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Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug
molecule. An in silicomodel predicting drug permeability is described, which is built based on a large per-
meability dataset of 7488 compound entries or 5435 structurally unique molecules measured by the
same lab using parallel artificial membrane permeability assay (PAMPA). On the basis of customized
molecular descriptors, the support vector regression (SVR) model trained with 4071 compounds with
quantitative data is able to predict the remaining 1364 compounds with the qualitative data with an area
under the curve of receiver operating characteristic (AUC-ROC) of 0.90. The support vector classification
(SVC) model trained with half of the whole dataset comprised of both the quantitative and the qualitative
data produced accurate predictions to the remaining data with the AUC-ROC of 0.88. The results suggest
that the developed SVR model is highly predictive and provides medicinal chemists a useful in silico tool
to facilitate design and synthesis of novel compounds with optimal drug-like properties, and thus accel-
erate the lead optimization in drug discovery.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The oral route of administration is desirable for most drugs due
to the convenience, patient compliance and cost concerns. After a
drug is orally administrated, it is dissolved in gastrointestinal fluids
and then absorbed by the digestive system. Drug absorption pri-
marily takes place in the small intestine, where drug molecules
can penetrate the cell membrane on the intestine wall to enter
the blood circulation. Before drug molecules reach the systemic
circulation, they are carried via the portal vein to the liver where
drug molecules might be metabolized by either phase I or/and II
enzymes (the first-pass effect) in hepatocytes.

The small intestine is composed of duodenum, jejunum, and
ileum sections. The luminal folding and villi structure (Fig. 1) in
the human small intestine greatly enlarge the effective absorption
surface area by 600-fold.1 Most drugs are absorbed through the
intestinal epithelium to enter the systemic circulation primarily
by passive diffusion, which is driven by the concentration gradi-
ent.2,3 Lipophilic drugs mainly diffuse transcellularly, due to their
high permeability across the plasma lipid membrane. Hydrophilic
drugs with a low molecular weight might diffuse primarily via
the paracellular route (Fig. 1). In addition to passive diffusion, some
drugs as well as endogenous compounds such as dipeptides, pass
through the intestinal epithelium via active transporters including
OCTs (organic cation transporter), OATPs (organic anion-transport-
ing polypeptide) and PEPT1 (H+/peptide co-transporter), just to
name a few. On the other hand, drug molecules, after entering
the epithelial cells or reaching systemic circulation, can also be
pumped back to the intestinal lumen by efflux transporters, such
as P-gp (P-glycoprotein, MDR1), BCRP (breast cancer resistance
protein) and MRP2 (multidrug resistance-associated protein)
expressed on the small intestine epithelial cells, if the drug is a
substrate for the transporter.2

Because absorption is one of the key physico-chemical proper-
ties that determine oral bioavailability, several in vitro methods
such as Caco-2 and PAMPA (parallel artificial membrane perme-
ability assay) have been developed to evaluate drug permeability
across the cellular membrane. Caco-2 cells are derived from human
colorectal adenocarcinomas, and they express a number of trans-
porters such as P-gp and BCRP, and also exhibit characteristics that
resemble intestinal epithelial cells such as the formation of a polar-
ized monolayer, well-defined brush border on the apical surface
and tight intercellular junctions. Therefore, Caco-2 permeability
assay has been widely used by pharmaceutical companies in
absorption screening for preclinical drug selection.4 PAMPA is a
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Fig. 1. A simplified cartoon representation of different mechanisms involved in
intestinal absorption of a drug molecule. After oral administration, drug uptake
through the intestinal epithelium follows either passive diffusion or active
transport. Lipophilic drugs favor transcellular transport, while hydrophilic drugs
prefer to paracellular transport. P-gp, an efflux transporter engaged in pumping
drugs back to intestinal lumen, is used as an example to represent active transport
processes.

H. Sun et al. / Bioorganic & Medicinal Chemistry 25 (2017) 1266–1276 1267
non-cell-based and low-cost alternative to cellular models. Com-
pared to cell-based methods, PAMPA has the advantages of cost
and time effectiveness, high tolerance to a wider pH range and
higher DMSO content, and amenability to high throughput.5–7 A
limitation of PAMPA is that neither active nor efflux transporters
are modeled by the artificial PAMPA membrane. Despite this limi-
tation, PAMPA provides permeability values that are useful for
absorption prediction, because the majority of drugs are absorbed
by passive diffusion through the membrane.2,8 The high intestinal
concentrations of drugs after oral administration greatly exceed
the intestinal transporter Km values and they are saturated,
whereas passive diffusion is not saturable and is thus the primary
permeation mechanism. Strong correlations have been observed
between PAMPA and Caco-2 assay results.6,8,9 Although both
Caco-2 and PAMPA measurements provide valuable drug perme-
ability data after compound synthesis, an in silico model that pre-
dicts permeability of structurally diversified compounds can
provide medicinal chemists a useful tool to facilitate pre-synthesis
design of novel compounds with optimal permeability, and thus
accelerate lead optimization in drug discovery. A quantitative
structure-permeability relationships (QSPR) prediction approach
using previously measured PAMPA values from a large diverse
compound set would be a useful contribution to translational
pharmaceutical sciences.

A typical QSPR approach for PAMPA data was carried out by
Akamatsu’s group in 2005:10

logPapp�pampa ¼ 0:43ð�0:09ÞlogPoct � 0:25ð�0:08ÞjpKa � pHj
� 1:07ð�0:49ÞSAHA � 1:00ð�0:42ÞSAHD

� 4:98ð�0:31Þ

n ¼ 57; s ¼ 0:33; r2 ¼ 0:76; q2 ¼ 0:72

where logPoct is the logarithm of the octanol-water partitioning
coefficient, pKa is the negative logarithm of the acid dissociation
constant (Ka), SAHA and SAHD are surface area of hydrogen bond
acceptors and hydrogen bond donors, n is the number of training
compounds, s is the standard deviation, r and q are the correlation
coefficient and the cross-validation (CV) correlation coefficient,
respectively. Twenty-two peptidic compounds and 38 commercial
drugs comprised the training data, with three drugs, Desipramine,
Imipramine, and Testosterone, excluded from the model
development.10

Addition of 37 organic compounds to the training set led the
group to conclude a bilinear QSPR model:11

For compounds with logPapp-pampa 6 �4.5,

logPapp�pampa ¼ 0:42ð�0:09ÞlogPoct � 0:28ð�0:07ÞjpKa � pHj
� 1:20ð�0:47ÞSAHA � 1:11ð�0:40ÞSAHD

� 4:79ð�0:30Þ
n ¼ 71; s ¼ 0:35; r2 ¼ 0:76; q2 ¼ 0:72:

For compounds with logPapp-pampa > �4.5,

logPapp�pampa ¼ 0:40ð�0:16ÞlogPoct þ 0:24ð�0:15ÞjpKa � pHj
� 3:68ð�0:51Þ
n ¼ 26; s ¼ 0:30; r2 ¼ 0:54; q2 ¼ 0:42:

It is noted that the PAMPA models published to date are mostly
based on small datasets; thus, it bears less predictive power for
today’s diversified chemical spaces.12–14 A number of physical
models have been proposed to predict passive membrane perme-
ation, in an attempt to simulate the underlying physical perme-
ation process.15 The majority of the physical models exhibited
poor predictability based on the small datasets, partly due to com-
plexity of the permeation process and lack of reliable parameters
to formulate the equations associated with the process.15

The current study presents an in silicomodel for predicting drug
permeability based on experimental PAMPA data collected at
NCATS. This model is built based on a dataset of more than 4000
structurally diverse compound entries, a large permeability dataset
generated by the same lab under exactly the same assay condi-
tions. Based on the large dataset, both regression (SVR) model
and classification (SVC) model are developed to predict PAMPA
permeability for public use (https://tripod.nih.gov/adme/pampar/
ppp.html).
2. Experiments

The stirring double-sink PAMPA method patented by pION Inc.
(Billerica, MA) was employed to determine the permeability of
compounds via PAMPA passive diffusion.16,17 The PAMPA lipid
membrane, which consisted of an artificial membrane of a propri-
etary lipid mixture and dodecane (Pion Inc.), was optimized to pre-
dict gastrointestinal tract (GIT) passive diffusion permeability. This
membrane was immobilized on a plastic matrix of a 96 well
‘‘donor” filter plate placed above a 96 well ‘‘acceptor” plate. This
artificial membrane mimicked the GIT membrane in the human
body. Both ‘‘donor” and ‘‘acceptor” wells were buffered to pH 7.4.
The test articles, stocked in 10 mM DMSO solutions, were diluted
to 0.05 mM in aqueous buffer (pH 7.4) and the concentration of
DMSO was 0.5% in the final solution. During the 30-min perme-
ation period at room temperature the test samples in the donor
compartment were stirred using the Gutbox technology (Pion
Inc.) to reduce the unstirred water layer. The test article concentra-
tions in the ‘‘donor” and ‘‘acceptor” compartments were measured
using a UV plate reader (Nano Quant, Infinite� 200 PRO, Tecan Inc.,
Männedorf, Switzerland). Permeability calculations were per-
formed using Pion Inc. software and were expressed in the units
of 10�6cm/s.
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3. Data preparation

The original dataset contains 7488 compound entries, among
which 1693 compounds were not detectable presumably due to
their UV-inactivity. The remaining compound entries in the dataset
were standardized by removing different salt forms, isotopes, and
organometallic compounds. The duplicated compounds were
either excluded from the dataset or kept as single copies, depend-
ing on the consistency of the measurements: if the Z scores
(mean/standard deviation) were less than 3.0, the mean values
were calculated to replace the individual logPeff values; otherwise,
the duplicates were rejected. The cleansed dataset contains 4079
compounds with quantitative Peff readouts and 1364 compounds
with qualitative records (eg. Peff < 1.0 � 10�6 cm/s), among which
266 compounds were referred to as highly permeable with logPeff
greater than 3.0, and the rest were poorly permeable with logPeff
smaller than 1.0 (Figs. 2 and 3a). The boxplot of the quantitative
data demonstrates that the measured PAMPA values span nearly
four orders of magnitude without including the 8 outliers, and
the data skew toward lower logPeff portion (Fig. 3b).

It is noted that the current PAMPA Peff dataset is mostly com-
prised of drug-like molecules resulting from multiple drug discov-
Fig. 2. The flowchart describing the pr

Fig. 3. (a) Histogram plot depicting the distribution of quantitative data of logPeff. The tw
the dataset. (b) Boxplot of the quantitative PAMPA data, where Q1 and Q3 present the fi
ery projects, and majority of these compounds were synthesized
by NCATS. Molecular weight (MW), AlogP, and polar surface area
(PSA) of the compounds in the dataset follow normal distribution,
peaking at 450 � 500 Da, 4 � 5, and 100 � 125 Å2, respectively
(Fig. 4). A majority of the collection (84.8%) can be characterized
as drug-like compounds, with zero or single violation of Lipinski’s
rule-of-5 (RO5) (Fig. 4). Consequently, the PAMPA permeability
models based on these drug-like compounds are expected to be
of pharmaceutical interest.

Based on the characteristics of the dataset, i.e. a mixture of
quantitative and qualitative data, two strategies were adopted to
compose the training and test datasets in order to construct the
predictive QSPR models. The first strategy was to utilize all
the 4071 quantitative data to train a regression model to predict
the PAMPA permeability, logPeff, of the test set containing all the
1364 qualitative data; the second strategy was to develop a classi-
fication model with 50% of the data randomly selected from the
combined dataset of quantitative and qualitative data (5473 com-
pounds in total after excluding the 8 outliers) and validate the
model with the remaining half of the data. For the quantitative
data, those compounds with logPeff values (in the units of
10�6 cm/s for Peff) greater than 2.5 in the training set were assigned
eprocessing of the PAMPA dataset.

o gray columns represent the counts of poorly and highly permeable compounds in
rst and third quartiles.



Fig. 4. Distributions of molecular weight (MW), lipophilicity (AlogP), polar surface area (PSA), and rule-of-five (RO5) violations of the PAMPA dataset generated by NCATS.
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as permeable; those lower than 2.0, as non-permeable; and the
387 compounds with logPeff values in between 2.0 and 2.5 were
discarded (Fig. S1). The 304 compounds with their logPeff values
falling between 2.0 and 2.5 are remained in the test set, and binned
into high or low permeable by using cutoff of 2.25 log units.

4. Molecular descriptors

An atom-type-based molecular descriptor system was used to
derive the structure-permeability relationships. An atom-type
casting tree was designed to assign atom types according to each
atom’s own chemical properties and its chemical environment
within the molecule.18 The structure of the original tree was sub-
ject to recursive optimizations to improve its performance in pre-
dicting lipophilicity of the compounds (logP) in the Pomona
College Masterfile subset, Starlist (2004 version), a high-quality
dataset containing nearly 11,000 structurally diverse compounds.
In addition to the 218 atom types, 41 correction factors were intro-
duced to recruit the whole-molecule properties, such as molecular
globularity, flexibility, etc. The atom-type casting tree was imple-
mented by using OEChem toolkits from OpenEye (OpenEye, Santa
Fe, NM). The same set of molecular descriptors has been applied
to produce highly predictive models for a variety of molecular
properties.18–21

5. Support vector machine (SVM)

SVM is an elegant machine learning algorithm that has been
successfully applied to many pattern recognition problems.22

SVM has been proven to outperform other machine learning meth-
ods because of its outstanding generalization capability.23–25 Actu-
ally, SVM is one of the few machine learning algorithms to address
the generalization problem, i.e., how well a derived model per-
forms on unseen data. It is not trivial to estimate the generalization
error solely based on a training data set. According to Novikoff’s
Theorem, minimizing the generalization error is equivalent to
maximizing the separating margin in support vector classification
(SVC).23 Therefore, the binary classification with minimized gener-
alization error problem is transformed to a constrained optimiza-
tion problem:

Maximizing the margin

2
jjwjj ; or minimize

1
2
jjwjj2; subject to

yiðhw � xi þ bÞ P 1:

When the training data are not separable, the concept of soft
margin is applied to allow data points misclassified but at a cost.
By introducing slack variables ni, the constrained optimization
problem becomes:

Minimizing
1
2
jjwjj2 þ C

Xm
i¼1

ni; subject to

yiðhw � xi þ bÞ P 1� ni;

ni P 0; i ¼ 1;2; . . . ;m;

where C is a penalty parameter applied to misclassified compounds,
which is the major parameter affects the performance of a SVC
model.

The final piece of the puzzle in SVC is ‘‘kernel trick”, which
enables a smooth introduction of nonlinearity thus allows applica-
tion of linear algorithm to solve nonlinear problems. A common
choice of kernel function is a Gaussian Radial Basis Function (RBF):

kðxi; xjÞ ¼ e�cjjxi�xj jj2

which has a single parameter c. The best combination of C and c is
often selected by a grid search with exponentially growing
sequences of C and c, for example, 2 f2�5;2�3; . . . ;25g;
c 2 f2�5;2�3; . . . ;25g.



Fig. 5. (a) The slack variables in a SVC model; and (b) the e–insensitive tube, e–insensitive loss function, and slack variables for a SVR model.
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The principle of SVM can be readily extended to regression
through Vapnik’s e–insensitive loss function:

Leðyi; hw � xiÞ ¼ 0 if jyi � hw � xij 6 e
jyi � hw � xij � e otherwise

�

Support vector regression (SVR) is similar to SVC in the sense that
SVC segregates data points belonging to different classes into differ-
ent sides of hyper-planes and maximizes the margin between the
planes, whereas SVR drives the data points in between the mini-
mized e -tube (Fig. 5). The parameterization was accomplished on
a grid-based search to minimize the mean standard error (MSE) of
5-fold cross-validation (CV) on the training data. LIBSVM, a software
implementation of SVM developed by Chang and Lin,26 was
employed in this the study.
6. Model development

A typical protocol for SVM is to first train the learner with a set
of compounds with known classification – ‘‘to learn”, and then to
use the trained model to classify previously unseen
compounds – ‘‘to predict”. Before parameter optimization, the
counts of atom types and correction factors were center-normal-
ized and scaled to the space of [0,1]. Parameterization was then
conducted in order to maximize the effectiveness of SVM models.
For a SVR model, three parameters influence the performance of
generalization, the soft margin penalty, C, the kernel parameter,
c, and e.

The parameter e is useful if the desired accuracy of the approx-
imation is specified beforehand. However, lacking of a priori infor-
mation about the accuracy of the y values makes it difficult to
determine the value of e a priori. The sparsity parameter m is equiv-
alent to the fraction of data points outside the e–tube, which can be
chosen in accordance with the noise in y values.27 The optimal m is
negatively correlated to the noise in data and the tube width e. The
parameter m is also shown largely insensitive to the choice of the
other two parameters (Fig. S2).

The surface chart in Fig. S3 provides a clear picture illustrating
the interplay of the soft margin penalty, C, and the sparsity param-
eter, m, and the joint effects on the MSE, when the kernel parame-
ter, c, is set to 0.25. The concave shape of the surface revealed a
relatively flat bottom corresponding to the C and m combinations,
which offer optimal performance.

The similar protocol has been followed in parameterization of
the SVC models.
7. Results

Adopting the optimized parameters (C = 8, c = 0.25, and
m = 0.125), the SVR model was highly predictive for the compounds
in the training set, with the regression coefficient r2 of 0.90 (or 0.87
by setting interception to 0.0) and the MSE of 0.07 log units
(Fig. 6a). Examination of the boxplots of the predicted logPeff values
for the compounds in the two categories of low and high perme-
ability leads to the primary conclusion that the SVR model was
capable of separating the two groups of compounds in the test
set (Fig. 6b).

Fig. 7 illustrates the count of the compounds falling into the dif-
ferent categories in terms of accuracy of the predictions. The
majority of the 4071 compounds (3425 of which, or 84.1%) were
accurately predicted by the SVR model with a deviation of logPeff
smaller than 0.2 log units, whereas only 239 compounds, or 5.9%,
were poorly predicted with the predicted logPeff diverging from
the experimental values greater than 0.5 log units. Among the most
poorly predicted 50 compounds, 27 (or 54.0%) are less permeable
with a logPeff lower than 1.0, while the whole dataset contains only
401, or 9.9%, of less permeable compounds.

The simplicity and insensitiveness to changes in class distribu-
tion and error costs of the receiver operating characteristic (ROC)
curve make it suitable for assessing and comparing the discerning
power of QSPR models. The area under the ROC curve (AUC-ROC)
provides objective ‘‘single value” estimation of the accuracy of
machine learning models.28 Rank-ordering the compounds in the
test set with the predicted logPeff values yielded the ROC curve,
as shown in Fig. 8. The AUC-ROC value of 0.90 indicates the highly
predictive power of the SVR PAMPA model. Among the first third
(454 compounds) top ranking compounds with the smallest pre-
dicted logPeff values, there are only 2 highly permeable compounds,
whereas screening the one third compounds with the highest pre-
dicted logPeff values will retrieve 228 of 266 (85.7%) highly perme-
able compounds (Fig. 8a).

In the second strategy, an SVC model was built on the basis of
randomly selected half of the 5435 compounds. The SVC model
was trained with 2406 compounds, among which 50.0% com-
pounds were labelled as permeable. In order to minimize the
impact of the uncertainties associated with experimental errors
on the model performance, the compounds with logPeff values
between 2.0 and 2.5 were excluded from the training data. The
excellent prediction was achieved when applying the PAMPA clas-
sifier to predict the permeability of the test set compounds, with
the AUC-ROC of 0.88 (Fig. 8b). The binary classifier lose the predic-
tion power significantly on the 304 compounds with logPeff values



Fig. 7. Distribution of 4071-compound dataset, according to the deviation of the
predicted logPeff values.

Fig. 6. (a) Correlation between the observed and predicted logPeff values over the 4071-compound training set for the SVR model; (b) Boxplots of the predicted logPeff values
for the poorly and highly permeable compounds in the test set.
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between 2.0 and 2.5 (AUC = 0.61, Fig. 8b), while improved perfor-
mance was observed on the remaining test compounds
(AUC = 0.90, Fig. 8b).
8. Discussions

QSPR models are only as good as the data on which they are
based. The quality of a QSPR model is determined by three key
components – quality of datasets to train and validate the model;
molecular descriptors to decipher and extract the relevant struc-
tural features; and sound statistical methods.

The quality of a dataset is assessed by at least three factors –
size, integrity, and diversity. The optimal size of a dataset for a
model depends on its application. If a particular QSPR model is a
local model to cover a subset of structure space, a small dataset
might be sufficient. Based on our experience, for QSPR models to
cover drug-like chemical space, a couple of thousands to tens of
thousands of diverse compounds are required. Optimal size is also
dependent on the choice of molecular descriptors: atom-type-
based and functional-group-based molecular descriptors tend to
have a better coverage of chemical space than finger-print-based
ones; thus atom-type-based QSPR models may require fewer train-
ing data to cover more space.

Data integrity refers to compatibility of subsets from different
resources. Some properties can be determined with different
experimental methods, and most properties are sensitive to exper-
imental conditions, such as temperature; so it is not encouraged to
combine datasets from different laboratories, unless the exact pro-
tocols are followed. Many experimental errors are associated with
the skills and experience of the experimenters, so the datasets with
the best integrity are produced when the same scientist carries out
the experiment under the same study conditions by following the
same protocols, which was how PAMPA data were collected in this
study. Even though this PAMPA dataset represents the largest col-
lection of drug-like compounds with great integrity, experimental
errors are inevitable, which will be discussed in the next session.

Structural diversity is a double-edged sword to a QSPR model.
High diversity of a dataset implies a more efficient coverage of
the chemical space; on the other hand, high diversity leads to
sparseness of data points and singletons in the space, especially
for small datasets. The sparsely distributed data points may pose
challenges in machine learning, due to the lack of pattern repeti-
tion for learning. The PAMPA dataset generated by NCATS consist
of over 5400 in-house compounds from multiple projects, together
with marketed drugs, representing a suitable structural diversity to
cover a good portion of chemical space of drug-like compounds.
This dataset represents so-far the largest reported PAMPA dataset
measured by the same lab. In addition, the atom type based molec-
ular descriptor greatly expands the coverage of the chemical space
through fragmentalizing compounds into atoms and functional
groups. The normal distributions of MW, AlogP, and PSA (Fig. 4)
also indicate a good coverage of the PAMPA dataset over the space
of drug-like compounds.

9. Impact of outliers on the SVR model and classification

In the training set, eight compounds were excluded as outliers
(Fig. 3b). The reported PAMPA values of these compounds were
beyond the sensitivity that the assay can reach, thus they were
most likely due to data entry errors. Since experimental errors
are inevitable in research, evaluation of the impact of these outliers
on the performance of the model provides useful information. The



(a)

(b)
Fig. 8. The ROC curves representing the predictive power of (a) the SVR logPeff predictor and (b) the SVC PAMPA permeability classifier.

1272 H. Sun et al. / Bioorganic & Medicinal Chemistry 25 (2017) 1266–1276
SVR model trained with the 4079-compound dataset exhibited a
significant deterioration in terms of the correlation coefficient,
since most outliers were poorly predicted with an averaged devia-
tion of logPeff being as high as 3.72 log units (Fig. S4). These outliers
contributed dramatically to the residual sum of squares (SSres), thus
significantly influencing the value of the regression coefficient
r2 ðr2 ¼ 1� SSres

SStot
; where SStot is the total sum of squaresÞ: However,

the impact of the outliers on the prediction of the permeability
of the test set compounds was minimal – both the boxplots
(Fig. 9) and ROC curve (figure not shown) resembled the model
trained without the outliers. The insensitiveness of the predictive
performance to the outliers is primarily attributed to the big size
of the training set, which dilutes the noises introduced by the very
small fraction of the outliers.

Outliers with abnormal responses, such as the 8 outliers with
lower-than-anticipated permeability in this study, are easy to



Fig. 9. Comparison of boxplots of the predicted logPeff values for the poorly and highly permeable compounds in the test sets (a) without and (b) with eight outliers.
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observe, while other outliers associated with different types of
experimental errors, such as incorrect chemical structures, and
human mistakes in handling the data are more difficult to recog-
nize. The incorrect data in the training sets have great impact on
the performance of QSPR models, especially when the datasets
are relatively small. Therefore, chemical data curation has been
listed as a key element in QSPR modeling workflow, since a QSPR
model is only as good as the data on which it is based.29
10. Error analysis of the SVR model

Experimental errors, which deteriorate a QSPR model, are
inevitable in reality. The top ten poorly predicted compounds are
listed in Table 1. Interestingly, the predicted permeability is higher
than the observed in 8 of the 10 cases. Eight of the ten molecules
are organic bases (4) or acids (4). The impact of ionization of a
substance on its permeability is complicated. It has been reported
that PAMPA permeability is negatively correlated to the jpKa � pHj
value for poorly permeable compounds, whereas a positive
correlation is observed for those with high permeability
(logPeff > 1.5 when logPeff is recorded in the unit of 10�6 cm/s).30

jpKa � pHj value is directly associated with the amount of
the unionized form of the compound (jpH � pKaj ¼
�logðfraction of unionized substanceÞ). Due to the amphiphilic nat-
ure of the artificial membrane used in PAMPA experiment, the ion-
ized form of the compounds generally have low permeability
because of the higher energy required for the charged form to per-
meate the membranes. On the other hand, the ionized form of a
compound is generally more soluble than its neutral form. Indeed,
the 499 organic acids in the dataset have an averaged logPeff of 1.44
log units, much lower than the averaged logPeff of the whole data-
set, which are 2.32 log units. Since higher level of experimental
uncertainty is usually observed for low permeable compounds,
the less accurate predictions of logPeff for the ionizable compounds
might be attributed to the experimental errors associated with
these compounds. The higher deviations are observed for less per-
meable compounds, as clearly illustrated in Fig. 6a. Among the ten
poorly predicted compounds, seven compounds are measured less
permeable with logPeff lower than 1.2 log units. Therefore, the loss
of predictivity for the ionizable compounds is presumably due to
the experimental fluctuations associated with the low permeabil-
ity of such compounds.
11. Interpretability of the models

A good QSPR model is not only statistically solid, but also
instructive and interpretable. Interpretability of a QSPR model
depends on both molecular descriptors and statistical tools. One
major advantage of using atom types as molecular descriptor is
its excellent interpretability. SVM employs kernel transformation;
thus it is considered a ‘‘black box” technique. A correlation matrix,
created by calculating the correlations between each column of the
input data with that of each row of the kernel matrix, will express
the contribution of each input variable to the kernel matrix.31 This
technique resumes the interpretability of SVM, making it a trans-
parent and comprehensible algorithm.

The features with the top discriminating power to separate
highly from poorly permeable compounds include polar surface
area (PSA), counts of hydrogen bond donors (HBD) and acceptors
(HBA), count of aromatic rings, molecular weight, hydroxyl oxygen
and hydrogen in an acidic group (O6 and H4). The distribution of
PSA of permeable compounds in the training set shifted signifi-
cantly to the larger side in comparison with the impermeable ones,
with the mean PSA values changing from 68 Å2 to 92 Å2 (Fig. 10).

Significant deviation was also observed for the occurrence of
the acidic oxygen O6 in the permeable and impermeable com-
pound sets. 20 of 1216 (1.6%) permeable compounds in the train-
ing set carry an acidic group, whereas the ratio of acidic
compounds is much higher in the impermeable set (246 of 1130,
or 21.8%). This observation is in good agreement with Akamatsu’s



Table 1
The structures of the top 10 poorly predicted compounds with their observed and predicted logPeff. The compounds in the table were purchased and characterized at NCATS.
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Table 1 (continued)

Structures logPeff New Known

Obs. Pred. Diff.

N

N
NO

N

Cl
OH

1.20 2.27 1.07 N Y

Fig. 10. The distribution of polar surface area (PSA) for permeable (colored in light green) and impermeable (colored in light purple) compounds in the training data.
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QSPR model concluded from a small set of drugs and peptide-
related compounds.30 Drugs carrying acidic groups might be
actively transported by OATPs, which is beyond the capability of
PAMPA models, since transporters are not expressed in the PAMPA
membranes.
12. Summary

Both regression and classification models built for PAMPA
permeability, on the basis of a large dataset generated by NCATS,
exhibit high predictive ability. The SVR model trained with 4071
drug-like compounds with quantitative PAMPA measurements
predicted the 1364 qualitative data points with an AUC-ROC of
0.90. The SVC model trained with half of the dataset produced
accurate predictions to the remaining half of data with the same
AUC-ROC of 0.88. The key features influencing the permeability
of a compound include PSA, counts of HBD and HBA, MW, and
occurrence of acidic group in the molecule. Smaller molecules with
low PSA are more likely to penetrate the biomembrane through
passive diffusion mechanism. Introduction of an ionizable group
to a highly lipophilic compound tends to improve its permeability,
since its low aqueous solubility might become the dominant factor
for its poor permeability, and addition of ionizable group usually
enhance the solubility of the parent compound.
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