-
Notifications
You must be signed in to change notification settings - Fork 22
/
gcm.d
567 lines (465 loc) · 18.1 KB
/
gcm.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/**
* GCM Mode
*
* Copyright:
* (C) 2013 Jack Lloyd
* (C) 2014-2015 Etienne Cimon
*
* License:
* Botan is released under the Simplified BSD License (see LICENSE.md)
*/
module botan.modes.aead.gcm;
import botan.constants;
static if (BOTAN_HAS_AEAD_GCM):
import botan.modes.aead.aead;
import botan.block.block_cipher;
import botan.stream.stream_cipher;
import botan.stream.ctr;
import botan.utils.xor_buf;
import botan.utils.loadstor;
import botan.utils.mem_ops;
import botan.utils.simd.immintrin;
import botan.utils.simd.wmmintrin;
import botan.utils.types;
import std.conv : to;
import std.algorithm : min;
static if (BOTAN_HAS_GCM_CLMUL) {
import botan.utils.simd.wmmintrin;
import botan.utils.cpuid;
}
/**
* GCM Mode
*/
abstract class GCMMode : AEADMode, Transformation
{
public:
~this() { destroy(m_ctr); destroy(m_ghash); } // TODO: for some reason CTR needs to be destroyed before ghash
override SecureVector!ubyte startRaw(const(ubyte)* nonce, size_t nonce_len)
{
if (!validNonceLength(nonce_len))
throw new InvalidIVLength(name, nonce_len);
SecureVector!ubyte y0 = SecureVector!ubyte(BS);
if (nonce_len == 12)
{
copyMem(y0.ptr, nonce, nonce_len);
y0[15] = 1;
}
else
{
y0 = m_ghash.nonceHash(nonce, nonce_len);
}
m_ctr.setIv(y0.ptr, y0.length);
SecureVector!ubyte m_enc_y0 = SecureVector!ubyte(BS);
m_ctr.encipher(m_enc_y0);
m_ghash.start(m_enc_y0.ptr, m_enc_y0.length);
return SecureVector!ubyte();
}
override void setAssociatedData(const(ubyte)* ad, size_t ad_len)
{
m_ghash.setAssociatedData(ad, ad_len);
}
override @property string name() const
{
return (m_cipher_name ~ "/GCM");
}
override size_t updateGranularity() const
{
return 4096; // CTR-BE's internal block size
}
override KeyLengthSpecification keySpec() const
{
return m_ctr.keySpec();
}
// GCM supports arbitrary nonce lengths
override bool validNonceLength(size_t) const { return true; }
override size_t tagSize() const { return m_tag_size; }
override void clear()
{
m_ctr.clear();
m_ghash.clear();
}
override size_t defaultNonceLength() const { return super.defaultNonceLength(); }
protected:
override void keySchedule(const(ubyte)* key, size_t length)
{
m_ctr.setKey(key, length);
const Vector!ubyte zeros = Vector!ubyte(BS);
m_ctr.setIv(zeros.ptr, zeros.length);
SecureVector!ubyte H = SecureVector!ubyte(BS);
m_ctr.encipher(H);
m_ghash.setKey(H);
}
/*
* GCMMode Constructor
*/
this(BlockCipher cipher, size_t tag_size)
{
m_tag_size = tag_size;
m_cipher_name = cipher.name;
if (cipher.blockSize() != BS)
throw new InvalidArgument("GCM requires a 128 bit cipher so cannot be used with " ~ cipher.name);
m_ghash = new GHASH;
m_ctr = new CTRBE(cipher); // CTR_BE takes ownership of cipher
if (m_tag_size != 8 && m_tag_size != 16)
throw new InvalidArgument(name ~ ": Bad tag size " ~ to!string(m_tag_size));
}
__gshared immutable size_t BS = 16;
const size_t m_tag_size;
const string m_cipher_name;
Unique!StreamCipher m_ctr;
Unique!GHASH m_ghash;
}
/**
* GCM Encryption
*/
final class GCMEncryption : GCMMode, Transformation
{
public:
/**
* Params:
* cipher = the 128 bit block cipher to use
* tag_size = is how big the auth tag will be
*/
this(BlockCipher cipher, size_t tag_size = 16)
{
super(cipher, tag_size);
}
override size_t outputLength(size_t input_length) const
{ return input_length + tagSize(); }
override size_t minimumFinalSize() const { return 0; }
override void update(ref SecureVector!ubyte buffer, size_t offset = 0)
{
assert(buffer.length >= offset, "Offset is sane");
const size_t sz = buffer.length - offset;
ubyte* buf = buffer.ptr + offset;
m_ctr.cipher(buf, buf, sz);
m_ghash.update(buf, sz);
}
override void finish(ref SecureVector!ubyte buffer, size_t offset = 0)
{
import std.algorithm : max;
update(buffer, offset);
auto mac = m_ghash.finished();
buffer ~= mac.ptr[0 .. tagSize()];
}
// Interface fallthrough
override string provider() const { return "core"; }
override SecureVector!ubyte startRaw(const(ubyte)* nonce, size_t nonce_len) { return super.startRaw(nonce, nonce_len); }
override size_t updateGranularity() const { return super.updateGranularity(); }
override size_t defaultNonceLength() const { return super.defaultNonceLength(); }
override bool validNonceLength(size_t nonce_len) const { return super.validNonceLength(nonce_len); }
override @property string name() const { return super.name; }
override void clear() { return super.clear(); }
}
/**
* GCM Decryption
*/
final class GCMDecryption : GCMMode, Transformation
{
public:
/**
* Params:
* cipher = the 128 bit block cipher to use
* tag_size = is how big the auth tag will be
*/
this(BlockCipher cipher, size_t tag_size = 16)
{
super(cipher, tag_size);
}
override size_t outputLength(size_t input_length) const
{
assert(input_length > tagSize(), "Sufficient input");
return input_length - tagSize();
}
override size_t minimumFinalSize() const { return tagSize(); }
override void update(ref SecureVector!ubyte buffer, size_t offset = 0)
{
assert(buffer.length >= offset, "Offset is sane");
const size_t sz = buffer.length - offset;
ubyte* buf = buffer.ptr + offset;
m_ghash.update(buf, sz);
m_ctr.cipher(buf, buf, sz);
}
override void finish(ref SecureVector!ubyte buffer, size_t offset)
{
assert(buffer.length >= offset, "Offset is sane");
const size_t sz = buffer.length - offset;
ubyte* buf = buffer.ptr + offset;
assert(sz >= tagSize(), "Have the tag as part of final input");
const size_t remaining = sz - tagSize();
// handle any final input before the tag
if (remaining)
{
m_ghash.update(buf, remaining);
m_ctr.cipher(buf, buf, remaining);
}
auto mac = m_ghash.finished();
const(ubyte)* included_tag = &buffer[remaining];
if (!sameMem(mac.ptr, included_tag, tagSize()))
throw new IntegrityFailure("GCM tag check failed");
buffer.resize(offset + remaining);
}
// Interface fallthrough
override string provider() const { return "core"; }
override SecureVector!ubyte startRaw(const(ubyte)* nonce, size_t nonce_len) { return super.startRaw(nonce, nonce_len); }
override size_t updateGranularity() const { return super.updateGranularity(); }
override size_t defaultNonceLength() const { return super.defaultNonceLength(); }
override bool validNonceLength(size_t nonce_len) const { return super.validNonceLength(nonce_len); }
override @property string name() const { return super.name; }
override void clear() { return super.clear(); }
}
/**
* GCM's GHASH
* Maybe a Transform?
*/
final class GHASH : SymmetricAlgorithm
{
public:
void setAssociatedData(const(ubyte)* input, size_t length)
{
zeroise(m_H_ad);
ghashUpdate(m_H_ad, input, length);
m_ad_len = length;
}
SecureVector!ubyte nonceHash(const(ubyte)* nonce, size_t nonce_len)
{
assert(m_ghash.length == 0, "nonceHash called during wrong time");
SecureVector!ubyte y0 = SecureVector!ubyte(16);
ghashUpdate(y0, nonce, nonce_len);
addFinalBlock(y0, 0, nonce_len);
return y0.move;
}
void start(const(ubyte)* nonce, size_t len)
{
m_nonce[] = nonce[0 .. len];
m_ghash = m_H_ad.clone;
}
/*
* Assumes input len is multiple of 16
*/
void update(const(ubyte)* input, size_t length)
{
assert(m_ghash.length == 16, "Key was set");
m_text_len += length;
ghashUpdate(m_ghash, input, length);
}
SecureVector!ubyte finished()
{
addFinalBlock(m_ghash, m_ad_len, m_text_len);
m_ghash ^= m_nonce;
m_text_len = 0;
return m_ghash.move;
}
KeyLengthSpecification keySpec() const { return KeyLengthSpecification(16); }
override void clear()
{
zeroise(m_H);
zeroise(m_H_ad);
m_ghash.clear();
m_text_len = m_ad_len = 0;
}
@property string name() const { return "GHASH"; }
override void keySchedule(const(ubyte)* key, size_t length)
{
m_H[] = key[0 .. length];
m_H_ad.resize(16);
m_ad_len = 0;
m_text_len = 0;
}
private:
void gcmMultiply(ref SecureVector!ubyte x)
{
import std.algorithm : max;
static if (BOTAN_HAS_GCM_CLMUL) {
if (CPUID.hasClmul()) {
return gcmMultiplyClmul(*cast(ubyte[16]*) x.ptr, *cast(ubyte[16]*) m_H.ptr);
}
}
__gshared immutable ulong R = 0xE100000000000000;
ulong[2] H = [ loadBigEndian!ulong(m_H.ptr, 0), loadBigEndian!ulong(m_H.ptr, 1) ];
ulong[2] Z = [ 0, 0 ];
// SSE2 might be useful here
foreach (size_t i; 0 .. 2)
{
const ulong X = loadBigEndian!ulong(x.ptr, i);
foreach (size_t j; 0 .. 64)
{
if ((X >> (63-j)) & 1)
{
Z[0] ^= H[0];
Z[1] ^= H[1];
}
const ulong r = (H[1] & 1) ? R : 0;
H[1] = (H[0] << 63) | (H[1] >> 1);
H[0] = (H[0] >> 1) ^ r;
}
}
storeBigEndian!ulong(x.ptr, Z[0], Z[1]);
}
void ghashUpdate(ref SecureVector!ubyte ghash, const(ubyte)* input, size_t length)
{
__gshared immutable size_t BS = 16;
/*
This assumes if less than block size input then we're just on the
final block and should pad with zeros
*/
while (length)
{
const size_t to_proc = min(length, BS);
xorBuf(ghash.ptr, input, to_proc);
gcmMultiply(ghash);
input += to_proc;
length -= to_proc;
}
}
void addFinalBlock(ref SecureVector!ubyte hash,
size_t ad_len, size_t text_len)
{
SecureVector!ubyte final_block = SecureVector!ubyte(16);
storeBigEndian!ulong(final_block.ptr, 8*ad_len, 8*text_len);
ghashUpdate(hash, final_block.ptr, final_block.length);
}
SecureVector!ubyte m_H;
SecureVector!ubyte m_H_ad;
SecureVector!ubyte m_nonce;
SecureVector!ubyte m_ghash;
size_t m_ad_len = 0, m_text_len = 0;
}
static if (BOTAN_HAS_GCM_CLMUL)
void gcmMultiplyClmul(ref ubyte[16] x, in ubyte[16] H)
{
__gshared immutable(__m128i) BSWAP_MASK = _mm_set1_epi8!([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])();
version(D_InlineAsm_X86_64) {
version(DMD) {
enum USE_ASM = true;
} else enum USE_ASM = false;
} else enum USE_ASM = false;
static if (USE_ASM) {
__m128i* a = cast(__m128i*) x.ptr;
__m128i* b = cast(__m128i*) H.ptr;
__m128i* c = cast(__m128i*) &BSWAP_MASK;
asm pure nothrow {
mov RAX, a;
mov RBX, b;
mov RCX, c;
movdqu XMM13, [RAX]; // __m128i a = _mm_loadu_si128(cast(const(__m128i*)) x.ptr);
movdqu XMM14, [RBX]; // __m128i b = _mm_loadu_si128(cast(const(__m128i*)) H.ptr);
movdqu XMM15, [RCX];
pshufb XMM13, XMM15; // a = _mm_shuffle_epi8(a, BSWAP_MASK);
pshufb XMM14, XMM15; // b = _mm_shuffle_epi8(b, BSWAP_MASK);
movdqa XMM0, XMM13; // XMM0 => T0
movdqa XMM1, XMM13; // XMM1 => T1
movdqa XMM2, XMM13; // XMM2 => T2
movdqa XMM3, XMM13; // XMM3 => T3
db 0x66, 0x41, 0x0F, 0x3A, 0x44, 0xC6, 0x00; // T0 = _mm_clmulepi64_si128!"0x00"(a, b);
db 0x66, 0x41, 0x0F, 0x3A, 0x44, 0xCE, 0x01; // T1 = _mm_clmulepi64_si128!"0x01"(a, b);
db 0x66, 0x41, 0x0F, 0x3A, 0x44, 0xD6, 0x10; // T2 = _mm_clmulepi64_si128!"0x10"(a, b);
db 0x66, 0x41, 0x0F, 0x3A, 0x44, 0xDE, 0x11; // T3 = _mm_clmulepi64_si128!"0x11"(a, b);
pxor XMM1, XMM2; // T1 = _mm_xor_si128(T1, T2);
movdqa XMM6, XMM1;
pslldq XMM6, 8; // T2 = _mm_slli_si128!8(T1);
movdqa XMM2, XMM6;
psrldq XMM1, 8; // T1 = _mm_srli_si128!8(T1);
pxor XMM0, XMM2; // T0 = _mm_xor_si128(T0, T2);
pxor XMM3, XMM1; // T3 = _mm_xor_si128(T3, T1);
movdqa XMM6, XMM0;
psrld XMM6, 31; // T4 = _mm_srli_epi32!31(T0)
movdqa XMM4, XMM6;
pslld XMM0, 1; // T0 = _mm_slli_epi32!1(T0);
movdqa XMM6, XMM3;
psrld XMM6, 31;
movdqa XMM5, XMM6; // T5 = _mm_srli_epi32!31(T3);
pslld XMM3, 1; // T3 = _mm_slli_epi32!1(T3);
movdqa XMM6, XMM4;
psrldq XMM6, 12; // T2 = _mm_srli_si128!12(T4);
movdqa XMM2, XMM6;
pslldq XMM5, 4; // T5 = _mm_slli_si128!4(T5);
pslldq XMM4, 4; // T4 = _mm_slli_si128!4(T4);
por XMM0, XMM4; // T0 = _mm_or_si128(T0, T4);
por XMM3, XMM5; // T3 = _mm_or_si128(T3, T5);
por XMM3, XMM2; // T3 = _mm_or_si128(T3, T2);
movdqa XMM6, XMM0;
pslld XMM6, 31; // T4 = _mm_slli_epi32!31(T0);
movdqa XMM4, XMM6;
movdqa XMM6, XMM0;
pslld XMM6, 30; // T5 = _mm_slli_epi32!30(T0);
movdqa XMM5, XMM6;
movdqa XMM6, XMM0;
pslld XMM6, 25; // T2 = _mm_slli_epi32!25(T0);
movdqa XMM2, XMM6;
pxor XMM4, XMM5; // T4 = _mm_xor_si128(T4, T5);
pxor XMM4, XMM2; // T4 = _mm_xor_si128(T4, T2);
movdqa XMM6, XMM4;
psrldq XMM6, 4; // T5 = _mm_srli_si128!4(T4);
movdqa XMM5, XMM6;
pxor XMM3, XMM5; // T3 = _mm_xor_si128(T3, T5);
pslldq XMM4, 12; // T4 = _mm_slli_si128!12(T4);
pxor XMM0, XMM4; // T0 = _mm_xor_si128(T0, T4);
pxor XMM3, XMM0; // T3 = _mm_xor_si128(T3, T0);
movdqa XMM6, XMM0;
psrld XMM6, 1; // T4 = _mm_srli_epi32!1(T0);
movdqa XMM4, XMM6;
movdqa XMM6, XMM0;
psrld XMM6, 2; // T1 = _mm_srli_epi32!2(T0);
movdqa XMM1, XMM6;
movdqa XMM6, XMM0;
psrld XMM6, 7; // T2 = _mm_srli_epi32!7(T0);
movdqa XMM2, XMM6;
pxor XMM3, XMM1; // T3 = _mm_xor_si128(T3, T1);
pxor XMM3, XMM2; // T3 = _mm_xor_si128(T3, T2);
pxor XMM3, XMM4; // T3 = _mm_xor_si128(T3, T4);
mov RCX, c;
movdqu XMM15, [RCX];
pshufb XMM3, XMM15; // T3 = _mm_shuffle_epi8(T3, BSWAP_MASK);
mov RAX, a;
movdqu [RAX], XMM3; // _mm_storeu_si128(cast(__m128i*) x.ptr, T3);
}
}
else {
/*
* Algorithms 1 and 5 from Intel's CLMUL guide
*/
__m128i a = _mm_loadu_si128(cast(const(__m128i*)) x.ptr);
__m128i b = _mm_loadu_si128(cast(const(__m128i*)) H.ptr);
a = _mm_shuffle_epi8(a, BSWAP_MASK);
b = _mm_shuffle_epi8(b, BSWAP_MASK);
__m128i T0, T1, T2, T3, T4, T5;
T0 = _mm_clmulepi64_si128!"0x00"(a, b);
T1 = _mm_clmulepi64_si128!"0x01"(a, b);
T2 = _mm_clmulepi64_si128!"0x10"(a, b);
T3 = _mm_clmulepi64_si128!"0x11"(a, b);
T1 = _mm_xor_si128(T1, T2);
T2 = _mm_slli_si128!8(T1);
T1 = _mm_srli_si128!8(T1);
T0 = _mm_xor_si128(T0, T2);
T3 = _mm_xor_si128(T3, T1);
T4 = _mm_srli_epi32!31(T0);
T0 = _mm_slli_epi32!1(T0);
T5 = _mm_srli_epi32!31(T3);
T3 = _mm_slli_epi32!1(T3);
T2 = _mm_srli_si128!12(T4);
T5 = _mm_slli_si128!4(T5);
T4 = _mm_slli_si128!4(T4);
T0 = _mm_or_si128(T0, T4);
T3 = _mm_or_si128(T3, T5);
T3 = _mm_or_si128(T3, T2);
T4 = _mm_slli_epi32!31(T0);
T5 = _mm_slli_epi32!30(T0);
T2 = _mm_slli_epi32!25(T0);
T4 = _mm_xor_si128(T4, T5);
T4 = _mm_xor_si128(T4, T2);
T5 = _mm_srli_si128!4(T4);
T3 = _mm_xor_si128(T3, T5);
T4 = _mm_slli_si128!12(T4);
T0 = _mm_xor_si128(T0, T4);
T3 = _mm_xor_si128(T3, T0);
T4 = _mm_srli_epi32!1(T0);
T1 = _mm_srli_epi32!2(T0);
T2 = _mm_srli_epi32!7(T0);
T3 = _mm_xor_si128(T3, T1);
T3 = _mm_xor_si128(T3, T2);
T3 = _mm_xor_si128(T3, T4);
T3 = _mm_shuffle_epi8(T3, BSWAP_MASK);
_mm_storeu_si128(cast(__m128i*) x.ptr, T3);
}
}