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ABSTRACT: Malaria is a threatening disease that has claimed many lives and has
a high prevalence rate annually. Through the past decade, there have been many
studies to uncover effective antimalarial compounds to combat this disease.
Alongside chemically synthesized chemicals, a number of natural compounds have
also been proven to be as effective in their antimalarial properties. Besides
experimental approaches to investigate antimalarial activities in natural products,
computational methods have been developed with satisfactory outcomes obtained.
In this study, we propose a novel molecular encoding scheme based on
Bidirectional Encoder Representations from Transformers and used our pretrained
encoding model called NPBERT with four machine learning algorithms, including
k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), eXtreme
Gradient Boosting (XGB), and Random Forest (RF), to develop various
prediction models to identify antimalarial natural products. The results show
that SVM models are the best-performing classifiers, followed by the XGB, k-NN, and RF models. Additionally, comparative analysis
between our proposed molecular encoding scheme and existing state-of-the-art methods indicates that NPBERT is more effective
compared to the others. Moreover, the deployment of transformers in constructing molecular encoders is not limited to this study
but can be utilized for other biomedical applications.

1. INTRODUCTION
Malaria is a deadly contagious disease caused by the genus
Plasmodium’s parasites.1 For several centuries, malaria was
considered one of the leading causes of death worldwide.2

Annually, malaria causes up to 3 million deaths worldwide,
accounting for 0.3−2.2% of total deaths,1 and more than 200
million infected cases.3 In tropical regions and several Asian
countries, this rate ranges from 11.0% to 30.0%.1 For decades,
continuous efforts and global medical activities have been
carried out to reduce mortality and morbidity as well as advance
preventive systems, diagnostic processes, and medication for
malaria. Several investigations, however, revealed that the
prevalence of malaria parasite infection had continuously
grown since 2015.4,5 Due to the severity of this disease, the
discovery of potent antimalarial agents has been promoted for
decades. Despite numerous studies on developing novel and
effective antimalarial compounds, the number of approved drugs
is limited.6 Among approved antimalarial drugs, quinine and its
derivatives and antifolate combination drugs are the most
prevalently used for clinical treatment.6 In recent years,
antimalarial drug resistance has emerged to be one of the
most concerning issues in pharmaceutical science.6,7 Besides
drug resistance, managing the toxicity and side effects of
antimalarial drugs is challenging.8,9 Therefore, exploration of

alternative ones derived from natural sources has been carried
out to seek better-adapted and more effective candidates.10

Along with current in vitro and in vivo platforms, in silico
approaches employing powerful computing resources and
computational advancements contribute considerably to anti-
malarial drug exploration.11−15 In the past two decades, wide-
spectral virtual screening (VS) using machine learning (ML)
and deep learning (DL) has accelerated the search for potent
compounds with desired properties.
Recently, numerous studies on the antiplasmodial (or

antimalarial) activity of natural products (NPs) showed
promising results.16−20 Additionally, many reliable data sources
on experimentally verified bioactive compounds, especially
antimalarial compounds and their derivatives, have been made
freely accessible.21 Information on these databases, distinct and
diverse structures, and the pharmaceutical importance of NPs
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was recently discussed.22,23 The availability of data sets on
antimalarial NPs and modern computational advances has
motivated scientists to develop in silico frameworks to virtually
identify potential NPs possessing strong antimalarial activity.
The past two decades have seen an explosion of applications of
ML and DL in various fields, especially central science24−26 and
life science.27−29 The emergence of interdisciplinary fields, such
as cheminformatics, bioinformatics, and health informatics,
confirms the indispensable role of in silico advancement in
supporting wet-lab research. In 2018, Egieyeh et al. first
introduced a computational model to identify NPs having
antimalarial activities.11 Their data were collected from various
confirmatory tests. Their models were constructed using four
learning algorithms, including Support Vector Machines (SVM)
tuned by using Sequential Minimization Optimization, Naive
Bayesian (NB), Random Forest (RF), and Voted Perceptron
(VP) using the WEKA 3.6 platform. Their outcomes showed
that the RF model had obtained an area under the receiver
operating characteristic curve (AUC) of 0.91, followed by the
SVM, NB, and VP models with AUC values of 0.86, 0.74, and
0.72, respectively. Generally, besides a satisfactory predictive
power, Egieyeh et al.’s prediction frameworks have limitations
which need to be addressed. In the same year, Mosaddeque et al.
conducted a Quantitative Structure−Activity Relationship
(QSAR) study to predict antimalarial compounds having
antihemozoin-formation activity.12 They performed in vitro
preliminary screening on antihemozoin-formation using high-
throughput screening over 9600 compounds and finally
obtained 224 hemozoin inhibitors. These hemozoin inhibitors
with antimalarial action were then used for QSARmodeling with
an accuracy of 91.23%. At the end of the same year, Mason et al.
proposed using machine learning approaches to construct a
prediction model, called CoSynE, to suggest synergistic
combinations between known antimalarial compounds and
novel ones.13 Their model suggested 20 possible synergistic
combinations with nine combinations that were then exper-
imentally validated with promising outcomes. In 2019,
Danishuddin et al. employed four learning algorithms, including
k-NN, SVM, RF, and XGB, to develop their prediction models
with multiple antimalarial data sets.14 Their results showed that
the SVM and XGB models had been achieved the best
performance compared to the others with accuracies of up to
85%.
In this study, we propose a novel molecular encoding scheme

and use it to develop several prediction models for identifying
antimalarial NPs using four machine learning algorithms: k-
Nearest Neighbors (k-NN), Support Vector Machines (SVM),
eXtreme Gradient Boosting (XGB), and Random Forest (RF).
The molecular encoding scheme was developed using Bidirec-
tional Encoder Representations from Transformers (BERT),30

a recent deep learning architecture that is widely used in natural
language processing. The BERT architecture has been proven to
be a robust and powerful machine translation method to create
domain-specific embedding vectors. In 2019, SMILES-BERT31

and SMILES Transformer,32 two modified versions of BERT
first designed for molecular encoding, were introduced with
satisfactory outcomes obtained. In 2020, Chithrananda et al.
proposed ChemBERTa for molecular property prediction.33 To
create effective and structurally distinct embedding vectors for
antimalarial NPs, we propose a novel molecular encoding
scheme called NPBERT, a BERT-based encoder specifically
designed for NPs. To create the NPBERT encoder, we used
about 2 million compounds, collected from the ChEMBL34 and

ZINC35 databases, as training data. The antimalarial NPs for
model development and evaluation were collected from Egieyeh
et al. study11 and the NPASS database.36 For a fair assessment,
trained classifiers using the NPBERT encoding scheme were
compared with those using state-of-the-art methods, including
196-dimensional RDKit molecular descriptors,37 extended-
connectivity fingerprints,38 and the Mol2Vec39 encoding
scheme.

2. MATERIALS AND METHODS
2.1. Overview of the Method. Figure 1 summarizes key

steps in our study. Initially, about 1.9 million compounds and

250 000 natural products (NPs) were downloaded from the
ChEMBL database34 and the ZINC database35 to be used as
training data for the NPBERT pretrained model (or shortly,
NPBERT encoder). The original data set was then checked to
remove duplicates and invalid molecular structures. The
processed NPBERT encoder’s training set contains nearly 2
million structural, verified compounds with high diversity in
molecular scaffolds. The NPBERT encoder was constructed
using the masked language modeling method. After obtaining
the NPBERT encoder, we passed all antimalarial NPs (including
training set and independent test set) through it to transform
them into their corresponding NPBERT-encoded vectors.
Those NPBERT-embedded vectors were then used for
developing prediction models using four ML algorithms,
including k-NN, SVM, XGB, and RF. To find the best
hyperparameters for each model, we performed an exhaustive
search over a determined grid of parameter values for these
classifiers using 5-fold cross-validation. For each algorithm, the
parameter set whose corresponding trained classifier showed the
best performance was defined as the best hyperparameters.
Those hyperparameters were then used to retrain the models

Figure 1. Processing steps in the proposed framework.
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using the whole training set. Finally, the trained models were
tested with the independent test set.
2.2. Data Set. 2.2.1. Data Set for NPBERT Encoder

Training. To build the NPBERT encoder, we used two sources
of compounds: the ChEMBL34 and ZINC databases.35 The
ChEMBL compound set has about 1.9 million molecules while
the ZINC natural compound set contains about 250 000
molecules. Two sources of compounds were then merged and
checked to remove any duplicates. Although the number of
ZINC natural compounds is far smaller than that of ChEMBL
compounds, the presence of these compounds can enrich
substructural diversity, especially naturally distinct substruc-
tures. The processed NPBERT encoder’s training data have
about 2.0 million molecules. For training the NPBERT encoder,
85% of the total compounds were used as training data, while the
rest of the compounds were used as validation data.

2.2.2. Data Set for Prediction Model Development. To
construct models for predicting antimalarial activities of natural
products (NPs), we collected training data from Egieyeh et al.11

and the NPASS database36 with 1155 and 1175 samples,
respectively. The NPASS database is a reliable source of
information on NPs and their inhibitory concentrations toward
various targets (e.g., cell lines, proteins). In Egieyeh et al.’s11 data
set, 70% of the samples were labeled as “active,” and the rest of
the samples were labeled “inactive.” Those compounds were
collected from experimentally verified sources (literature, thesis,
and public chemical databases). Those compounds were divided
into two groups: active NPs (positive samples) and inactive NPs
(negative samples), based on their 50% inhibitory concentration
(IC50) values. Compounds having IC50 values of <10 μM were
considered active antimalarial compounds, while ones with IC50
values of ≥10 μM were considered inactive antimalarial
compounds. Although Egieyeh et al.’s11 data set is a valuable
manually curated source of antimalarial NPs, there are several
limitations, including duplicated and conflicting data (Table S6,
Supporting Information). The duplicated data refer to
compounds having similar molecular structures, while conflict-
ing data are compounds with similar molecular structures but
different labels assigned. For duplicated data, only one sample
was kept. For conflicting data, all samples were removed. After
cleaning the original Egieyeh et al. data set, we obtained the
refined one. To enrich data for model development, we collected
more antimalarial NPs from the NPASS database using a target
search using the keyword “Plasmodium falciparum.” The active
NPs and inactive antimalarial NP were selected based on the
same cutoff values of IC50 used in Egieyeh et al.11 The two
sources of data, including the refined Egieyeh et al. data set and
the collectedNPASS data set, were thenmerged and checked for
duplicates, conflicting data, and invalid structures. The data
refinement for the newly merged data set was processed in the
samemanner as being executed in the original Egieyeh et al. data
set. The SMILES of NPs were cross-referenced with the
PubChem database21 to verify the structural validity. Finally, we
obtained 1829 structurally verified NPs, including 1101 inactive
antimalarial NPs (negative samples) and 728 active antimalarial
NPs (positive samples). The independent test set was designed
with 100 positive samples and 100 negative samples using
random sampling. The rest of the compounds were used as
training data with 628 positive samples and 1001 negative
samples (Table 1). There are no overlapping samples between
the training set and independent test set. The independent test
set was an unseen data set that was not engaged in any steps
related to the training process.

2.2.3. Class Rebalancing. Since the data set used has an
unequal distribution of positive and negative samples, the
Synthetic Minority Oversampling Technique (SMOTE)40 was
used to rebalance the classes. SMOTEwas applied in two stages:
model tuning and model development. To avoid overfitting,
SMOTE was strictly controlled to apply to involved parts after
splitting the original data set. In model tuning, we performed 5-
fold cross-validations to find optimal hyperparameters. During
5-fold cross-validation, SMOTEwas applied to the training folds
only. Similarly, in model development, SMOTE was applied to
the training set only.
2.3. Training NPBERT Encoder. Representation learning

has been successfully applied in the domain of Natural Language
Processing (NLP) to create word embeddings. Being inspired by
this idea, various versions of representation learning for
chemical26,39,41 and biological42 data have been proposed.
These novel approaches, such as Mol2Vec, represent the
molecule as a sequence of molecular substructures and learn
vector embeddings for each present substructure. They have
been demonstrated to work more effectively compared to
classical molecular fingerprints in the form of binary vectors.
These molecular encoders, however, are insufficiently strong to
deal with long-distance bidirectional dependencies. To pool the
embeddings of all substructures building up molecules, previous
approaches depend on a simple summation of substructural
embeddings regardless of the fact that their contributions are not
equal. Thus, we introduce the NPBERT encoder to address the
limitations of existing techniques by using the self-attention
mechanism, a recent advancement in language models.

2.3.1. Extraction of Substructural Sentences. Initially,
substructural sentences of molecules were extracted using
RDKit with two scales: zero-radius and one-radius. For a
molecule, at a particular atomic position, the zero-radius scale
describes the atom and its bondings. However, for the one-
radius scale, it will be the atom, its bondings, and neighboring
atoms in contact with those bonds (Figure 2). The zero-radius
and one-radius substructures of an atom form an identifier pair
identified by RDKit. On the basis of the order of appearance of
substructures, the identifier pairs are organized into a “sentence”
of symbolic tokens. Since the sequential order of appeared
substructural tokens indicates their bonding arrangement in a
molecule, substructures identified from neighboring atoms tend
to appear next to each other in the sentence to collectively form a
rough chain throughout the molecule. Our proposed molecular
representation is expected to efficiently approximate the
adjacency likelihoods of substructures in a molecule.

2.3.2. Model Architecture. Bidirectional Encoder Represen-
tations from Transformers (BERT)30 is a recent step forward in
language modeling enabled by the success of transformers.43 In
Vaswani et al.’s43 original implementation, the transformer
architecture was built for sequence transduction, specifically for
themachine translation task. It contains a multilayer transformer
encoder and decoder while BERT architecture uses the encoder
only. The encoder contains a stack of identical layers in which

Table 1. Data for Prediction Model Development and
Evaluation

no. of samples

data set active inactive total

training set 628 (38.5%) 1001 (61.5%) 1629
independent test set 100 (50%) 100 (50%) 200
total 728 1101 1829
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each layer is composed of a multihead self-attention mechanism
and a position-wise fully connected feed-forward network. A
residual connection is employed around each of the encoder
layers, followed by layer normalization (Figure 3).
The attention mechanism maps a query and a set of key-value

pairs to an output, where the query (Q), key (K), and values (V)
are all vectors. The query and key vectors are used to compute
the compatibility of the input to the output. The final output is
an average of all the input values, weighted by the scores
provided by the compatibility function. In Vaswani et al.’s43

implementation, the attention mechanism scales the dot-
products of the query and key vectors by

d
1

k
, where dk is the

dimension of the key vector and uses the result to weight the
corresponding value vector. The query, keys, and values vectors
are packed together as matricesQ,K, and V, and the outputs are
computed as

i
k
jjjjjj

y
{
zzzzzz=

d
VQ K V

QK
Attention( , , ) softmax

k

T

(1)

With a single attention head, averaging prevents the model
from jointly attending to different segments of the sequence
simultaneously. The transformers overcomes this by using a
multiheaded attention layer composed of multiple attention
mechanisms (heads), each learning to its own weights

separately. The multiheaded attention layer outputs one
weighted value vector for each attention head, which all are
then concatenated into a single vector used as inputs for
subsequent layers of the transformer encoder.
For a molecule, it can be represented as a sequence of

substructural tokens. The transformer can jointly attend to each
substructure that constitutes the molecule. Each substructural
token is first replaced by an input embedding that is unique to it.
In order to retain information about the position of each
substructural token in the sentence, a positional embedding
vector is added to each input embedding vector. The positional
embedding has the same dimension as the input embeddings for
summation. Sine and cosine functions of different frequencies
are used as positional embeddings. For the ith dimension of the
positional embedding vector at position pos in the sequence, the
positional embedding (PE) is calculated as

i
k
jjjj

y
{
zzzz=iPE(pos, 2 ) sin

pos

10000 i d2 / model (2)

i
k
jjjj

y
{
zzzz+ =iPE(pos, 2 1) cos

pos

10000 i d2 / model (3)

Our proposed architecture of NPBERT was designed with
five hidden encoder layers of four-head attention. The output
dimension was set at 512. Gaussian Error Linear Units (GELU)
were used as the activation, and a dropout rate of 10%was added

Figure 2. Extraction of substructural sentences of a compound.

Figure 3. Architecture of bidirectional encoder representations from transformers.
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in between these layers. The NPBERT model was optimized
using the AdamW optimizer. For the pretraining task, Masked
Language Model (MLM) was employed. NPBERT was used to
predict the tokens in 15% of the sentences. In 15% of randomly
chosen sentences for the prediction task, 80% of the tokens were
replaced with a “Mask” token, 10% were replaced with a random
token, and 10% were unchanged. In our experiments, NPBERT
was implemented using PyTorch 1.3.1 and trained on Google
Colab equipped with 25 GB of RAM and one NVIDIA Tesla T4
GPU. NPBERT was trained over 20 epochs. It took about 10
hours to complete one epoch.
2.4. Learning Algorithms. 2.4.1. k-Nearest Neighbors. k-

Nearest Neighbors (k-NN), a simple supervised learning
algorithm, was first introduced by Fix and Hodges in 195144

and then completely conceptualized by Altman in 1992.45 k-NN
can be employed to deal with regression and classification
problems. In the k-NN algorithm, the number of k closest
neighbors decides values or classes of unknown samples. As a
distance-based measuring method, k-NN is highly sensitive to
unnormalized samples.

2.4.2. Support Vector Machines. Support Vector Machines
(SVM)46 is one of the most frequently used supervised learning
algorithms. In the beginning, SVM was mainly used to address
binary classification problems, but it was then developed to
effectively deal with various complicated classification problems.
It separates multidimensional data by creating multi-hyper-
planes of maximum expansion of the margin. This method limits
the accuracy collapse in case the number of features far exceeds
that of the samples. SVM, thus, is considered to be flexible and
smoothly adaptive to immense types of data while still being able
to have remarkable accuracy.

2.4.3. eXtreme Gradient Boosting. eXtreme Gradient
Boosting (XGB) is a supervised ensemble learning algorithm
initially developed by Chen and Guestrin.47 XGB is a more
regularized implementation derived from Gradient Tree
Boosting48,49 combined with Classification and Regression
Trees (CART).50 It is a computationally accelerated algorithm
that can effectively control overfitting to produce better
performances. In boosting, single classifiers are not constructed
using entirely random subsets of data and features but
sequentially in which mispredicted instances will be added
with more weights.

2.4.4. Random Forest. Random Forest (RF)51 is a supervised
ensemble learning algorithm that incorporates the “bagging”
idea52 and random selection of features53 to create various
decision trees during training. The trees are somewhat different
from each other, and the output is returned based on the mode
of the classes or the averaged prediction of the single trees for
classification or regression problems, respectively. The RF
algorithm addresses the shortcomings of decision trees: they
have tendencies to overfit the training data.

2.4.5. Model Tuning. To tune the k-NN, SVM, XGB, and RF
models, we performed exhaustive explorations over a selected
grid of parameter values using 5-fold cross-validation. For the k-
NN models, k (the number of neighbors) was tuned. For the
SVM models, C (error control coefficient) and gamma
(curvature weight of the decision boundary) were tuned. For
XGB, max_depth (the maximum depth of the tree),
colsample_bytree (subsample ratio of columns when
building a single tree), andlearning_rate (model learning
speed) were tuned. For RF models, max_depth (the
maximum depth of the tree), min_samples_split (the
minimum number of samples needed to split an internal node),

and max_features (the number of features to examine
when deciding the best split) were tuned. The details of
searching ranges of parameter values are provided in Table S1
(Supporting Information).
2.5. Molecular Encoding and Representation

Schemes. 2.5.1. Extended-Connectivity Fingerprints. Ex-
tended-connectivity fingerprints (ECFPs), also known as
circular fingerprints or Morgan fingerprints, belong to a class
of topological fingerprints.38 The ECFP scheme can create
various types of circular fingerprints depending on the radius
and bit number. The SMILES-formatted compounds were
converted to their corresponding 1024-dimensional and 2048-
dimensional ECFP binary vectors using a radius of 2.

2.5.2. RDKit Molecular Descriptors. The set of 196 RDKit
molecular descriptors was calculated using RDKit,37 an open-
source cheminformatics library, to create 196-dimensional
vectors. The molecular descriptors include 106 constitutional
descriptors, 58 MOE-type descriptors, 12 connectivity descrip-
tors, seven topological descriptors, four molecular property
descriptors, and one CPSA descriptor. RDKit directly converts
SMILES-formatted compounds into their corresponding 196-
dimensional vectors.

2.5.3. Mol2Vec Encoding. Mol2Vec, a pretrained molecular
encoder, was developed and first introduced by Jaeger et al.39

based on a similar idea of word embedding.54 Mol2Vec learns
substructural sentences of numerous compounds to create
molecular representations. The SMILES-formatted compounds
were converted to their corresponding 300-dimensional
Mol2Vec-encoded vectors.

2.5.4. NPBERT Encoding. NPBERT is our proposed
molecular encoding scheme, which is a pretrained model
developed using the Bidirectional Encoder Representations
from Transformers (BERT) architecture. Similarly to Mol2Vec,
NPBERT also learns tokenized substructures of copious
compounds, but the training was incorporated with the self-
attention mechanism to improve the adaptive molecular
embedding. The SMILES-formatted compounds were con-
verted to their corresponding 512-dimensional NPBERT-
encoded vectors.
2.6. Evaluation Metrics. To assess the model performance,

balanced accuracy (BA), specificity (SP), sensitivity (SN),
Cohen’s Kappa (CK), and the area under the receiver operating
characteristic curve (ROC-AUC) were assessed. TP, FP, TN,
and FN are the abbreviated terms of True Positive, False
Positive, True Negative, and False Negative values, respectively.
The mathematical formulas of these evaluation metrics are
expressed below

= +
BA

(SN SP)
2 (4)

=
+

SP
TN

TN FP (5)

=
+

SN
TP

TP FN (6)

=
p p

p
CK

1
o e

e (7)

where po and pe are the relative observed agreement among
raters and hypothetical probability of chance agreement,
respectively.
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3. RESULTS AND DISCUSSION
3.1. Model Development and Evaluation.TheNPBERT

encoder was trained over 20 epochs. After 18 epochs, validation
loss continued to decrease, but the loss variation is trivial (less
than 5%). Therefore, we selected the pretrained model at epoch
18 to be used as the NPBERT encoder (Figure S1, Supporting
Information). For each learning algorithm, five different
classifiers were trained using five corresponding molecular
encoding schemes and representations. In our experiments,
since the training set had imbalanced classes, we employed the
Synthetic Minority Oversampling Technique (SMOTE)40 to
rebalance the classes. We decided to test two training scenarios:
using SMOTE and not using SMOTE. Tables 2 and 3 provide
information on the predictive performance of trained models
not using SMOTE and those using SMOTE.

For non-SMOTE models, the use of the NPBERT encoding
showed improvements in the predictive performance of models
using the k-NN, SVM, and XGB algorithms. For models trained
with the k-NN, SVM, and XGB algorithms, the models using
NPBERT encoding showed better performance compared to
those using Mol2Vec encoding, ECFP, and RDKit molecular
descriptors. For models trained with RF, the performance of the
models using RDKit molecular descriptors, Mol2Vec-encoded
features, and NPBERT-encoded features are equivalent (Table
2). For SMOTE-used models, the use of the NPBERT encoding
presented significant increases in the predictive performance of
the models trained with the k-NN, SVM, and XGB algorithms.
For models trained with RF, the performance of the model using
1024-bit ECFP2 stayed at the top, followed by those using 2048-
bit ECFP2 and other encoding schemes. Generally, except for
RF models, the models trained with other algorithms using

Table 2. Performance of Models Trained with Various Feature Schemes (Not Using SMOTE)

model feature set ROC-AUC BA SN SP KP

k-NN 1024-bit ECFP2 0.7077 0.6350 0.4800 0.7900 0.2700
2048-bit ECFP2 0.7317 0.6100 0.3200 0.9000 0.2200
RDKit MD 0.7145 0.6500 0.4300 0.8700 0.3000
Mol2Vec 0.7060 0.6750 0.6000 0.7500 0.3500
NPBERT 0.7393 0.6400 0.4400 0.8400 0.2800

SVM 1024-bit ECFP2 0.7164 0.6550 0.4800 0.8300 0.3100
2048-bit ECFP2 0.7096 0.6500 0.4600 0.8400 0.3000
RDKit MD 0.7160 0.6600 0.4900 0.8300 0.3200
Mol2Vec 0.7290 0.6450 0.4700 0.8200 0.2900
NPBERT 0.7749 0.7000 0.5800 0.8200 0.4000

XGB 1024-bit ECFP2 0.7090 0.6250 0.4700 0.7800 0.2500
2048-bit ECFP2 0.7312 0.6400 0.4700 0.8100 0.2800
RDKit MD 0.7069 0.6350 0.4700 0.8000 0.2700
Mol2Vec 0.7222 0.6650 0.4800 0.8500 0.3300
NPBERT 0.7406 0.6300 0.5100 0.7500 0.2600

RF 1024-bit ECFP2 0.7086 0.6200 0.3500 0.8900 0.2400
2048-bit ECFP2 0.7098 0.6000 0.3100 0.8900 0.2000
RDKit MD 0.7132 0.6250 0.4500 0.8000 0.2500
Mol2Vec 0.7114 0.6300 0.4000 0.8600 0.2600
NPBERT 0.7141 0.6250 0.4400 0.8100 0.2500

Table 3. Performance of Models Trained with Various Feature Schemes (Using SMOTE)

model feature set ROC-AUC BA SN SP KP

k-NN 1024-bit ECFP2 0.6787 0.5850 0.8100 0.3600 0.1700
2048-bit ECFP2 0.6835 0.5650 0.8000 0.3300 0.1300
RDKit MD 0.6930 0.6250 0.5500 0.7000 0.2500
Mol2Vec 0.6610 0.6250 0.6500 0.6000 0.2500
NPBERT 0.7385 0.6550 0.5500 0.7600 0.3100

SVM 1024-bit ECFP2 0.6824 0.6500 0.5400 0.7600 0.3000
2048-bit ECFP2 0.6730 0.6500 0.5500 0.7500 0.3000
RDKit MD 0.7144 0.6700 0.5800 0.7600 0.3400
Mol2Vec 0.6985 0.6800 0.6000 0.7600 0.3600
NPBERT 0.7696 0.7000 0.6300 0.7700 0.4000

XGB 1024-bit ECFP2 0.7142 0.6600 0.5800 0.7400 0.3200
2048-bit ECFP2 0.6938 0.6550 0.6100 0.7000 0.3100
RDKit MD 0.6926 0.6350 0.5200 0.7500 0.2700
Mol2Vec 0.7005 0.6350 0.6000 0.6700 0.2700
NPBERT 0.7288 0.6550 0.5800 0.7300 0.3100

RF 1024-bit ECFP2 0.7428 0.6850 0.6300 0.7400 0.3700
2048-bit ECFP2 0.7154 0.6600 0.6400 0.6800 0.3200
RDKit MD 0.7036 0.6600 0.6300 0.6900 0.3200
Mol2Vec 0.7000 0.6500 0.5700 0.7300 0.3000
NPBERT 0.6975 0.6600 0.6100 0.7100 0.3200
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NPBERT encoding work more effectively than corresponding
models using other encoding schemes and representations. For
RF models, although trained models using NPBERT encoding
do not work as efficiently as expected in both scenarios, the
superior performance of other models still provides sufficient
evidence to confirm the effectiveness of our proposed encoding
scheme. Under the scope of this study, the performance of the
NPBERT scheme exceeds those of four other state-of-the-art
methods in terms of identifying the antimalarial activity of
natural products (Table 3). The ROC curves for the k-NN,
SVM, XGB, and RF models are provided in Figures S2, S3, S4,
and S5 (Supporting Information), respectively. The 5-fold cross-
validation results are provided in Tables S2 and S3 (Supporting
Information).
3.2. Comparison with Relevant Studies. Egieyeh et al.

developed various prediction models using NB, VP, RF, and
SVM.11 The best-performing and second best-performing
models were RF and SVM models with ROC-AUC values of
0.9100 and 0.8600, respectively. From the original data set, they
used 80% and 20% of the data set as their training set and
validation set, respectively, using stratified sampling. The ratio of
active antimalarial compounds to inactive ones is 7:3. To
address the class imbalance problem, they reported that
SMOTE had been used, but there was no detailed explanation
mentioning how SMOTE was applied. There might be an
unexpected scenario in which SMOTE was done before
performing cross-validation. In case this assumed scenario
occurred, the model might be overfitted. Egieyeh et al.
conducted 10-fold cross-validation in which nine-fold of it was
used as the training set, while one-fold was used as the validation
set. During the k-fold cross-validation process, every fold was
iteratively treated as the validation set, and the final evaluation
was based on the averaged evaluation of all k validation sets.
When employing SMOTE in k-fold cross-validation, it is
permitted to be applied on the training set only. Moreover,
many duplicates were found in their original data set, and this
issue might significantly affect the model’s outcomes. Although
Egieyeh et al. is the most relevant to our study, we decided not to
compare ours to theirs due to these reasons. In our approach, the
SVMmodel was the best model, obtaining ROC-AUC values of
0.7749 and 0.7696 for the not using SMOTE and using SMOTE
scenarios, respectively. Unlike Egieyeh et al.’s study, our
experiments were carefully designed and performed with a
training set and an independent test set. Additionally, the
utilization of SMOTE in our study was clearly explained and
appropriately processed to avoid overfitting. Therefore, our
proposed computational method can be considered a
significantly better approach in terms of both study design and
experiments.
3.3. Comparative Analysis among Encoding Schemes

and Representations. Our experimental results initially
showed that the performance of models trained with all
encoding schemes and representations varies between two
conditions: using SMOTE and not using SMOTE. Generally,
while the performance of all models built with distance-based
algorithms (k-NN and SVM) had downward trends from not
using SMOTE to using SMOTE conditions, the performance of
all models built with tree-based algorithms (XGB and RF) seem
to be relatively stable with minor changes. Compared to other
molecular encoding schemes and representations, models
trained with the NPBERT feature set have better performance
when combining with k-NN and SVM. In comparison between
the two conditions, the variations in the ROC-AUC values in the

k-NN and SVM models using the NPBERT encoding are
negligible. The RF algorithm seems to not work very effectively
with NPBERT, but NPBERT’s performance is still considered
competitive under the not using SMOTE condition. Under the
not using SMOTE condition, Mol2Vec’s performance in terms
of BA and KP is stronger than that of NPBERT, except for the
SVM-based model. Under the using SMOTE condition,
NPBERT’s performance in terms of BA and KP is higher than
that for the k-NN, SVM, and XGB models. To fully assess the
performance of NPBERT in comparison with each encoding
scheme, we used the two-tailed DeLong’s test55 to compare the
significant difference in the ROC-AUC values between
NPBERT and the others. The results are unsurprisingly
anticipated, in that NPBERT can work very well with
distance-based algorithms but ineffectively perform in tree-
based algorithms. Under the not using SMOTE condition,
ROC-AUC values in the SVM models are significantly higher
than those of 1024-bit ECFP2 and 2048-bit ECFP2with p values
of 0.0412 (<0.05) and 0.0244 (<0.05), respectively. Under the
using SMOTE condition, ROC-AUC values in the SVMmodels
are significantly higher than those of the models using other
encoding schemes except for RDKit MD. ROC-AUC values in
the k-NN model are also significantly greater than those of the
models using Mol2Vec. Although NPBERT’s performance in
the XGB and RFmodels is not as good as expected, the statistical
insignificance (inferred from the test) shows that our proposed
method is also competitive when compared to the state-of-the-
art methods. Our experimental results and hypothesis testing
bring us to a strong conclusion that NPBERT is a robust and
effective encoding scheme, especially when being used in
combination with distance-based algorithms. Tables S4 and S5
provide information on DeLong’s test results for the not using
SMOTE and using SMOTE conditions, respectively.
3.4. Strengths and Limitations. NPBERT, our proposed

molecular encoder, was developed using one of the most
effective recurrent neural networks incorporated with a self-
attention mechanism to help it better learn the substructural
characteristics with a focus at specific positions. In comparison
with the Mol2Vec encoder, the training of NPBERT used less
computing resource with a smaller data set. While NPBERT
required only 2 million compounds for its training process, it
took nearly 20 million compounds to train Mol2Vec. Addition-
ally, since the NPBERT encoder is designed to cope with
molecular embedding for natural products, it can somehowwork
more efficiently compared to theMol2Vec encoder in predicting
bioactivities and properties of natural products. However, the
NPBERT encoder may not always be the best solution in all
natural product-related prediction tasks. Presently, many more
advanced transformer architectures have better performance
compared to BERT. Therefore, creating a different version of
NPBERT that varies according to situations is highly
recommended instead of sticking with NPBERT only. Addi-
tionally, another limitation of NPBERT is that the encoding is
limited to small molecules, thus peptides are not covered,
though they also play an important role as potential antimalarial
agents.56,57

Data and Software Availability. Chemical data used in
this study were partially collected from Egieyeh et al.11 and the
NPASS database36 with independent recurration. Source code
and data are available at https://github.com/mldlproject/2021-
NPBERT-Antimalaria.
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4. CONCLUSIONS
Our proposed molecular encoding scheme, NPBERT, confirms
its superior performance compared to other state-of-the-art
molecular encoding methods. On the other hand, our prediction
models for identifying antimalarial natural products obtain
ROC-AUC values of up to 0.7749. The application of NPBERT-
encoded features for model development significantly improved
the predictive power of constructed models to better detect
potent antimalarial natural products. Subsequently, NPBERT,
as well as its future modified version, can be applied in many
other natural product-related prediction tasks.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00584.

Plots presenting changes in training losses versus
validation losses of the NPBERT pretrained model,
plots displaying ROC curves and AUC values, parameter
searching range during model tuning, and 5-fold cross-
validated AUC values (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Matthew Chin Heng Chua − Institute of Systems Science,
National University of Singapore, Singapore 119620,
Singapore; orcid.org/0000-0002-5200-5079; Phone: +65
6516 2088; Email: mattchua@nus.edu.sg

Binh P. Nguyen − School of Mathematics and Statistics,
Victoria University of Wellington, Kelburn Parade, Wellington
6140, New Zealand; orcid.org/0000-0001-6203-6664;
Phone: +64 4 886 4489; Email: binh.p.nguyen@vuw.ac.nz

Authors
Thanh-Hoang Nguyen-Vo − School of Mathematics and
Statistics, Victoria University of Wellington, Kelburn Parade,
Wellington 6140, New Zealand; orcid.org/0000-0003-
0006-5245

Quang H. Trinh − Computational Biology Center,
International University−VNU HCMC, Ho Chi Minh City
700000, Vietnam; orcid.org/0000-0001-9724-8405

Loc Nguyen − Computational Biology Center, International
University−VNU HCMC, Ho Chi Minh City 700000,
Vietnam; orcid.org/0000-0003-0561-6659

Trang T. T. Do − School of Business and Information
Technology, Wellington Institute of Technology, Lower Hutt
5012, New Zealand; orcid.org/0000-0002-1614-4661

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.1c00584

Author Contributions
T.-H.N.-V.: data curation, investigation, formal analysis,
validation, visualization, writing�original draft, writing�re-
view and editing. Q.H.T.: investigation, data curation, software.
L.N.: investigation, data curation. T.T.T.D.: formal analysis,
writing�review and editing. M.C.H.C.: methodology, resour-
ces, writing�review and editing, supervision. B.P.N.: con-
ceptualization, methodology, formal analysis, visualization,
writing�review & editing, supervision.
Funding
The work of T.T.T.D. was supported in part by the Whitireia
and WelTec Contestable fund.

Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) White, N. J.; Pukrittayakamee, S.; Hien, T. T.; Faiz, M. A.;
Mokuolu, O. A.; Dondorp, A. M. Erratum: Malaria. Lancet 2014, 383,
696−696.
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