Fast Clustering Using Adaptive Density Peak Detection
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
R
data
inst
man
tests
vignettes
.Rbuildignore
.gitignore
ADPclust.Rproj
DESCRIPTION
NAMESPACE
README.md

README.md

Introduction

ADPclust (Fast Clustering Using Adaptive Density Peak Detection) is a non-iterative procedure that clusters high dimensional data by finding cluster centers from estimated density peaks. It incorporates multivariate local Gaussian density estimation. The number of clusters as well as bandwidths can either be selected by the user or selected automatically through an internal clustering criterion.

Most recent version: 0.7

References

Installation

Install the most recent version from github:

## In R do:
## Skip this line if you already have devtools installed
install.packages("devtools")
library(devtools)
install_github("ethanyxu/ADPclust")
library(ADPclust)

OR install the released version from CRAN

## In R do:
install.packages("ADPclust")
library(ADPclust)

Simple Examples

Run on a preloaded data set:

library(ADPclust)
data(clust3)
# Automatic clustering
ans <- adpclust(clust3)
plot(ans)
summary(ans)

# Manual centroids selection
adpclust(clust3, centroids = "user")

For more examples please see the Vignette.