Solutions Manual
Neural Network Design (2nd Edition)
Dear community, all of my repositories were, are and will be in the future completely free. If you appreciate my work, please consider making a donation to help me keep up my work. π
This is not a completed Solutions Manual. In case you need help with any exercise of the book or generally you have a question about Neural Networks you can have a look at Artificial Intelligence Stack Exchange, which is the best community to learn and discuss. You are also welcome to use discussions of this repository.
Book details
Title : Neural Network Design (2nd Edition)
Authors : Martin T. Hagan, Howard B. Demuth, Mark H. Beale, Orlando De Jesus
ISBN-10 : 0-9717321-1-6
ISBN-13 : 978-0-9717321-1-7
A PDF version of this textbook can be found at : http://hagan.okstate.edu/NNDesign.pdf
Chapters included :
| Chapter | Name |
|---|---|
| 2 | Neuron Model and Network Architectures |
| 4 | Perceptron Learning Rule |
| 7 | Supervised Hebbian Learning |
| 8 | Performance Surfaces and Optimum Points |
| 9 | Performance Optimization |
| 10 | Widrow-Hoff Learning |
| 11 | Backpropagation |
| 12 | Variations on Backpropagation |
| 13 | Generalization |
| 14 | Dynamic Networks (DNN) |
| 15 | Associative Learning |
| 16 | Competitive Networks (CNN) |
| 17 | Radial Basis Networks (RBF) |
πΆ Note that some solutions contain Greek language text , you can either ignore it or use Google Translate .
Included solutions :
| Chapter | Exercise | Add Date | Update Date | Author(s) |
|---|---|---|---|---|
| 2 | E2.6 | 01/17/20 | 01/17/20 | @estamos |
| 4 | E4.8 | 01/17/20 | 01/17/20 | @estamos |
| 7 | E7.1 E7.2 E7.4 E7.5 E7.6 E7.9 | 03/04/20 | 14/01/21 | @estamos & @OUStudent |
| 8 | E8.1 E8.2 E8.4 E8.7 E8.10 | 01/16/21 | 01/16/21 | @OUStudent |
| 9 | E9.1 E9.5 E7.7 E9.10 | 01/18/21 | 01/20/21 | @OUStudent |
| 10 | E10.2 E10.4 E10.5 E10.6 E10.12 | 01/17/20 | 01/20/21 | @estamos & @OUStudent |
| 11 | E11.1 E11.3 E11.6 E11.7 E11.9 E11.10 E11.11 E11.12 E11.13 E11.25 | 01/17/20 | 01/25/21 | @estamos & @OUStudent |
| 12 | E12.2 E12.4 E12.7 E12.9 E12.11 | 01/17/20 | 01/25/20 | @estamos & @OUStudent |
| 13 | E13.3 E13.5 13.13 | 02/12/21 | 02/12/21 | @OUStudent |
| 15 | E15.1 E15.5 15.9 | 02/12/21 | 02/12/21 | @OUStudent |
| 16 | E16.3 E16.5 E16.10 E16.13 | 01/17/20 | 02/12/21 | @estamos & @OUStudent |
| 17 | E17.3 E17.5 E17.10 E17.11 | 01/17/20 | 02/12/21 | @estamos & @OUStudent |
More solutions available:
πΆ Note that for many exercises below enumeration is based on the 1st edition book .
Title : Neural Network Design
Authors : Martin T. Hagan, Howard B. Demuth, Mark H. Beale
ISBN : 978-0-534-94332-5
Publishing Company, Boston, MA, 1996
| Exercises | Download |
|---|---|
| E2.2 | webpage |
| E2.3 | webpage |
| E3.1 | doc |
| E4.2 E4.3 E4.4 E4.5 E4.6 E4.8 | webpage |
| E4.3 E4.8 | doc |
| E8.5 E9.2 E9.6 | doc |
| E10.4 E10.5 E11.7 E11.11 | doc |
| E12.1 E12.4 E12.5 E12.6 | doc |
| E13.5 E14.2 E14.4 E14.8 | doc |
| E15.6 E15.7 E14.4 E14.8 | doc |
| E16.1 E16.3 E16.5 E16.7 | doc |
Relative webpages
Demos
This is a set of demonstrations paired with the Neural Network Design & Neural Network Design: Deep Learning books written in Python. You can read more about nndesigndemos at PyPI of project.
Authors : Amir Jafari, Martin Hagan, Pedro UrΓa
Installation
pip install nndesigndemosVirtual environment (recommended)
python3 -m venv env
source env/bin/activate # macOS/Linux
env\Scripts\activate.bat # Windows
pip install nndesigndemosDependencies
-
Python 3.5+
-
PyQt5 5.14.1
-
NumPy 1.18.1
-
SciPy 1.4.1
-
Matplotlib 3.1.2
Usage
from nndesigndemos import nndtoc
nndtoc()