
Generic Load Regulation Framework for Erlang
August 5, 2010

Ulf Wiger
Erlang Solutions Ltd

ulf.wiger@erlang-solutions.com

Abstract
Although Telecoms, the domain for which Erlang was conceived,
has strong and ubiquitous requirements on overload protection, the
Erlang/OTP platform offers no unified approach to addressing the
problem. The Erlang community mailing list frequently sports dis-
cussions on how to avoid overload situations in individual com-
ponents and processes, indicating that such an approach would be
welcome. As Telecoms migrated from carefully regulated single-
service networks towards multimedia services on top of best-effort
multi-service packet data backbones, much was learned about pro-
viding end-to-end quality of service with a network of loosely
coupled components, with only basic means of prioritization and
flow control. This paper explores the similarity of such networks
with typical Erlang-based message-passing architectures, and ar-
gues that a robust way of managing high-load conditions is to reg-
ulate at the input edges of the system, and sampling known internal
choke points in order to dynamically maintain optimum through-
put. A selection of typical overload conditions are discussed, and
a new load regulation framework – JOBS – is presented, together
with examples of how such overload conditions can be mitigated.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Reliability, availability and serviceability

General Terms Regulation, Performance

Keywords Erlang, Performance, Throughput, Regulation

1. Introduction
The Erlang programming language (Armstrong 2007) is predomi-
nately used in server-side applications and various forms of mes-
saging gateways. These systems are often exposed to bursty traffic,
and need a strategy for coping with overload conditions. Still, over-
load remains one of the most prominent causes of service outage
(See Figure 1). As Erlang is a highly concurrent, message-passing
language, overload conditions have much in common with conges-
tion problems in communication networks and other traffic engi-
neering systems. Indeed, Erlang-based applications are often also
part of such communication networks, and must take responsibil-
ity for delivering predictable throughput, in order not to become a
congestion point and cause even greater problems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0253-1/10/09. . . $10.00

Figure 1. Failures in the US Public Switched Telephony Network,
outage minutes by cause, see (Kuhn 1997).

Figure 2. Result of high ranking on Reddit.com, see (Wilson
2008).

While the telecoms domain has changed since Erlang was in-
vented – nowadays, telecommunication is mainly regarded as a spe-
cific form of Internet multimedia – Erlang-based applications are
still often used in systems serving human communication patterns
– instant messaging, Voice over IP, search and document rating net-
works. As Web users on a global scale can “flock” towards infor-
mation, online services can be exposed to extremely bursty input
loads (See Fig 2).

Some notable Erlang-based products have boasted impressive
resistance to overload (see Fig 3 and Fig 4), but not much has been
written about how it is done.

Figure 3. AXD 301, throughput under load, see (Wiger 2001).

Figure 4. Dispatch Manager, increasing and then decreasing load,
C++ vs Erlang; in this test, the C++ application dies after 480
queries/s, see (Nyström et al. 2008).

In the following sections, we will list some typical problems that
can arise in Erlang-based applications due to overload, and describe
some common mitigation strategies. We will then outline a general
approach to load regulation of Erlang programs, and describe a
framework designed to offer generic support for load regulation,
addressing these problems.

A perhaps unusual approach in this paper is to compare regula-
tion of Erlang-based systems with the problem of achieving Quality
of Service (QOS) for multimedia traffic over IP networks. An in-
tuition for this might be that Erlang, being a concurrency-oriented
language, supports the building of message-passing systems, some-
what similar to that of a communication network. Erlang was de-
signed for soft real-time, where response times are usually quite
good, but no hard guarantees are given. This could also be said for
IP networks with DiffServ QOS (see (Peuhkuri 2010)).

Our hypothesis is that lessons can be learned by studying the
migration of voice traffic from dedicated circuit-oriented networks
to packet-oriented best-effort IP networks, with an intemediate
step based on ATM – a packet-oriented technology capable of
supporting guaranteed bit rates. ATM lost to IP much due to its
higher complexity, cost of interfaces and failure to provide high-
speed interfaces for the core network in a timely fashion (see (Gray
2000)).

Our proposed approach is to consign load regulation to the
edges of the system, and to be very careful with adding flow-control
measures in core components. The reasoning behind this is further
expanded in subsection 3.3, Stateless Core.

Figure 5. Time history including a possible freak wave event,
Draupner platform, North Sea Jan 1 1995, see (Haver 2003).

2. Common Problems
2.1 Active sockets
All communication between Erlang processes and external entities
is done through ports. Ports behave more or less like normal
processes, in that they send a message to the “port owner” process
when there is incoming data, and they are instructed to send data
by sending them a message in return.

Ports are by default interrupt-driven, but in the case of inet
ports (sockets), they can operate in different modes:

• {active,true} – incoming data on the socket is immediately
passed to the port owner.

• {active,false} – nothing is sent until the port is instructed
to do so.

• {active,once} – the port sends one message as soon as there
is available data, then reverts to {active,false} mode.

In the case of TCP sockets, keeping the port in {active,true}
mode means that senders will immediately be free to send more
data. This can be fatal if the Erlang system is not able to process
incoming data fast enough. It is generally considered prudent to
keep the sockets in {active,false} or {active,once} mode.
It should also be noted that the low-level POSIX socket API is
“passive”, in that data must be explicitly read from the buffer.

2.2 Memory Spikes
Garbage-collected languages are known to sometimes exhibit
bursty memory allocation behaviour, and Erlang is no exception.
Certain job types may be more demanding for the garbage col-
lector, e.g. by building large terms on the process heap, causing
repeated garbage collection sweeps that fail to free up data.

Traditionally, this has been a well-known, but reasonably man-
ageable problem. Erlang offers the ability to trace on garbage col-
lection events in real-time, making it possible to quickly identify
processes that cause memory allocation bursts.

However, multi-core architectures introduce the possibility of
multiple schedulers injecting this sort of behaviour simultane-
ously, potentially causing lethal memory allocation peaks. We have
seen this happen during load testing of otherwise robust message-
passing systems. The phenomenon is non-deterministic and can
require hours of load test to discover. For lack of a better analysis,
we called them “monster waves” (see Figure 5) although we do not
yet know exactly what causes it. If the analogy would turn out to
be appropriate upon further study, it would be highly interesting to
explore ways to predict such patterns before they occur (see e.g.
Figure 6).

Figure 6. Approximating the Draupner monster wave using a 5th

order non-linear equation, see (Taylor et al. 2006).

2.3 Asynchronous Producers
Message passing in Erlang is asynchronous. If a synchronous di-
alogue is needed, this must be accomplished with a request/reply
pair of messages. Reply messages are necessary if the client needs
confirmation that the request has been handled, but it also has a
flow-control effect.

Some behaviours in Erlang are primarily asynchronous. The
OTP behaviour gen_event is one example. An event notification
is done with an asynchronous message, whereas the processing
of the event involves a sequence of (synchronous) calls to user-
defined handler functions. The error_logger process typically
pretty-prints each event and logs it to disk, spending far more
effort on each event than the sender does. Therefore, it is quite
easy to overwhelm the error logger and potentially killing the
whole system. It should be noted that this can happen without any
particular wrongdoing on the part of the user, even though it has
happened that unsuspecting developers have triggered this problem
by relying on the error_logger for debugging output

2.4 Unnecessary Serialization
Getting the right granularity of concurrency as well as the right
balance between synchronous and asynchronous communication is
quite difficult, especially for the novice programmer. One example
of a beginner’s error is to think that each component must have its
own process – typically a gen_server. In large organizations, this
model can be favoured for organizational reasons – it is easier to
perform unit tests if you have your own process. As noted above, it
also introduces natural flow control, as the caller necessarily must
wait until the work is done.

This style of programming can easily lead to excessive serializa-
tion, and the introduction of bottlenecks. We are reminded of Am-
dahl’s argument (Amdahl 1967), stating that “the effort expended
on achieving high parallel processing rates is wasted unless it is ac-
companied by achievements in sequential processing rates of very
nearly the same magnitude.” Simply put, while excessive serializa-
tion may give benefits in terms of flow control, it is likely to come
at the expense of throughput.

2.5 Excessive Contention
There are very few shared data structures in Erlang. ETS tables are
a form of off-heap storage, either hash tables or b-trees, which can
optionally be shared among all processes in the system. This means
that the ETS tables must be protected internally by mutexes.

Figure 7. Dumping of Mnesia’s transaction log.

ETS tables became ubiquitous early on, when contention was
not a problem (there was only one cpu, and one scheduling thread),
and putting the data in ETS was often a way to speed up processing
compared to using functional data structures on the process heap.
But with the introduction of multi-core and multiple schedulers,
lock contention has significantly altered this relationship.

Another area where contention can become a problem is
mnesia transactions. Mnesia employs deadlock prevention, which
is a reasonably scalable method of avoiding deadlocks in a dis-
tributed environment. However, deadlock prevention introduces the
risk of false positives (it allows lock dependencies to flow only one
way, thus making deadlocks impossible, but also punishing some
transactions that were never in danger of deadlocking). The greater
the number of concurrent transactions operating on the same data
set, the greater the risk of such false positives.

2.6 Large Message Queues
Erlang’s support for selective message reception is a great strength,
but the implementation – pattern-matching over a single mes-
sage queue - has rather poor complexity. Behaviours such as
gen_server normally pick the first message in the queue (a
constant-time operation), but in the handling of a message, it is
quite possible that the server communicates with other processes
and resorts to selective message reception. If the server cannot
keep up with incoming requests, each time it performs a selective
receive, it must scan all messages in the queue – an operation that
becomes more costly the more it falls behind.

In OTP R14B, an optimization enables functions like
gen_server:call() to run in constant time, regardless of the
length of the message queue, but processes that use selective mes-
sage reception in places where they also receive ’normal’ messages,
will not be able to benefit from the optimization (see e.g. subsection
2.7).

2.7 Mnesia Overload
Mnesia supports checkpointing to disk of data that is supposed
to be persistent. Specifically for data that resides both in RAM
and on disk, at transaction commit, Mnesia logs the persistent
operations to disk by appending them to a commit log. At periodic
intervals, Mnesia reads the commit log (starting a new log for
future commits) and distributes the changes into table-specific logs,
periodically merging those logs into the actual table image (see
Figure 7).

This procedure is quite fast, as it relies entirely on streaming
data to and from the disk, but on occasion, the next log dump may
be triggered before the previous log dump has finished. When this
happens, Mnesia will report that it is overloaded.

Figure 8. Overload of the mnesia transaction manager.

Another form of overload in Mnesia is when a transaction man-
ager is not able to keep up with updates originating on remote
nodes. This can cause the message queue to grow in the transac-
tion manager process, slowing it down and causing it to fall even
further behind (see subsection 2.6). Mnesia detects this and reports
that it is overloaded, but the ’overloaded’ event is only issued on
the node where the overload was detected – not on the nodes where
the load originated (see Figure 8).

3. Regulation Strategies
Before looking at concrete techniques for mitigating the problems
mentioned, we should pause to consider what kind of system an
Erlang-based program comprises from a regulation standpoint – if
indeed such a distinction can be made. There are several possible
strategies for regulating the work of a system.

3.1 Feedback Control
In the textbook “Applied Optimal Control and Estimation” (see
(Lewis 1992)), Frank L. Lewis gives the following description:
“Feedback control is the basic mechanism by which systems,
whether mechanical, electrical, or biological, maintain their equi-
librium or homeostasis. [It] may be defined as the use of difference
signals, determined by comparing the actual values of system vari-
ables to their desired values, as a means of controlling a system. An
everyday example of a feedback control system is an automobile
speed control, which uses the difference between the actual and the
desired speed to vary the fuel flow rate. Since the system output is
used to regulate its input, such a device is said to be a closed-loop
control system.”

Feedback Control saw its first applications in ancient Greece,
where in 270 B.C. Ktesibios invented a float regulator for a water
clock. The regulator kept the water level in a tank at a constant
depth, which resulted in a constant flow of water through a tube
at the bottom of the tank, filling a second tank at a constant rate.
The water level in the second tank could then be used to measure
elapsed time.

The development of Feedback Control stalled when Bagdad fell
to the Mongols in 1258, but was revitalized during the Industrial
Revolution, and has now evolved into a discipline based on mathe-
matics (modern control theory) and engineering. Given that a sys-
tem can be described in terms of a mathematical model of the input
signal and the desired output, a feedback circuit can be constructed.
Regulation can then be tuned by combining suitable measures of
proportional, derivative (change-oriented) and integral (stabilizing)
feedback (see also (Theorem.net 2001)). Special care must be taken
to ensure that the feedback loop doesn’t in fact make things worse,
e.g. by introducing oscillations in the system. A large part of liter-
ature on how to do this deals exclusively with linear and determin-
istic systems.

To establish a secure footing in control theory, we should re-
quire deterministic mathematical models of the processes we wish
to regulate, but this seems problematic given our context. Not only
do such models generally not exist for the problems we wish to at-
tack, but requiring such models would introduce a very high thresh-

Figure 9. Principle of a DiffServ network, see (Peuhkuri 2010).

old for most Erlang programmers. This view also finds support in
(Welsh et al. 2001).

However, by constructing a regulation framework which pro-
vides the means to measure and control throughput rate and load
characteristics, we might well be able to lay a foundation on which
we can apply simple “engineering-style”1 feedback control, and
perhaps add more sophisticated regulation techniques later on.

3.2 Frequency Regulation
Depending on the characteristics of the system, it may be desirable
to regulate based on frequency. One might want to control that the
system outputs work at a given rate, or estimate the frequency of
incoming requests.

Output rate regulation is relatively straightforward: the very
simplest form would be to start an interval timer, which periodically
sends a message to a producer or performs a given task.

Frequency estimation is a bit more difficult. It is common to as-
sume that the incoming traffic follows a random distribution, and
can be modeled as a Poisson process (see e.g. (Welsh et al. 2001)
and (Wikipedia 2010)). In the case of estimating arrival frequency
for the purposes of load regulation, we ought in particular to look
at non-homogeneous Poisson processes – where the rate is not ex-
pected to be constant over time. There is an OTP library, overload,
which implicitly estimates request frequency (see 4.2).

3.3 Stateless Core
Along with increasing demand for performance-critical services
on top of IP networks, much effort has gone into engineering
Quality Of Service guarantees on top of TCP/IP. These efforts
have suffered from much the same problems that plagued ATM,
which led to the currently dominant trend of using IP routers in the
core network with only minimal support for packet classification
and prioritization. This model is known as the DiffServ model
(see (Peuhkuri 2010) and figure 9), or the stateless-core model, in
contrast to the Integrated Services (IntServ) model, which dictates
per-flow handling throughout the network. The word ‘stateless’ in
this context refers to the router’s knowledge – or lack thereof – of
individual packet flows.

One of the arguments favouring a stateless core network is the
amplification problem, where errors in the core network have much
greater impact than errors in the edge network. This has particularly

1 as in: relying more on intuition and pragmatic experimentation than a
mathematical model

influenced network administrators to favour simple solutions (see
(Bell 2003)).

We believe that this dynamic is vital even in software com-
ponent design. Adding logic to handle congestion issues in core
software components leads to increased complexity. Also, as these
components tend to have little information about the particulars of
each application (due to their generic nature), it may be necessary
to support different regulation scenarios (see e.g. 6.1).

To the greatest extent possible, we advocate that generic com-
ponents should stay neutral to load regulation strategies, and focus
on being as simple and generic as possible. We do propose adding
diagnostic functions allowing users to sample performance charac-
teristics. This is important not least for debugging, but can also be
used e.g. in connection with the JOBS framework.

4. Specific Techniques
4.1 Worker Pool
Worker pools are commonplace not least in programming lan-
guages that depend on POSIX threads for concurrency. As creating
such a thread is quite a heavy operation, it is usually better to create
a thread pool at startup, and then pick the first available thread for
a unit of work.

In Erlang, this technique is reasonably common in connection
with socket servers (e.g. HTTP servers). A predefined number of
acceptors can be created, and indeed, all can call accept() on the
same socket simultaneously. An incoming request is routed to one
of them, and this worker can either acknowledge immediately to an
acceptor pool manager, allowing a new worker to be created, or it
can do so once it has finished serving the request. The latter would
serve as a form of overload control, whereas the former would
primarily increase throughput.

4.2 Request Frequency Estimation
The Erlang/OTP framework has a library module called overload,
which was developed for the very first commercial Erlang-based
product, Mobility Server. It is a server which simply keeps track
of the frequency of requests to perform work. It grants requests,
as long as the frequency stays below a predefined threshold, and
then denies requests above that limit (using a hysteresis function to
keep denying requests until the frequency has come well below the
threshold again). The server uses a simple exponential formula to
calculate the frequency (see (Ericsson 2010b)):

i(n) = K + i(n− 1)e−K(T (n)−T (n−1))

where i is the intensity (frequency), K, or ‘kappa’, is a constant
which regulates how quickly the calculation responds to changes in
intensity2, and T (n) is a timestamp signifying the time of event n.

While simple, the module lacks the ability to discriminate be-
tween different types of work. Also, in many cases, it is not suffi-
cient to simply ‘deny’ a request, so some form of queueing system
is typically needed. If we have a queue, the rate of jobs entering
the queue is not nearly as interesting as the number of jobs leaving
it, and we don’t need an exponential distribution to regulate that.
Setting a timer corresponding to the period 1

f
, and dispatching the

next job(s) when it fires is sufficient3.

4.3 Credit System
Credit systems are often combined with queueing semantics. The
basic principle is that each client is assigned a quota of sorts, and

2 The time it takes for a change in intensity is approximately 1
K

.
3 We would have to adjust for timer drift due to scheduling delays and the
time it takes to perform the actual dispatch.

is allowed to do work until the quota is exhausted; at this point,
it must wait until it is assigned a new quota. Erlang’s reduction-
counting scheduler works according to this principle, and the TCP
request window is also a form of credit system.

At the Erlang application level, one may implement a form of
quota system with a gen_server and simple counters, e.g. using
ets:update_counter/3. A process wanting to start a task, makes
a synchronous call to the quota server, which grants permission if
there are credits left; otherwise, it saves the request and responds to
it only when already running tasks have finished and returned cred-
its. One complication is that one must handle the case where tasks
do not finish in an orderly fashion. If each task runs in a dedicated
process, credits can be returned when the process terminates.

A clear advantage of the Erlang programming model with
lightweight, pre-emptively scheduled processes, is that the process
asking for permission can simply wait in a (blocking) synchronous
call, assuming that the process is dedicated to one task, or sequence
of tasks.

4.4 Smoothing
Subsection 2.2 dealt with memory spikes, especially in multi-core
systems.

A queue-based regulation system may have the effect of smooth-
ing out bursts of jobs, reducing the risk of “monster waves”. In our
own experience, identifying jobs that resulted in large message
heaps (using erlang:system_monitor/2) and then regulating
them with a combination of a queue and a counter-based credit
system (see subsections 4.6 and 4.3) can mitigate this problem.

4.5 Back-pressure
Subsection 2.1 dealt with the possibility to keep network sockets
in passive mode. From a load regulation standpoint, it is essential
to make use of this technique in order to benefit from the transmit
window in TCP.

If the clients are cooperative, or able to use some custom proto-
col, back-pressure can be achieved through a credit system involv-
ing the client (see subsection 4.3). However, in many cases, using
standard protocols is part of the product requirements, and few of
these protocols support any form of credit or backpressure mecha-
nism. See (Wang 2010) for an interesting discussion on the subject.

Even internally to the system, it may be critical to monitor the
status of potential bottlenecks and feed back information to the load
regulator, allowing it to adjust the throughput rate.

4.6 Job queue
Erlang-based systems are replete with queues: scheduling queues,
message queues, I/O buffers, etc. As a rule, the Erlang runtime
system handles all queueing of processes and messages, with the
exception of process message queues, which are a fundamental
concept in the language.

We can see that queues are a common way to achieve fairness
and balance among multiple tasks, and it makes sense to use them
at the application level as well as for low-level units of work. We
can thus model a type of queue that deals with more coarse-grained
tasks. We call this type of queue a “job queue”. At the moment, we
do not care about how this queue is implemented, only how it is
used.

In short, we classify incoming requests as the beginning of a
specific type of work (a “job”), and enter it into the appropriate
job queue. At some point, we extract the job from the queue and
either accept it or reject it. Depending on job type, the queue may
be configured with a timeout, at which point we must reject the job,
as it may not make sense to continue. An example of this is where
protocol timers define a maximum wait time.

Figure 10. SEDA: Response times with and without overload con-
trol, see (Welsh et al. 2001).

For time-limited requests, it may make sense to handle jobs in
LIFO order rather than FIFO. During normal operation, it makes no
difference in practice, as the queues are expected to be short, and all
job requests handled within specified time limits. However, during
bursts of incoming traffic, the last entries may be those most likely
to complete, as they have used up less of the alloted time waiting
in line. Given that the position in line is stochastic anyway, there is
not much use in being “fair” to those jobs that happened to arrive at
the head of the burst; they are no more “deserving” of being served
than the last entries.

Why bother at all about the order, then? Depending on queue
implementation, there may be a significant cost difference between
the two alternatives. If the queue is implemented as a list, LIFO-
style enqueue/dequeue are both O(1), whereas with e.g. the (FIFO)
queue module in OTP, enqueue is still O(1), but dequeue is amor-
tized O(N). Presumably, lower queueing overhead contributes to in-
creased capacity in the number of jobs that can be handled, which
would seem to be the most fair overall.

A LIFO list-based queue also has the advantage that if there is
a point where remaining jobs can be discarded (e.g. because the
client has already given up waiting), this can be done by simply
discarding the tail of the list. On the other hand, the queue will be
subject to garbage collection sweeps, which incur a cost propor-
tional to the amount of live data for each sweep.

A queue can also be implemented as an ordered_set ETS
table, sorted on timestamp, in which case FIFO and LIFO have the
same complexity – O(logN). This sort of queue has worse constant
factors, but predictable behaviour overall.

In both cases, one should queue only a reference to the requested
work, not the full set of input parameters, in order to avoid unnec-
essary copying.

4.7 The SEDA framework
The Staged Event-Driven Architecture (SEDA), described in e.g.
(Welsh et al. 2001), (Welsh and Culler 2001) and (Welsh et al.
2000) is a comprehensive, and highly interesting example of the
use of job queues to achieve high throughput and load tolerance in
Internet services (see Figure 10).

We believe that the findings from the SEDA framework corrob-
orate our own, and it is perhaps worth noting that we have reached
very similar conclusions, while we have approached the problem
from different angles.

An important difference between SEDA and the JOBS frame-
work is that SEDA was designed with ’conventional’ languages
(such as Java and C++) and concurrency models in mind. The stated

Figure 11. A SEDA Stage, see (Welsh et al. 2001).

premise was that there are two generally accepted models for im-
plementing concurrency in high-availability Internet service frame-
works: POSIX threads and event-driven programming (or a combi-
nation of the two).

“The key idea behind our framework is to use event-driven pro-
gramming for high throughput, but leverage threads (in limited
quantities) for parallelism and ease of programming. In addition,
our framework addresses the other requirements for these applica-
tions: high availability and maintenance of high throughput under
load. The former is achieved by introducing fault boundaries be-
tween application components; the latter by conditioning the load
placed on system resources.” (see (Welsh et al. 2000), pg 2).

While this is a perfectly acceptable premise. Erlang offers sig-
nificantly different characteristics. The main criticism that POSIX
threads are resource hungry and have scalability problems, and that
event-based programming can get complex, are not as relevant in an
Erlang context, as Erlang’s processes handling is quite lightweight
and scalable.

In a sense, a significant part of SEDA attempts to provide
benefits that are already available to the Erlang programmer. Our
assumption is that the load regulation framework should not try to
enforce a concurrency model on the programmer, as it would not
likely be an improvement over the existing concurrency model in
Erlang. For this reason, the JOBS framework is quite similar to
a subset of SEDA – the actual request queueing and dispatching
component, called a SEDA Stage (see Figure 11). Of course, with
a thread pool of size 1, the SEDA Stage also looks quite similar to
an Erlang process.

We suggest that the SEDA framework can be a great source of
inspiration on how to evolve the JOBS framework, but we imagine
a much more coarse-grained division into load-regulated blocks –
primarily doing admission control at the input edges of the system,
and otherwise relying on Erlang’s concurrency model and design
patterns to enable high throughput.

5. Load Sampling
The following subsections will give examples of common sampling
points, for determining overload conditions. Which methods to
choose will vary depending on the characteristics of the system as
well as the Erlang/OTP version used.

5.1 Run queue
In a single-core Erlang VM, the run queue is a fairly reliable indi-
cator of high load. The run queue is normally zero, or close to zero
in a system that is not overloaded. Sampling the run queue is easy,
and a very cheap operation (erlang:statistics(run_queue)).

On a multi-core system, this indicator is likely less practical, as
sampling the total run queue length involves acquiring a global lock

on all scheduler run queues. It is possible that future implementa-
tions will loosen the atomicity requirement, making the function
more scalable.

5.2 Memory
There are a number of memory-related indicators available in the
Erlang runtime system. It is important to understand that the sam-
pled values are rough estimates, and do not reflect things like mem-
ory fragmentation, etc.

Depending on the nature of the application, it might be best to
use either total memory, the size of the shared binary heap, or the
total size of the process heaps as a main indicator. Profiling of the
system is needed to determine the most suitable choice.

5.3 ETS Tables
The total amount of data in ETS tables can sometimes be a reliable
indicator of the “load” of a system. The total amount of data can
either be sampled using erlang:memory(ets) or by summing
the results of ets:info(Table, memory). The former is more
accurate, according to the OTP team.

It might sometimes be the case that a single table, or a subset of
all tables, best reflect the system load. Again, profiling is needed to
determine this.

5.4 Number of Processes
In principle, Erlang can handle a huge number of concurrent pro-
cesses – up to 268 million (see (Ericsson 2010a)). However, due to
memory constraints (pre-sizing the process table), the configurable
hard limit is usually set much lower than that, and the default pro-
cess count limit is currently 32768. This means that it is quite pos-
sible for a system to run out of processes. In some systems, the
number of concurrently executing processes might also be a good
measure of the load.

In the old days, one could get the current number of processes
by calling length(processes()), which has O(N) complex-
ity. The function erlang:system_info(process_count) yields
the same result, but in a much more efficient way. The function
erlang:system_info(process_limit) might also be useful.

5.5 Message Queue Size
Subsection 2.6 dealt with the problems of large message queues. It
is possible to sample the message queue length through
process_info(Pid, message_queue_len). Rather than sam-
pling all message queues in the system, one might want to single
out a few strategic processes. In most cases, the BIF
erlang:system_monitor(Pid, [{large_heap, Sz}]) should
be able to detect large message queues indirectly, as the message
queue is part of the process heap. However, if a significant portion
of the data in the queue are binaries (which are stored on a separate
binary heap), such queues may go unnoticed. The problem with
large message queues depends on the number of messages, not the
amount of data.

5.6 Response Times
Increasing response times is often a fairly good indicator of over-
load problems. One of the untold stories from the AXD 301 days
is that it was made to sample the response times of neighbour-
ing nodes, since some of them (of a competing brand) had a ten-
dency to die when exposed to more than 150% load, e.g. while
re-establishing connections after a link failure. The AXD 301 was
capable of slowing down, queueing up traffic, so that other nodes
in the network wouldn’t topple over from overload.

In this case, sampling response times had a smoothing effect
(see subsection 4.4), but it would also be possible to detect local
overload by measuring one’s own response times. This could be

done by measuring the difference between input and output rates, or
by simply timing some strategic gen_server:call() operations
in the system.

6. Rules of Thumb
6.1 Regulate at the Input Edges
In section 3.3, we described the current trend in IP networking to
rely on minimal classification in the core network, and relegate
regulation to the edges of the network.

Our experience from regulating Erlang applications is similar. It
is costly and awkward to implement overload controls in each core
component. It is generally better to make them as fast as possible,
and insert minimal logic to allow them to indicate if they are getting
overloaded. One could imagine complex components like mnesia
using a load regulation framework for tasks like transaction log
dumps.

In fact, this could also serve to illustrate our point: there is
an option, dump_log_load_regulation true | false, which
makes it possible to have mnesia run the transaction log dumps at
lower priority. This can make sense in e.g. a telecoms system, if
mnesia is used primarily for configuration data, and performance-
critical processes do not write to persistent tables at all. In a system
where writes of persistent data are frequent, it makes no sense to
perform this type of regulation, as the log dumps must rather be as
fast as possible in order to keep up with the traffic load.

6.2 Regulate Only Once
An additional problem with regulating in generic components is
that it becomes difficult to know if a job has already been regu-
lated. If classification is done at the input edge, where a unit of
work enters the system, it is possible to classify and regulate only
once, thereby reducing overhead, and allowing for more predictable
behaviour.

However, if a job crosses node boundaries inside the system, it
is wise to regulate also on the receiving node. One should bear in
mind that the job has now been accepted by the system, and work
has already been invested in it. Therefore, it should receive higher
priority (e.g. higher throughput) than new job requests entering the
system on that node.

With a queue-based regulation framework, classifying the re-
quest as an already accepted request would involve putting it in a
separate queue.

There may be other cases where it makes sense to regulate
multiple times, and we can consider that the SEDA approach is to
view multiple regulation steps as building blocks to be combined
(see (Welsh et al. 2001)).

6.3 Regulate All Types of Work
It is easy to make the mistake of regulating only the most important
jobs. However, ensuring that only the important jobs submit to
load regulation and queueing, while other jobs are allowed to run
unrestricted, essentially introduces priority inversion.

Therefore, all significant jobs should submit to load regulation.
By significant, we mean that the cost of performing load regulation
on the job is insignificant compared to the cost of performing the
actual work.

6.4 Rejectable vs Non-Rejectable Jobs
A very common type of activity for Erlang-based applications is
session establishment (phone calls, logging in to chat groups, etc.)
We may note immediately that a request to establish a session may
be rejected, whereas it makes little sense to reject a request to end a
session. Even in the case where the dialogue times out and the user

gives up waiting, we should remember the request to terminate the
session, thereby freeing up resources in the system.

In other cases, regulatory requirements may forbid us to reject
even session establishment requests. For example, it is not accept-
able for a telephone switch to reject emergency calls. They should
be serviced even under extreme overload.

In other words, we must be able to distinguish between re-
jectable and non-rejectable jobs and treat them accordingly.

6.5 Reject Window
There are three cases to consider once we have decided not to
service a request:

1. The client does not expect a reply

2. We have time to send a reject message to the client

3. The client has already given up waiting for a reply

It is considered good form not to send reject messages after the
expiration of the protocol window during which the client expects
to receive such a message. If we hold requests in a queue until they
can be served, we should be able to detect when jobs are too old to
even be rejected, and simply discard them all.

6.6 Priorities/Weights
Erlang has some support for process priorities, but it is generally
believed in the Erlang community that priorities should be used
sparingly or not at all.

In our approach, we choose to prioritize work units rather than
processes. It is possible in this model to assign different weights to
different jobs, and this may be advantageous for a few reasons:

• Some jobs may be defined as more important than others (e.g.
emergency calls vs normal calls)

• We may already have invested processing time in a job. This
could happen if part of the job is handled on one node and the
rest on another. The job should be given greater priority on the
other node, compared to jobs we have not yet committed to.

6.7 Do not optimize for fair weather
It is quite easy to conclude that load regulation must be as cheap as
possible, and start designing schemes that perform very well under
normal conditions. An example of such a scheme is a credit system,
where a pool of credits is periodically refilled, and jobs are allowed
to execute immediately as long as there are credits in the pool.

Such a scheme may have excellent properties for other reasons,
but it is important to keep in mind that it usually serves no purpose
to save CPU cycles when there is plenty of CPU capacity to spare.
As justification for this, consider that the nature of Internet service
systems, or telecoms systems, is to serve the offered traffic, and
nothing else. Any surplus capacity remains unused, and should
merely be viewed as spare capacity in preparation for traffic peaks.
An application running on a multi-purpose server, on the other
hand, cannot easily make this assumption.

Load regulation needs to be the most efficient when there is
overload, and resources are scarce. Queueing models tend to dis-
play this behaviour; they seem unnecessarily expensive when there
is no overload (and therefore no need to regulate), but become in-
creasingly effective when throughput is high, because of caching
and batching effects.

Figure 12. Architecture of the JOBS framework.

7. The JOBS Framework
7.1 Introduction
The JOBS framework brings together experiences from several dif-
ferent load regulation techniques, and tries to facilitate most of the
techniques above.

7.2 Architecture
Figure 12 illustrates the process model of the JOBS framework.

The job server selects a queue based on job type, and fetches
the configured set of regulators for that queue. There are a number
of different regulator types:

• rate – given a frequency f, ensures that the rate of accepted
jobs does not exceed f.

• counter – ensures that the number of simultaneously executing
jobs of the given type does not exceed the defined value.

• group_rate – the total rate of jobs accepted from all queues
with the same group rate can not exceed the given frequency.

7.2.1 Counter-based regulation
Counter-based regulation provides a form of credit system. It can be
used to reduce contention e.g. when running mnesia transactions,
and has been found to actually improve throughput that way.

The counter system is based on gproc’s counters and aggre-
gated counters (see (Wiger 2007)), mainly to avoid reinventing the
wheel. Each worker is assigned a counter with some given value.
We make use of gproc’s ability to handle complex aliases, and name
the counter after the associated regulator, with a JOBS-specific pre-
fix. Counters in gproc are “shared properties”, so each process can
have its own instance, which is exactly what we need. When the
regulator is instantiated, an aggregated counter is also created. As
new jobs are dispatched, the aggregated counter is automatically
updated with the corresponding increment. This way, the aggre-
gated counter provides the total value for regulation. If the worker
process dies, gproc detects this and removes the counter, automati-
cally adjusting the aggregated counter as well.

It would be possible for the dispatched process to access the
counters, e.g. to reduce them incrementally for long-running jobs.
No API for this has been implemented, but it could be done through
the normal gproc counter API, and any changes would immediately
be reflected in the aggregated counter.

7.2.2 Rate-based regulation
Rate-based regulation is done by remembering the time of the latest
dispatch for each regulator. The number of jobs to dispatch at the
time of a check is bTc−Tl

I
c, where Tc is the current time, Tl is

the time of the last dispatch, and I is the pre-calculated dispatch
interval corresponding to the configured maximum rate.

After each dispatch, if the queue is non-empty, a timer is set to
the time remaining until the next dispatch, or 0, if the next dispatch
is already overdue. If the queue is empty, it will not be checked
again, until a new request arrives.

In other words, the rate regulator will always attempt to dispatch
jobs at the maximum allowed rate. The dispatch rate will of course
never be higher than the arrival rate.

7.2.3 Group rates
It is possible to group regulators, by specifying the group_rate
option. When a regulator belongs to a group, the rate parameters
of the group are updated each time a regulator is used. The least
value from comparing the group regulator and the specific regulator
is picked. This can be used to specify a maximum total rate of a
group of requests, while allowing for greater peaks in the individual
request types.

7.2.4 Feedback modifiers
Distributed feedback-based regulation is accomplished by letting
the sampler processes exchange status information. The job server
process receives an instruction to apply “modifiers”, each indicat-
ing a specific sampler type and giving a type-specific “degree” of
overload (a degree of 0 means no overload).

Each regulator in each queue then determines individually how
to respond to each damper, e.g. by reducing the nominal rate by
some multiple of the degree. The simplest configuration is to pro-
vide a {Modifier,Factor} tuple, in which case the Modifier
value is multiplied by Factor to produce a reduction value in per-
cent of the defined maximum rate.

A more advanced case would be to name a function which,
when called with a modifier value returns a reduction value. Differ-
ent sampler callbacks (see section 7.8) could export such modifier
functions for convenience and as examples for the user.

7.3 Regulation API
The basic API for submitting to load regulation is:

jobs:ask(JobType) ->
{ok, Opaque} | {error, Reason}

Reason = rejected | timeout

If there is no registered job type matching JobType, an excep-
tion is raised.

The recommended way to end the job is to let the process
terminate, i.e. create a temporary process for each job. If the process
needs to be kept in order to perform more work, it must explicitly
tell the job regulator when it has completed the job:

jobs:done(Opaque)

It is also possible to do this as a one-liner:

jobs:run(JobType, Fun) -> Result

Result is the result of calling Fun(), when the job request has
been accepted. If the job request is denied with {error,Reason},
erlang:error(Reason) is raised.

7.4 Management API
It is possible to dynamically add, remove and reconfigure queues.
This is partly intended for continuous maintenance and evolution

of a system, but could also be used for dynamic regulation, e.g.
changing the regulation parameters based on policy control, sam-
pling feedback or operator intervention.

One could also imagine implementing a “training” function,
where the feedback from the sampler is used to find an optimal
throughput level. No experiments have been done with this yet.

7.5 Inspection API
A vital part of the run-time management function is to be able to
read the current configuration. Thus, all configuration values are
available at run-time. Furthermore the queue and regulator plugins
must support an info/2 function for real-time inspection of key
performance indicators (e.g. current queue length). It is possible to
provide information on custom attributes; the default return value
for unsupported attributes is ’undefined’’.

7.6 Regulator Plugins
It will be possible to define a custom regulator plugin, although at
the time of writing, the API has not yet been defined. Most likely,
it will have a very narrow regulation interface: one function which
is called at each check interval, and a facility for outside control.

The suitable time to define this API is when there is a good case
for a new regulator type. Suggestions are most welcome.

7.7 Queue Plugins
The default queue implementation is an ordered-set ETS table,
maintaining a FIFO queue of {Timestamp, JobRef} tuples. It
is possible to define a different type of queue through a callback
interface. The API looks roughly as follows:

-type timestamp() :: integer().
-type job() :: {pid(), reference()}.
-type entry() :: {timestamp(), job()}.

%%
%% Create a new instance of a queue; return a
%% #q{} record.
%%
-spec new(options(), #q{}) -> #q{}.

%%
%% The queue is being deleted. Delete any files,
%% ets tables, etc. that belong to the queue.
-spec delete(#q{}) -> true.

%%
%% Enqueue a job reference; return the updated queue
%%
-spec in(timestamp(), job(), #q{}) -> #q{}.

%%
%% Dequeue a batch of N jobs; return the modified queue.
%%
-spec out(N :: integer(), #q{}) -> {[entry()], #q{}}.

%%
%% Return all the job entries in the queue
%%
-spec all(#q{}) -> [entry()].

%%
%% Return information about the queue.
%%
-spec info(atom(), #q{}) -> any().

%%
%% Return all entries that have been in the queue
%% longer than Q#q.max_time.
%%
-spec timedout(#q{}) -> [entry()].

%%
%% Check whether the queue is empty.
%%
-spec is_empty(#q{}) -> boolean().

7.8 Sampler Plugins
As the indicators for determining overload can vary significantly
between systems, the sampler behaviour provides a plugin API.
The callback API is designed to be as simple as possible:

%% Initialize the plugin;
%% called at startup or when plugin is added
init(Argument) ->

{ok, InternalState}.

%% A message (e.g. a mnesia event) has arrived
%% to the sampler
handle_msg(Msg, Time, State) ->

{log, Value, NewState} | {ignore, NewState}.

%% A sample interval has triggered.
%% Sample and return the result.
sample(Time, State) ->

{Value, NewState}.

%% Calculate an overload factor, based on the history
%% of samples and possible indicators based on incoming
%% messages.
calc(History, State) ->

{Factor, NewState}.

The history is simply a list of {Time, Value} tuples. A default
function is provided for assessing the contents of the list:

calc(Type, Template, History) -> Factor :: term().
Type = time | value
Template = [{Threshold, Factor}]

For example, a cpu load sampler plugin might provide a tem-
plate like [{80, 1}, {90, 2}, {100, 3}], meaning that the
Factor is set to 1 at 80% overload, 2 at 90%, etc.

When e.g. sampling mnesia, the only information we can extract
is whether it is overloaded or not – not the degree of load. It is then
better to check the duration of the overload condition, e.g. with a
template like [{0,1}, {30,2}, {45,3}, {60,4}]. If there is
currently no overload, we do not even check the template. If there
is overload (Value == true), we check how long it has been true,
and find the lowest corresponding threshold in the template. In this
case, if overload has persisted for 35 seconds, Factor = 2.

These values need to be tuned for the system in question.
(Some administrative functions, such as terminate() and

code change() will probably be added as well, in line with standard
OTP behaviours.)

7.9 Evaluation
It is important to note that, at the time of writing, JOBS has not yet
been used in commercial operation. Promising results from proto-
types have earned it a place in products currently under develop-
ment.

In the prototype tests, we have used JOBS to regulate a sys-
tem that uses a distributed, persistent mnesia database. The system
tends to be disk-bound, and without load regulation, it risks trig-
gering mnesia overload by outrunning the transaction log dumper

(see section 2.7). If the load persists, eventually the mnesia trans-
action manager (mnesia_tm) will also fall behind, building up a
very large message queue. As each new application-level request is
handled in a separate process, eventually enough processes will be
backed up waiting for mnesia that the node crashes, either running
out of memory, or running out of ETS tables (each mnesia transac-
tion creates an ETS table for the temporary transaction store).

We regulated the system by adding a counter-based queue and
empirically adjusting the number of allowed concurrent requests.
Just by doing this, we increased the request rate within which we
were able to meet the response time requirements. Our assumption
is that reduced low-level contention is the main reason for this (see
section 2.5).

At some point, however, we still observed mnesia overload and
subsequent eventual node crashes. We addressed this by adding a
mnesia load sampler, and configuring the request queue to reduce
the number of concurrent requests while mnesia overload was ob-
served. This improved the situation, but as we were testing on dif-
ferent hardware (and virtual instances) with radically different disk
throughput, we observed that the optimal throughput level and nec-
essary reduction seemed to differ between the systems. We then
extended JOBS to allow the samplers to detect persisting overload,
and correspondingly increase the factor by which the regulators
should reduce throughput in order to cope (see section 7.8).

A unit test exists that exercises a number of different scenarios.
An interesting finding was that when running a sequential loop,
calling an empty function via the JOBS framework (in essence
measuring the overhead of the framework), the maximum sustained
rate on a budget dual-core laptop was 500 requests/s. Using parallel
evaluation instead, starting all requests asynchronously, a batch of
500 parallel jobs finished in 110 ms if the maximum rate was set to
5000 requests/s. This seems to be the highest reachable rate given
the type of hardware, giving an amortized per-request overhead of
the JOBS framework of less than 200 µs, before optimizations. We
believe this to be acceptable for many types of request traffic.

The JOBS framework also incorporates the experience from
load-testing a highly scalable instant-messaging system, where we
encountered the “monster waves” alluded to in sections 2.2 and 4.4.
The cure in that case was to identify jobs that caused large process
heaps (using the system_info() BIF), and regulating them with
- using JOBS terminology - a counter-based queue, limiting the
number of such jobs that could run concurrently.

8. Conclusion
We have designed a generic load regulation framework based on
experience from several Erlang-based products designed to with-
stand significant levels of overload. The basic principle is one of
classifying and queueing jobs at the input edges of the system, in a
manner similar to that used by the DiffServ mechanism for achiev-
ing quality of service in IP networks.

The idea of performing admission control at the input edges
of the system is mainly inspired by the AXD 301 system and its
derivatives, but it could just as well have been borrowed from the
SEDA framework. JOBS is a more general implementation than the
AXD 301-based load regulation, with a runtime management API
and a plugin approach to queue management and feedback control.

We have found this to be a strategy that suits Erlang very well.
We have tested the framework in a prototype for a commercial
system, and found that the distributed feedback mechanism works.
Thus, it is possible to configure the framework to detect choke
points and reduce the accepted traffic, as well as reduce it even
more if the overload condition persists.

Possible future developments are development of more sampler
plugins, a “training facility” which automatically finds an appro-
priate throughput level, and possibly also a parameterized queue

type capable of performing load-balancing. Another thought is that
with a queue configured to invoke a certain function, we could have
“producer queues”, and essentially an adaptive and scriptable load
generation tool.

The code for JOBS has been released as Open Source (ESL
2010).

Acknowledgments
I wish to thank the anonymous reviewer who brought the work on
SEDA (Welsh et al. 2001) to my attention.

References
Gene M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In AFIPS ’67 (Spring): Proceedings
of the April 18-20, 1967, spring joint computer conference, pages
483–485, New York, NY, USA, 1967. ACM. doi:
http://doi.acm.org/10.1145/1465482.1465560.

Joe Armstrong. Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, July 2007.

Gregory Bell. Failure to thrive: Qos and the culture of operational
networking. In RIPQoS ’03: Proceedings of the ACM SIGCOMM
workshop on Revisiting IP QoS, pages 115–120, New York, NY, USA,
2003. ACM. ISBN 1-58113-748-6. doi:
http://doi.acm.org/10.1145/944592.944595.

Ericsson. Erlang/otp efficiency guide.
http://erlang.org/doc/efficiency guide/
users guide.html, June 2010a.

Ericsson. Erlang/otp overload reference manual.
http://erlang.org/doc/man/overload.html, June 2010b.

ESL. Jobs github repository. http://github.com/esl/jobs, September 2010.
Terry Gray. Why not atm? http://staff.washington.edu/gray/

papers/whynotatm.html, November 2000.
Sverre Haver. Freak wave event at draupner jacket januar 1 1995.

http://folk.uio.no/karstent/seminarV05/Haver2004.pdf, May 2003.
D. Richard Kuhn. Sources of failure in the public switched telephone

network. Computer, 30(4):31–36, 1997. ISSN 0018-9162. doi:
http://dx.doi.org/10.1109/2.585151.

Frank L. Lewis. Applied Optimal Control and Estimation. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1992. ISBN 013040361X.

J. H. Nyström, P. W. Trinder, and D. J. King. High-level distribution for
the rapid production of robust telecoms software: Comparing c++ and
erlang, 2008.

Markus Peuhkuri. Ip quality of service. http://www.netlab.tkk.fi/
˜puhuri/htyo/Tik-110.551/iwork.ps, May 2010.

Paul H. Taylor, Thomas A.A. Adcock, Alistair G.L. Borthwick,
Daniel A.G. Walker, and Yao Yao. The nature of the draupner giant
wave of 1st january 1995 and the associated sea-state, and how to
estimate directional spreading from an eulerian surface elevation time
history. In 9th International Workshop on Wave Hindcasting and
Forecasting, 2006.

Theorem.net. On-line introductions to control theory and engineering.
http://www.theorem.net/theorem/background.html, 2001.

Yaogong Wang. Bassoon: Backpressure-based sip overload control.
http://research.csc.ncsu.edu/netsrv/?q=bassoon, April 2010.

Matt Welsh and David Culler. Virtualization considered harmful: Os
design directions for well-conditioned services. Hot Topics in
Operating Systems, Workshop on, 0:0139, 2001. doi:
http://doi.ieeecomputersociety.org/10.1109/HOTOS.2001.990074.

Matt Welsh, Steven D. Gribble, Eric A. Brewer, and David Culler. A
design framework for highly concurrent systems, 2000.

Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for
well-conditioned, scalable internet services. SIGOPS Oper. Syst. Rev.,
35(5):230–243, 2001. ISSN 0163-5980. doi:
http://doi.acm.org/10.1145/502059.502057.

Ulf Wiger. Four-fold increase in productivity and quality -
industrial-strength functional programming in telecom-class products,
2001.

Ulf Wiger. Extended process registry for Erlang. In ERLANG ’07: Proc. of
the 2007 SIGPLAN workshop on ERLANG Workshop, pages 1–10, New
York, NY, USA, 2007. ACM.

Wikipedia. Poisson process. http://en.wikipedia.org/wiki/Poisson process,
July 2010.

Brian Wilson. Reddit case study. http://www.ski-epic.com/
2008 reddit case study/index.html, May 2008.

