforcement learning18 to close the 
loop and steer one or more initial candidate molecules towards the 
aspired region of the chemical domain in an iterative process. Such 
optimization approaches require looping over a cost or desirability 
function, whereas in our case a batch of 256 potentially interesting 
SMILES strings with properties close to predefined target values can 
be directly generated with a single forward pass of the trained cRNN. 
The main advantage of the proposed algorithm over this family of 
methods is that the inference time of a cRNN is not affected by the 
arbitrary complexity of the input, because it is exposed to it during 
training and its weights are adjusted to a specific task. It exhibits 
quasi-constant inference time, because the implication of sampling 
a sequence of unknown length on runtime performance is a com-
mon denominator for both types of algorithm. In contrast, optimi-
zation algorithms that are applied on universally pre-trained models 
require ad hoc exploration of the chemical space during runtime. 
This characteristic allows for interactive applications to be built, 
where a constant feedback cycle permits smooth experimentation, 
such as allowing the user to dynamically select the target properties 
and visualize the results within a laboratory set-up.

Nevertheless, a combination of the two distinct approaches could 
potentially yield even greater benefits. The pre-trained cRNN could 
complement a reinforcement learning loop18 by proposing abun-
dant meaningful starting points that would speed up or enhance 
its convergence in a lead-optimization fashion. Other optimization 
techniques, such as particle swarm28 or Bayesian optimization21, 
could be used to finetune the conditional seed on top of a cRNN 
instead of a simple decoder, which in the case of the PCB model 
would be chemically interpretable, whereas the FBP model could 
suggest a series of similar compounds based on the optimized seed.

Most importantly, however, our proposed method addresses the 
general inverse design problem, where a recommender system pro-
poses solutions on a multidimensional manifold that conform to 
desired specifications. One may extrapolate from our case study to a 
more generalized approach to the task of customizing the specificity 
of—and not just the context of—sequential data generation. Such 
examples could be natural language generation, where the focus 
of the context is set according to keywords, or autoregression of 
time-series, where the initial conditions could be set via the cRNN 
states. Last, but not least, based on the authors’ prior experience in 
the field, maintaining the levels of several process (state) variables 
at a specified reference using just a single output, regardless of the 

mode collapse that appears around extreme setpoints as shown in 
Extended Data Fig. 4, could be exploited in the context of decoupled 
control of a nonlinear dynamical system. It would be stimulating to 
see a comparison of cRNNs against existing solutions based on arti-
ficial neural networks39. In the same context, the cross-conditional 
NLL could also reveal the probabilistic distance of the output from 
undesirable states, such as structural resonance or singular configu-
rations of robotic arms.

Conclusions
In this work, the effect of introducing molecular descriptors as 
inputs to an existing SMILES generator architecture based on RNNs 
has been investigated. Primarily, it has been shown that known 
molecules are more likely to be rediscovered when sampling using 
the descriptor conditions that represent them as inputs to a cRNN, 
compared to a prior unbiased model that is simply trained on the 
complete molecular dataset. Our approach also demonstrated the 
capacity of generating novel compounds that were predicted active 
against the DRD2 receptor, which were also chemically closer to 
known active compounds than the ones generated by a baseline 
model trained with transfer learning. Additionally, a larger fraction 
of predicted actives was generated by the cRNN than the baseline 
model. After evaluating our model against literature benchmarks, 
the cRNN architecture was proven at least as good as the top-scoring 
models of a benchmarking suite, achieving the maximum score in 
eight relevant goal-directed tasks. Using molecular fingerprints 
as conditions focuses the molecular generation even more than 
physicochemical properties, by acting as structural restrictions 
that impose a scaffold on the output that is similar, if not identi-
cal, to the reference. This also demonstrated the capability of the 
proposed architecture to function as a fingerprint inverter, by being 
able to resample the original molecule even up to 72% of the time by 
using a more complex network. On the other hand, physicochemi-
cal properties are more versatile and lead to molecules with more 
diverse structures and different scaffolds than the molecule from 
which the conditions were derived. The cRNN architecture tack-
les the inverse QSAR problem by directly shaping the properties of 
the generated molecules while avoiding online optimization loops. 
Nonetheless, even though we have been able to optimize the condi-
tions independently of each other, not all input combinations led to 
valid structures due to the conditions being correlated. As an exam-
ple, this was observed when conditioning with a high QED setpoint 
while keeping the other conditions, which are constituents of the 
QED score calculation, fixed. Most notably, the cRNN has thus been 
demonstrated as a potentially useful architecture with an arbitrarily 
intermediate output space between unbiased character-based RNNs 
and fully steered autoencoders with a 1:1 relation between latent 
space vectors and molecules. Additionally, our experiments exem-
plify a novel way of assessing the focus of the conditional output 
of a model using NLL plots. Due to the nature of the problem this 
approach targets, it is expected that the proposed architecture can 
also be of importance in applications in sequential content creation 
other than drug design.

Methods
Datasets. The datasets used in this work originate from two publicly available 
sources: ChEMBL40 and ExCAPE-DB41. Data from ChEMBL were used to train 
the generative neural network, while data regarding the dopamine receptor D2 
(DRD2) target from ExCAPE-DB were used to train a QSAR model using a 
support vector classifier to estimate the likelihood of a generated compound being 
potent towards DRD2.

ChEMBL. The neural network was trained with a subset of ChEMBL version 25. 
Initially, the complete dataset was standardized with the MolVS Python module42 
using the super parent setting, which standardizes fragment, charge, isotope, 
stereochemistry and tautomeric states. Molecules were filtered to only contain the 
atoms [H, C, N, O, F, S, Cl, Br] and for a total of fewer than 50 heavy atoms. Next, 
the known active molecules found in the DRD2 dataset (see section ‘ExCAPE-DB’) 
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were removed from the dataset. The dataset was split into training and test subsets 
in a 9:1 ratio. During training, 10% of the training subset was used as a fixed 
validation set.

ExCAPE-DB. All data regarding the DRD2 entry in ExCAPE-DB were 
downloaded43 and preprocessed as follows. First, duplicate compounds as well as 
SMILES strings12 that were not sanitizable by RDKit v2018.09.144 were removed 
from the DRD2 dataset. In total 7,129 compounds had a pXC50 value greater 
than five and were selected as known actives along with 100,000 random DRD2 
measured-inactive compounds from ExCAPE-DB. Stereochemical information 
was removed by converting all molecules to non-isomeric SMILES strings. The 
dataset was further reduced to exclude SMILES strings that were longer than 
the ones in ChEMBL or contained characters not found in ChEMBL. This led to 
removing strings with iodine and phosphorus. All active molecules were clustered 
based on the pairwise Tanimoto distance of their Morgan fingerprints with a radius 
of two using the implementation of the Butina algorithm45 found in RDKit. The 
maximum distance threshold for the algorithm to associate neighbours was fixed 
to 0.4, with a value above this dictating different clusters. All clusters were sorted 
based on their size and were assigned to the train, validation and test subsets 
iteratively using a ‘4-1-1’ scheme; that is, for every four clusters assigned to the 
train set, one cluster was assigned to the validation set and one to the test set in 
order of decreasing cluster size.

The curated datasets used to train all models are available from https://github.
com/pcko1/Deep-Drug-Coder/tree/master/datasets.

SMILES strings randomization and vectorization. During training, the atom 
order of all molecules was randomized using RDKit. After converting them back 
to SMILES, every constituting character was one-hot encoded. Every SMILES 
string was thus represented by a two-dimensional (2D) array with dimensions 
corresponding to the length of the vocabulary and the maximum canonical 
SMILES length found in ChEMBL, with an offset of five extra characters to account 
for randomized SMILES that were longer than their canonical representation. The 
delimiting characters ‘^’ and ‘$’ were inserted in the beginning and end of each 
one-hot-encoded string, respectively. Resulting arrays that corresponded to shorter 
SMILES strings were padded with the end character ‘$’. The considered vocabulary 
consisted of 35 tokens that included all common unique alphanumeric characters 
found in ChEMBL and DRD2 datasets after filtering, the delimiters ‘^’ and ‘$’, and 
the token ‘?’ to account for one-hot encoding of unknown characters.

The randomization and vectorization of all SMILES strings was performed 
dynamically using a modified version of the molvecgen Python package46  
during training.

DRD2 QSAR model. A probabilistic support vector machine classification model 
was used for bioactivity prediction. The standard implementation of a support 
vector machine (SVM) from the scikit-learn v0.20.347 Python package was used, 
with the radial basis function as a kernel function. The model was trained to 
discriminate active compounds from inactive ones based on their 2,048-bit-radius 
2 Morgan fingerprint representations. Because a poor choice of the regularization 
parameter, C, and kernel coefficient, γ, may have a detrimental effect on the 
performance of an SVM, these were optimized with a randomized search in which 
50 different values per parameter were drawn from two exponential distributions 
with replacement. The choice of fingerprint type and radius was based on 
published work48,49 and was not optimized further.

Recurrent neural network. The neural network resembles the decoder 
architecture described in ref. 25. It was implemented in Keras v2.2.450 with a 
TensorFlowGPU v1.12.0 backend51 and is schematically shown in Fig. 1. The 
network accepts a vector of molecular descriptors as inputs to a set of six Dense 
feedforward layers of 256 units each, using the ReLU52 activation function. The 
output of each individual Dense layer is used to set either the cell state or the 
hidden state of each of the recurrent layers of the network. There are, in total, 
three unidirectional recurrent layers in the network, each consisting of 256 LSTM32 
neurons. The output of the final LSTM layer is fed to a feedforward layer with 35 
units, which is the length of the character space, using softmax activation. Batch 
normalization was applied to the outputs of all LSTMs and all but the last Dense 
layers. Keras CUDA-enabled CuDNNLSTM units were used in the recurrent layers.

The model was trained for 100 epochs with randomized SMILES strings 
following the ‘teacher’s forcing’ method53, using the ground truth at each step as 
prior knowledge instead of the character previously predicted by the network. A 
batch size of 128 sequences was used along with the Adam optimizer with default 
parameters54 and an initial learning rate of 10−3. A custom learning rate schedule 
was used, where the learning rate was kept constant for the first 50 epochs and then 
decayed exponentially at each epoch, down to a value of 10−6 at the final epoch.

A copy of the trained model was modified for the purpose of predicting 
single characters to jointly form SMILES strings. While maintaining the trained 
connection weights, the shape of the output of the last feedforward layer was set to 
a 1D vector expressing the probability of sampling each of the known characters 
at every step. Also, the LSTM layers were set to stateful mode. During inference, 
a single character per iteration is sampled out of this vector of probabilities using 

multinomial sampling. After setting the initial states according to the descriptors of 
interest, the biased generation is triggered by feeding the start- character ‘^’ to the 
network and ends when the end character ‘$’ is sampled.

Two different cRNN models were constructed and trained following this 
procedure, each based on different input descriptors. The first physchem-based 
(PCB) model is shown schematically in Fig. 1a. The model uses the Wildman–
Crippen partition coefficient55 (logP), topological polar surface area (TPSA), 
molecular weight (MW), number of hydrogen bond acceptors (HBA), number 
of hydrogen-bond donors (HBD) and the drug-likeness score35 (QED) calculated 
using their RDKit implementations as well as the soft label predicted by the 
QSAR support vector classification (SVC) model described above. The calculated 
values were scaled individually to achieve a distribution with zero mean and unit 
variance, and they were concatenated into a single input vector.

The second fingerprint-based (FPB, Fig. 1b) model was trained solely on 
Morgan fingerprints of radius 2 and 2,048 bits, which are similar to extended 
connectivity fingerprints (ECFPs). The training and inference schemes of the 
cRNN models are described in Fig. 1a–c, respectively.

Model training and inferencing was performed on an NVIDIA Tesla V100 
GPU on a 64 bit CentOS v7.5 server with 128 GB of RAM. The training process of 
the PCB and FPB models utilized 5 and 25 GB of RAM, respectively.

Transfer learning model. The baseline model consists of the same neural network 
architecture as described above with the notable difference that the initial states, 
instead of being set based on known descriptors, are instead being reset to zero 
in the beginning of the generation of each string. This approach is similar to the 
prior network described in ref. 18 with the difference that each character is treated 
independently rather than within multi-character tokens. The network was 
likewise trained with teacher’s forcing, learning the character set and the grammar 
of the SMILES strings found in ChEMBL. The selected RNN dimensions were 
identical to the ones in the case of the cRNN.

Next, the prior model was further trained exclusively with the known actives of 
the DRD2 train dataset for an additional 200 epochs, following a transfer learning 
strategy56. The initial learning rate was set to 10−4.5 and was decayed exponentially 
to 10−6 by the end of the training.

Likelihood of sequences and molecules. The likelihood of sampling a given 
SMILES string was estimated using NLL as previously described15, with a 
modification that incorporates the knowledge that is induced into the initial states 
of the generation in the case of a conditional model. The conditional NLL (CNLL) 
is defined as

CNLL Sjcð Þ¼� lnP X1 ¼ T1jcð Þ þ
XN

i¼2

lnP Xi ¼ TijXi�1 ¼ Ti�1; ¼ ;X1 ¼ T1; cð Þ
" #

ð1Þ
where Ti are the characters in the known SMILES sequence S, Xi are the predicted 
model outputs, N is the length of sequence S, and c refers to the seeding conditions. 
The sign of the log-likelihood is made negative to reflect that higher values 
correspond to more improbable sequences.

The true probability of sampling a molecule M is given by the cumulative 
probability over all its U unique random representations Sj:

P Mjcð Þ ¼
XU

j¼1

P Sjjc
� 

¼
XU

j¼1

e�CNLL Sj jcð Þ ð2Þ

Thus, the CNLL of a molecule is given by the negative of the natural logarithm 
of equation (2):

CNLL Mjcð Þ ¼ �ln
XU

j¼1

e�CNLL Sj jcð Þ ð3Þ

Because the true number of all unique representations of a molecule is a priori 
unknown, the likelihood of a molecule can be approximated by a smaller number 
of unique representations u such that

CNLL Mjcð Þ ¼ lim
u!U

�ln
Xu

j¼1

e�CNLL Sj jcð Þ
 !

ð4Þ

where

CNLL Mjc; uð Þ ¼Δ �ln
Xu

j¼1

e�CNLL Sj jcð Þ ð5Þ

is the approximation of the true molecular likelihood given input conditions c and 
a set of u unique random string representations Sj. Finally, from equations (2) and 
(4) we can derive that

P Mjcð Þ≥P Mjc; uð Þ≥P Sjjc
� �

, � ln P Mjcð Þð Þ≤ � ln P Mjc; uð Þð Þ≤ � ln P Sjjc
� �� �

, CNLL Mjcð Þ≤CNLL Mjc; uð Þ≤CNLL Sjjc
� �
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This means that the molecular NLL cannot be higher than the NLL of any 
individual random sequence corresponding to the given molecule.

Data availability
The curated datasets used to train all models are available at https://github.com/
pcko1/Deep-Drug-Coder/tree/master/datasets.

Code availability
The Python code and the trained neural networks used in this work are available 
under MIT licence57 in the Deep Drug Coder (DDC) GitHub repository 
https://github.com/pcko1/Deep-Drug-Coder and https://doi.org/10.5281/
zenodo.3739063, which also includes an optional encoding network to constitute a 
molecular heteroencoder.
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Extended Data Fig. 1 | Distribution of physicochemical properties of datasets. a, Wildman-Crippen coefficient (logP), b, topological polar surface area 
(TPSA), c, molecular weight (MW), d, drug-likeness score (QED), e, number of hydrogen bond acceptors (HBA) and f, hydrogen bond donors (HBD) 
with respect to the complete CHEMBL25 and DRD2 datasets before splitting. Subfigures a-d show the continuous histogram density as estimated by the 
kdeplot method of the seaborn Python library using default parameters.
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Extended Data Fig. 2 | Tanimoto similarity and predicted activity of generated structures. a, Distribution of pairwise Tanimoto similarity of uniquely 
generated Murcko scaffolds to the seeding Murcko scaffold. The physchem-based (PCB) model generates SMILES that correspond to new scaffolds 
whereas the fingerprint-based (FPB) model generates scaffolds that are more similar or even identical to the seeding scaffold. b, Predicted active 
probability of all unique structures behind all generated SMILES strings per model. Both models generate SMILES that are predicted to be active with 
similar probability distributions.
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Extended Data Fig. 3 | Novelty of uniquely generated underlying molecules with respect to different datasets. Novelty is assessed with respect to 
the train and test ChEMBL datasets using the physchem-based (PCB) and fingerprint-based (FPB) models. The first element of every pair on the x-axis 
corresponds to the dataset the conditions were drawn from. The second element represents the dataset with respect to which novelty was calculated. For 
any model the difference between datasets is insignificant, reflecting a consistent generation of novel compounds regardless of the seeding conditions. 
The numbers correspond to the fraction of valid unique novel molecules out of 25,600 generated SMILES strings.
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Extended Data Fig. 4 | Optimization of properties individually in every direction with the physchem-based model. The pattern of the molecular 
properties of the generated valid SMILES (blue dots) seems to follow the set conditions (red lines). The length of a step represents the number of valid 
SMILES for that setpoint out of 256 sampled SMILES strings. Low molecular weight or high QED setpoints lead to unstable generation of valid SMILES for 
the given condition. QED displays the largest deviations from the seed conditions and is the hardest property to control as the formula contains a weighted 
sum of the other five properties. The area annotated by arrows refers to an input combination with a high QED target that caused the output to collapse 
with respect to the rate of valid SMILES and the fulfillment of the specified conditions. The exact percentage of unique molecules stemming from all valid 
SMILES sampled at each step is shown in Supplementary Fig. 12.
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