
DRAFT
Efficient Polyhedral Gravity Modeling in Modern C++1

and Python2

Jonas Schuhmacher 1, Fabio Gratl 1, and Pablo Gómez 2
3

1 Technische Universität München, Arcisstraße 21, 80333 München, Germany 2 Advanced Concepts4

Team, European Space Agency, European Space Research and Technology Centre (ESTEC), Keplerlaan5

1, 2201 AZ Noordwijk, The Netherlands6

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary7

Polyhedral gravity models are ubiquitous for modeling the gravitational field of irregular bodies,8

such as asteroids and comets. We present an open-source C++ library for the efficient,9

parallelized computation of a polyhedral gravity model. We also provide a Python interface to10

the library using pybind11. The library is particularly focused on delivering high performance11

and scalability which we achieve through vectorization and parallelization with xsimd and12

thrust, respectively. The library supports many common formats, such as .stl, .off, .ply, .mesh13

and tetgen’s .node and .face.14

Statement of Need15

The complex gravitational fields of irregular bodies, such as asteroids and comets, are often16

modeled using polyhedral gravity models as they provide an analytic solution for the computation17

of the gravitational potential, acceleration (and second derivative) given a mesh of the body18

(Tsoulis, 2012; Tsoulis & Gavriilidou, 2021). The computation of the gravitational potential19

and acceleration is a computationally expensive task, especially for large meshes, which can20

however benefit from parallelization either over computed targets points for which we seek21

potential and acceleration or over the mesh. Thus, a high-performance implementation of a22

polyhedral gravity model is desirable.23

While some research code for these models exists, they are not focused on usability and limited24

to FORTRAN TODO LINK and proprietary software like MATLAB TODO LINK. There is25

a lack of well-documented, maintained open-source implementations, particularly in modern26

programming languages and with a focus on scalability and performance.27

The presented software has already seen application in several research works. It has been28

used to optimize trajectories around the highly irregular comet 67P/Churyumov-Gerasimenko29

(Maråk et al., 2023). Further, it has been used to study the effectiveness of so-called neural30

density fields (Izzo & Gómez, 2022), where it can serve as a ground truth and to pretrain31

neural networks (Schuhmacher et al., 2023). TODO_add_more_examples32

Thus, overall this model is highly versatile and can be used in a wide range of applications. We33

hope it will enable further research in the field, especially related to recent machine learning34

techniques, which typically rely on Python implementations.35

Polyhedral Model36

On a mathematical level, the implemented model follows the approach by Petrović (Petrović,37

1996) as refined by Tsoulis and Petrović (Tsoulis & Petrović, 2001). A comprehensive38

Schuhmacher et al. (2023). Efficient Polyhedral Gravity Modeling in Modern C++ and Python. Journal of Open Source Software, 0(0), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0009-0005-9693-4530
https://orcid.org/0000-0001-5195-7919
https://orcid.org/0000-0002-5631-8240
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DRAFT
description of the mathematical foundations of the model is given in the associated student39

report (Schuhmacher, 2022).40

Implementation-wise it makes use of the inherent parallelization opportunity of the approach41

as it iterates over the mesh. This parallelization is achieved via thrust which allows utilizing42

OpenMP and Intel TBB. On a finer scale, individual costly operations were investigated and,43

e.g., the arctan operations were vectorized using xsimd. On an application side, the user may44

use the implemented caching mechanism to avoid recomputation of mesh properties, such as45

the face normals.46

Extensive tests using GoogleTest are used via GitHub Actions to ensure the (continued)47

correctness of the implementation.48

Installation & Contribution49

The library is available on GitHub 1 and can be installed with pip or from conda 2. Build50

instructions using CMake are provided in the repository. The library is licensed under a GPL51

license.52

The project is open to contributions via pull requests with instructions on how to contribute53

provided in the repository.54

Usage Instructions55

We provide detailed usage instructions in the technical documentation on ReadTheDocs 3.56

Additionally, a minimal working example is given in the repository readme and more extensive57

examples as a Jupyter notebook 4.58

Acknowledgements59

The authors would like to thank Dario Izzo and Emmanuel Blazquez for their feedback on the60

original model implementation.61

References62

Izzo, D., & Gómez, P. (2022). Geodesy of irregular small bodies via neural density fields.63

Communications Engineering, 1(1), 48.64

Maråk, R., Blazquez, E., & Gómez, P. (2023). Trajectory optimization of a spacecraft swarm65

orbiting around 67P/Churyumov-Gerasimenko. Proceedings of the 12th International66

Conference on Guidance, Navigation & Control Systems (GNC).67

Petrović, S. (1996). Determination of the potential of homogeneous polyhedral bodies using68

line integrals. Journal of Geodesy, 71, 44–52.69

Schuhmacher, J. (2022). Efficient polyhedral gravity modeling in modern c++ [Master’s70

thesis]. Technical University of Munich.71

Schuhmacher, J., Gratl, F., Izzo, D., & Gómez, P. (2023). Investigation of the robustness of72

neural density fields. Proceedings of the 9th International Conference on Astrodynamics73

Tools and Techniques, ICATT.74

1https://github.com/esa/polyhedral-gravity-model
2https://anaconda.org/conda-forge/polyhedral-gravity-model
3https://polyhedral-gravity-model-cpp.readthedocs.io/en/latest/
4https://github.com/esa/polyhedral-gravity-model/blob/main/script/polyhedral-gravity.ipynb

Schuhmacher et al. (2023). Efficient Polyhedral Gravity Modeling in Modern C++ and Python. Journal of Open Source Software, 0(0), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

2

https://github.com/esa/polyhedral-gravity-model
https://anaconda.org/conda-forge/polyhedral-gravity-model
https://polyhedral-gravity-model-cpp.readthedocs.io/en/latest/
https://github.com/esa/polyhedral-gravity-model/blob/main/script/polyhedral-gravity.ipynb
https://doi.org/10.xxxxxx/draft


DRAFT
Tsoulis, D. (2012). Analytical computation of the full gravity tensor of a homogeneous75

arbitrarily shaped polyhedral source using line integrals. Geophysics, 77 (2), F1–F11.76

Tsoulis, D., & Gavriilidou, G. (2021). A computational review of the line integral analytical77

formulation of the polyhedral gravity signal. Geophysical Prospecting, 69(8-9), 1745–1760.78

Tsoulis, D., & Petrović, S. (2001). On the singularities of the gravity field of a homogeneous79

polyhedral body. Geophysics, 66(2), 535–539.80

Schuhmacher et al. (2023). Efficient Polyhedral Gravity Modeling in Modern C++ and Python. Journal of Open Source Software, 0(0), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft

	Summary
	Statement of Need
	Polyhedral Model
	Installation & Contribution
	Usage Instructions
	Acknowledgements
	References

