
Earth - Wallet
Android & iOS

Mobile App Pentest

Prepared by: Halborn

Date of Engagement: June 12th, 2023 - July 20th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 9

CONTACTS 9

1 EXECUTIVE OVERVIEW 10

1.1 INTRODUCTION 11

1.2 ASSESSMENT SUMMARY 11

1.3 SCOPE 12

1.4 TEST APPROACH & METHODOLOGY 14

RISK METHODOLOGY 14

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 16

3 FINDINGS & TECH DETAILS ANDROID 18

3.1 (HAL-01) ANDROID - EXPOSURE OF API KEYS THROUGH REVERSE ENGI-

NEERING APPLICATION - HIGH 20

Description 20

Proof of concept 20

CVSS Vector 21

Risk Level 21

Recommendation 21

Remediation Plan 21

3.2 (HAL-02) ANDROID - EXPOSED API KEYS IN APPLICATION REQUESTS -

HIGH 22

Description 22

Proof of concept 23

CVSS Vector 25

Risk Level 25

Recommendation 25

1

Remediation Plan 26

3.3 (HAL-03) ANDROID - DUMP MNEMONICS FROM MEMORY - MEDIUM 27

Description 27

Proof of concept 27

CVSS Vector 28

Risk Level 28

Recommendation 28

Remediation Plan 28

Reference 29

3.4 (HAL-04) ANDROID - CERTIFICATE PINNING BYPASS - MEDIUM 30

Description 30

Proof of concept 31

CVSS Vector 32

Risk Level 32

Recommendation 32

Remediation Plan 32

Reference 32

3.5 (HAL-05) ANDROID - MISCONFIGURATION ALLOWS APPLICATION DATA

BACKUP - MEDIUM 33

Description 33

Proof of concept 33

CVSS Vector 34

Risk Level 34

Recommendation 35

Remediation Plan 35

3.6 (HAL-06) ANDROID - CLEARTEXT NETWORK TRAFFIC USAGE IN MOBILE

APPLICATION - MEDIUM 36

2

Description 36

Proof of concept 36

CVSS Vector 37

Risk Level 37

Recommendation 37

Remediation Plan 37

3.7 (HAL-07) ANDROID - LACK OF AUTHENTICATION ON APP STARTUP - LOW

38

Description 38

Proof of concept 38

CVSS Vector 38

Risk Level 38

Recommendation 39

Remediation Plan 39

3.8 (HAL-08) ANDROID- LACK OF ROOT DETECTION MECHANISM - LOW 40

Description 40

CVSS Vector 40

Risk Level 40

Recommendation 40

Remediation Plan 41

References 41

3.9 (HAL-09) ANDROID - LACK OF ANTI-HOOK ANTI-DEBUG MECHANISMS -

LOW 42

Description 42

Example Command 42

CVSS Vector 42

3

Risk Level 42

Recommendation 43

Remediation Plan 43

References 43

3.10 (HAL-10) ANDROID - FAILURE IN RENDERING TRANSACTION AND BALANCE

INFORMATION - LOW 44

Description 44

Proof of concept 45

CVSS Vector 46

Risk Level 46

Recommendation 46

Remediation Plan 47

3.11 (HAL-11) ANDROID - BACKGROUND SCREEN CATCHING - LOW 48

Description 48

Proof of concept 49

CVSS Vector 49

Risk Level 49

Recommendation 49

Remediation Plan 50

4 FINDINGS & TECH DETAILS iOS 51

4.1 (HAL-12) MNEMONICS STORED CLEAR TEXT IN THE KEYCHAIN - HIGH 52

Description 52

Proof of concept 52

CVSS Vector 53

Risk Level 53

Recommendation 53

4

Remediation Plan 53

Reference 53

4.2 (HAL-13) iOS - EXPOSED API KEYS IN APPLICATION REQUESTS - HIGH

54

Description 54

Proof of concept 55

CVSS Vector 57

Risk Level 57

Recommendation 57

Remediation Plan 58

4.3 (HAL-14) iOS - CERTIFICATE PINNING BYPASS - MEDIUM 59

Description 59

Proof of concept 60

CVSS Vector 60

Risk Level 61

Recommendation 61

Remediation Plan 61

Reference 61

4.4 (HAL-15) iOS - SENSITIVE INFORMATION EXPOSURE VIA IOS CLIPBOARD -

MEDIUM 62

Description 62

Proof of concept 62

CVSS Vector 63

Risk Level 63

5

Recommendation 63

Remediation Plan 63

Reference 63

4.5 (HAL-16) iOS - SENSITIVE DATA IN SNAPSHOT - MEDIUM 64

Description 64

Proof of concept 65

CVSS Vector 65

Risk Level 65

Recommendation 65

Remediation Plan 67

4.6 (HAL-17) iOS - DUMP MNEMONICS FROM MEMORY - MEDIUM 68

Description 68

Proof of concept 68

CVSS Vector 68

Risk Level 69

Recommendation 69

Remediation Plan 69

Reference 69

4.7 (HAL-18) iOS - LACK OF AUTHENTICATION ON APP STARTUP - LOW 70

Description 70

Proof of concept 70

CVSS Vector 70

Risk Level 70

Recommendation 71

6

Remediation Plan 71

4.8 (HAL-19) iOS - LACK OF JAILBREAK DETECTION MECHANISM ON THE iOS

APPLICATION - LOW 72

Description 72

CVSS Vector 72

Risk Level 72

Recommendation 72

Remediation Plan 73

Reference 73

4.9 (HAL-20) iOS - LACK OF ANTI-HOOK ANTI-DEBUG MECHANISM ON THE

APPLICATION - LOW 74

Description 74

Example Command 74

CVSS Vector 74

Risk Level 75

Recommendation 75

Remediation Plan 75

Reference 75

4.10 (HAL-21) iOS - BACKGROUND SCREEN CATCHING - LOW 76

Description 76

Proof of concept 77

CVSS Vector 77

Risk Level 77

Recommendation 77

Remediation Plan 78

4.11 (HAL-22) iOS - FAILURE IN RENDERING TRANSACTION AND BALANCE

INFORMATION - LOW 79

Description 79

7

Proof of concept 80

CVSS Vector 81

Risk Level 81

Recommendation 81

Remediation Plan 82

5 ANNEX 83

5.1 Mobile App Security Testing Methodology 84

Local Authentication 84

Data Storage 84

Network Communication 85

Cryptographic APIs 86

Android Description 86

Anti-Reversing Defenses 86

Tampering and Reverse Engineering 87

Input Validation 88

Server-Side APIs 88

8

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE

0.1 Document Creation 07/19/2023

0.2 Draft Review 07/21/2023

0.3 Draft Review 07/21/2023

1.0 Remediation Plan 11/21/2023

1.1 Remediation Plan Review 11/22/2023

1.2 Remediation Plan Review 11/27/2023

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Carlos Polop Halborn Carlos.Polop@halborn.com

Afaq Abid Halborn Afaq.Abid@halborn.com

9

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Carlos.Polop@halborn.com
mailto:Afaq.Abid@halborn.com

10

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Earth engaged Halborn to conduct a security assessment on their Android &

iOS mobile applications. Beginning on June 12th, 2023 and ending on July

20th, 2023, the security assessment was scoped to Earth Wallet Mobile

Apps. The client team provided the source code and their respective

APK/IPA files to conduct security testing using tools to scan, detect,

validate possible vulnerabilities found in the wallet and report the

findings at the end of the engagement.

Though this security assessment’s outcome is satisfactory, only the most

essential aspects were tested and verified to achieve objectives and

deliverables set in the scope due to time and resource constraints. It

is essential to note the use of the best practices for secure mobile app

extension development.

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided a timeline for the engagement and

assigned a full-time security engineer to assess the security of the

assets in scope. The security engineer is a penetration testing expert

with advanced knowledge in web, mobile, recon, discovery & infrastructure

penetration testing.

The goals of our security assessments are to improve the quality of the

systems we review and to target sufficient remediation to help protect

users.

In summary, Halborn identified some vulnerabilities affecting both An-

droid and iOS versions of the application.

Highly concerning issues include the exposure of API keys through reverse

engineering the Android application and the exposure of API keys in

application requests, both on Android and iOS. These issues represent

a significant risk, with high likelihood and impact levels, due to the

potential for unauthorized access to backend services.

11

EX
EC

UT
IV

E
OV

ER
VI

EW

A vulnerability has been identified in the way both Android and iOS

applications handle mnemonics. Dumping mnemonics from memory or storing

them in clear text pose a serious security risk due to the sensitivity

of this data.

Other vulnerabilities include the ability to bypass certificate pinning,

the misconfiguration that allows application data backup, and the use

of cleartext network traffic in the Android application. All these

vulnerabilities have the potential to expose sensitive data or weaken the

security of the application.

Additional vulnerabilities identified on both Android and iOS include the

lack of authentication on app startup, the lack of root or jailbreak de-

tection mechanism, and the lack of anti-hook anti-debug mechanisms. While

these vulnerabilities have a lower impact, they increase the application’s

susceptibility to malicious activities and potentially jeopardize user

data.

Issues related to application usability and security have also been

identified, including failures in rendering transaction and balance in-

formation, and the misuse of background screen catching.

For the iOS application specifically, we noted additional risks associated

with sensitive information exposure via the iOS clipboard and sensitive

data contained in snapshots.

The Earth team has effectively resolved most of the identified issues,

where some identified issues were risk accepted as part of the design and

some were partially addressed.

1.3 SCOPE

IN-SCOPE:

The security assessment was scoped to:

• Earth Wallet Mobile Android Package:

12

EX
EC

UT
IV

E
OV

ER
VI

EW

• Version 1.2.0

• Earth Wallet Mobile iOS Package:

• Version 1.2.3

• Commit/Branch: 66fa6e59314618e18448058e07a3ae2cb8b55dfc

OUT-OF-SCOPE:

External libraries.

13

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/earthwallet/mobile/commit/66fa6e59314618e18448058e07a3ae2cb8b55dfc

1.4 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy regarding

the scope of the pentest. While manual testing is recommended to uncover

flaws in logic, process and implementation; automated testing techniques

assist enhance coverage of the infrastructure and can quickly identify

flaws in it.

The following phases and associated tools were used throughout the term

of the assessment:

• Storing private keys and assets securely

• Send/Receive tokens and assets securely to another wallet

• Any attack that impacts funds, such as draining or manipulating of

funds

• Application Logic Flaws

• Areas where insufficient validation allows for hostile input

• Application of cryptography to protect secrets

• Brute Force Attempts

• Input Handling

• Source Code Review

• Fuzzing of all input parameters

• Technology stack-specific vulnerabilities and Code Assessment

• Known vulnerabilities in 3rd party / OSS dependencies.

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

14

EX
EC

UT
IV

E
OV

ER
VI

EW

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

15

EX
EC

UT
IV

E
OV

ER
VI

EW

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 4 8 10 0

IM
PA
CT

LIKELIHOOD

(HAL-03)
(HAL-17)

(HAL-15)
(HAL-16)

(HAL-12)

(HAL-11)
(HAL-21)

(HAL-05)
(HAL-06)

(HAL-01)
(HAL-02)
(HAL-13)

(HAL-04)
(HAL-14)

(HAL-07)
(HAL-08)
(HAL-09)
(HAL-18)
(HAL-19)
(HAL-20)

(HAL-10)
(HAL-22)

16

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) ANDROID - EXPOSURE OF API
KEYS THROUGH REVERSE ENGINEERING

APPLICATION
High SOLVED - 09/22/2023

(HAL-02) ANDROID - EXPOSED API KEYS
IN APPLICATION REQUESTS

High SOLVED - 09/22/2023

(HAL-03) ANDROID - DUMP MNEMONICS
FROM MEMORY

Medium SOLVED - 09/22/2023

(HAL-04) ANDROID - CERTIFICATE
PINNING BYPASS

Medium SOLVED - 09/22/2023

(HAL-05) ANDROID - MISCONFIGURATION
ALLOWS APPLICATION DATA BACKUP

Medium SOLVED - 09/22/2023

(HAL-06) ANDROID - CLEARTEXT
NETWORK TRAFFIC USAGE IN MOBILE

APPLICATION
Medium SOLVED - 09/22/2023

(HAL-07) ANDROID - LACK OF
AUTHENTICATION ON APP STARTUP

Low RISK ACCEPTED

(HAL-08) ANDROID- LACK OF ROOT
DETECTION MECHANISM

Low SOLVED - 09/22/2023

(HAL-09) ANDROID - LACK OF
ANTI-HOOK ANTI-DEBUG MECHANISMS

Low
PARTIALLY SOLVED -

09/22/2023

(HAL-10) ANDROID - FAILURE IN
RENDERING TRANSACTION AND BALANCE

INFORMATION
Low SOLVED - 09/22/2023

(HAL-11) ANDROID - BACKGROUND
SCREEN CATCHING

Low SOLVED - 09/22/2023

(HAL-12) MNEMONICS STORED CLEAR
TEXT IN THE KEYCHAIN

High SOLVED - 11/17/2023

(HAL-13) iOS - EXPOSED API KEYS IN
APPLICATION REQUESTS

High SOLVED - 09/28/2023

(HAL-14) iOS - CERTIFICATE PINNING
BYPASS

Medium SOLVED - 09/28/2023

(HAL-15) iOS - SENSITIVE
INFORMATION EXPOSURE VIA IOS

CLIPBOARD
Medium SOLVED - 11/21/2023

17

EX
EC

UT
IV

E
OV

ER
VI

EW

(HAL-16) iOS - SENSITIVE DATA IN
SNAPSHOT

Medium SOLVED - 09/28/2023

(HAL-17) iOS - DUMP MNEMONICS FROM
MEMORY

Medium SOLVED - 09/28/2023

(HAL-18) iOS - LACK OF
AUTHENTICATION ON APP STARTUP

Low RISK ACCEPTED

(HAL-19) iOS - LACK OF JAILBREAK
DETECTION MECHANISM ON THE iOS

APPLICATION
Low SOLVED - 09/28/2023

(HAL-20) iOS - LACK OF ANTI-HOOK
ANTI-DEBUG MECHANISM ON THE

APPLICATION
Low

PARTIALLY SOLVED -
09/28/2023

(HAL-21) iOS - BACKGROUND SCREEN
CATCHING

Low SOLVED - 09/28/2023

(HAL-22) iOS - FAILURE IN RENDERING
TRANSACTION AND BALANCE INFORMATION

Low SOLVED - 09/28/2023

18

EX
EC

UT
IV

E
OV

ER
VI

EW

19

FINDINGS & TECH
DETAILS ANDROID

3.1 (HAL-01) ANDROID - EXPOSURE OF
API KEYS THROUGH REVERSE
ENGINEERING APPLICATION - HIGH

Description:

The mobile application was found to be containing multiple API keys stored

in plaintext within the BuildConfig file. These keys were discovered

during a reverse engineering process. This exposure of sensitive keys

can lead to unauthorized access to the associated services. Leaving API

keys embedded in the code, exposing them publicly, can lead to serious

vulnerabilities. If an attacker gets access to these keys, they can

misuse the permissions granted to these keys, leading to unauthorized

access or potentially costly operations if the keys are tied to billing.

Proof of concept:

Figure 1: Multiple API keys found during reverse engineering of the

application

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

CVSS Vector:

• CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Risk Level:

Likelihood - 4

Impact - 4

Recommendation:

It is recommended to obfuscate your code with tools like proguard,

which obfuscate your code by renaming classes, fields, and methods with

semantically obscure names, which can make it harder for someone to

reverse engineer your app. Along with that, other solution that can be

adopted is, avoid storing API keys in your app altogether. One common way

to implement this is using a proxy server that your app communicates with,

and which in turn communicates with the API endpoints. It is further

recommended to revoke all the identified secrets with new one to limit

the exposure.

Remediation Plan:

SOLVED: The Earth team solved the issue by removing the identified keys.

NOTE: Retest was conducted on the following version:

- Version: 1.4.1

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

3.2 (HAL-02) ANDROID - EXPOSED API
KEYS IN APPLICATION REQUESTS - HIGH

Description:

The mobile application was found to expose services API keys in HTTPS

requests when chaining with HAL-03 SSL pinning is bypassed. This

exposure can lead to unauthorized access and misuse of the APIs,

potentially leading to data leakage, service disruption, or other

malicious activities.

SSL Pinning is a security measure used to prevent man-in-the-middle

attacks by associating a host with their expected SSL certificate or

public key. Bypassing SSL Pinning allows intercepting the application’s

network traffic, even when it’s protected with HTTPS.

In this case, it has been identified that API keys are included in HTTPS

requests and can be exposed if SSL Pinning is bypassed. Exposed API keys

can lead to unauthorized access to the API, misuse of the application’s

data and services, and can potentially violate users’ privacy or result

in financial loss.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

Proof of concept:

Figure 2: SSL pinning bypassed and application traffic intercepted

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

Figure 3: API keys found in application requests

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

Figure 4: API keys found in application requests

CVSS Vector:

• CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Risk Level:

Likelihood - 4

Impact - 4

Recommendation:

It is recommended to avoid including services API keys in requests.

Instead, use methods like OAuth tokens that are tied to specific users

or sessions. Implement server-side controls to limit the actions that

can be performed with the API keys. Also recommended reviewing the

current implementation of SSL Pinning to prevent bypassing, ensuring the

application’s network traffic cannot be intercepted easily.

One other common way to implement this is using a proxy server that

your app communicates with, and which in turn communicates with the API

endpoints. It is further recommended to revoke all the identified secrets

with new one to limit the exposure.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Remediation Plan:

SOLVED: The Earth team solved the issue by implementing the appropriate

checks.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

3.3 (HAL-03) ANDROID - DUMP
MNEMONICS FROM MEMORY - MEDIUM

Description:

During the assessment, it was observed that it was possible to dump the

mnemonic phrase from the memory of the application and find the mnemonic

pattern with regex. As there were no checks against the rooted devices,

which makes it possible to dump the running app memory and extract the

mnemonics from it.

Note: In the application, Fridump was used to dump memory. Our goal was

to dump the memory of the application and find the mnemonic pattern with

regex.

Proof of concept:

Figure 5: memory dump of Earth wallet application

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

Figure 6: mnemonics in memory

CVSS Vector:

• CVSS:3.1/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N

Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

It is recommended to have protected measures against jailbreak detection

and some open-source tools like Frida in the application to prevent

loading/running the application if these tools are detected on the device.

Remediation Plan:

SOLVED: The Earth team has resolved the issue by integrating

jailbreak/root detection into the application’s build.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N

Reference:

• OWASP Tampering and Reverse Engineering

• OWASP Root Detection Methods

• OWASP Android Lack of binary protections

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://owasp.org/www-project-mobile-top-10/2014-risks/m10-lack-of-binary-protections

3.4 (HAL-04) ANDROID - CERTIFICATE
PINNING BYPASS - MEDIUM

Description:

Certificate pinning is the process of associating the backend server

with a particular X.509 certificate or public key, instead of accepting

any certificate signed by a trusted certificate authority (CA). After

storing (“pinning”) the server’s certificate or public key, the mobile

app will subsequently connect only to the known server. Withdrawing trust

from external CAs reduces the attack surface (after all, there are many

cases of CAs being compromised or tricked into issuing certificates to

impostors).

The certificate can be pinned and hardcoded in the app or retrieved at

the time the app first connects to the backend. In the latter case, the

certificate is associated (“pinned” to) the host when the host is first

seen. This alternative is less secure because attackers intercepting the

initial connection can inject their certificates.

The target application has not correctly implemented SSL pinning when

establishing a trusted connection between the mobile applications and

the back-end web services. Without enforcing SSL pinning, an attacker

could man-in-the-middle the connection between mobile applications and

back-end web services. This allows an attacker to sniff user credentials,

session ID, etc. Certificate pinning is used in modern applications to

prevent users from intercepting and analyzing HTTP traffic. Using this

method, an application can verify the server’s certificate and, in case

there is a Man-in-The-Middle, not trust any other certificate than the

one stored as default. There are many ways to perform this security

countermeasure, and taking it in place does not ensure that a motivated

attacker will be able to bypass it in time, but it does represent the

first wall of defense against HTTP attacks.

However, in the case of Earth Wallet android, although it implements

SSL pinning, it uses methods with common names and does not implement

anti-hooking mechanisms, which allows attackers to bypass this protection

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

and make it possible to steal the authentication token used in requests

as well.

Proof of concept:

1. Connect to the application using Frida and Objection

Listing 1

1 objection --gadget <package -name > explore

2. Set the automatic certificate pinning bypass implemented by objection

Listing 2

1 android sslpinning disable

As it can be seen above, the certificatePinner.check() method of OkHTTP

and CheckTrustedRecursive() of TrustManagerImpl are triggered and

modified at runtime:

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

CVSS Vector:

• CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

It is recommended to prevent these actions by enforcing anti-tampering

and anti-debugging mechanisms. This vulnerability is related to rooting

detection and anti-debug and anti-tampering (following). Having methods

that cannot be triggered by name and anti-hooking, debugging and rooting

detection mechanisms should be enough to start preventing certificate

pinning bypass. Additionally, an application should follow the following

best practices:

• Set an HTTP Public Key Pinning (HPKP) policy that is communicated

to the client application and/or supports HPKP in the client

application, if applicable.

Remediation Plan:

SOLVED: The Earth team addressed the issue by implementing the

jailbreak/root detection in the build of application.

Reference:

• Android Certificate Pinning

• OWASP Pinning Cheat Sheet

• Android Code Obfuscation

• Guidelines Towards Secure SSL Pinning in Mobile Applications

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
https://developer.android.com/training/articles/security-config#CertificatePinning
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Pinning_Cheat_Sheet.md
https://developer.android.com/studio/build/shrink-code#obfuscate
https://idus.us.es/bitstream/handle/11441/97330/ropero-rodriguez_ponencia_caceres_2019_guidelines.pdf?sequence=1&isAllowed=y

3.5 (HAL-05) ANDROID -
MISCONFIGURATION ALLOWS APPLICATION
DATA BACKUP - MEDIUM

Description:

The mobile application is found to be allowing data backups, as indicated

by the android:allowBackup="true" setting in the AndroidManifest.xml

file. This can lead to potentially sensitive information being exposed

if the backup data is mishandled or accessed by malicious parties.

The application’s data backup setting is configured to permit data

backups. This can lead to the unintended exposure of sensitive data

if the backup is not securely stored or if it is shared across different

contexts that have varying security levels.

Proof of concept:

Figure 7: Application allows backups

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

Figure 8: Backing up the application data

Figure 9: Found an authenticated token in the application backup

CVSS Vector:

• CVSS:3.1/AV:P/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N

Risk Level:

Likelihood - 2

Impact - 4

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N

Recommendation:

It is recommended to set android:allowBackup="false" in the

AndroidManifest.xml to remediate it.

Remediation Plan:

SOLVED: The Earth team solved the issue as per the recommendation.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

3.6 (HAL-06) ANDROID - CLEARTEXT
NETWORK TRAFFIC USAGE IN MOBILE
APPLICATION - MEDIUM

Description:

During the assessment, it has been discovered that the mobile

application can communicate over cleartext network traffic (HTTP), as

identified by the android:usesCleartextTraffic="true" setting in the

AndroidManifest.xml file. This value indicates that the application

intends to use cleartext network traffic, such as cleartext HTTP, without

the Android system throwing any errors or warnings. This is generally

not recommended because it can expose your app to risks associated with

insecure network traffic, such as data interception.

Proof of concept:

Figure 10: Android application allowed to communicate over insecure

network

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

CVSS Vector:

• CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Risk Level:

Likelihood - 2

Impact - 4

Recommendation:

It is recommended to set android:usesCleartextTraffic="false" in

AndroidManifest.xml and ensure that all network traffic is encrypted

using HTTPS or other secure protocols.

Remediation Plan:

SOLVED: The Earth team solved the issue as per the recommendation.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

3.7 (HAL-07) ANDROID - LACK OF
AUTHENTICATION ON APP STARTUP - LOW

Description:

The mobile application was found to lack biometric or password

authentication upon startup, despite having these security measures

in place for money transactions and viewing the seed phrase. This

potentially exposes sensitive user information to unauthorized users who

have physical access to the device.

The application currently does not prompt for any form of biometric or

password authentication upon launch. This means that an individual who

gains physical access to a device where the app is installed can view the

account balance and other potentially sensitive information without any

additional security barriers.

While it is commendable that the application requests biometric or

password authentication for transactions and reviewing the seed phrase, it

is a security best practice to also require this level of authentication

at app startup to prevent unauthorized access to sensitive information.

Proof of concept:

Loom Video: Lack of authentication on application startup

CVSS Vector:

• CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Risk Level:

Likelihood - 2

Impact - 2

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://www.loom.com/share/c8df6f1e2638483a86e60303bcfaa32e
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Recommendation:

It is recommended to introduce biometric or password authentication on

the application startup. This step will secure potentially sensitive

data from unauthorized users who gain physical access to the device.

Additionally, consider integrating an automatic timeout to log users out

after periods of inactivity, further minimizing risks.

Remediation Plan:

RISK ACCEPTED: The Earth team acknowledged and accepted the risk

associated with the current finding, aligning with their design

principles.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

3.8 (HAL-08) ANDROID- LACK OF ROOT
DETECTION MECHANISM - LOW

Description:

Anti-root mechanisms are not used in the Android applications.

These mechanisms can help mitigate reverse engineering, application

modification, and unauthorized versions of mobile applications to some

extent, but few if any will be completely successful against a determined

adversary. However, they can be used as part of a defense-in-depth

strategy that seeks to minimize the impact and likelihood of such an

attack, along with binary patching, local resource modification, method

hooking, method swizzling, and heap modification.

CVSS Vector:

• CVSS:3.1/AV:P/AC:H/PR:H/UI:R/S:C/C:L/I:L/A:N

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

The application should detect rooting methods to prevent modifications

to the app. As a security best practice, it is recommended to implement

a mechanism to check the rooted status of the mobile device. This can be

done either manually by implementing a custom solution or using libraries

already built for this purpose. This can be done by searching for commonly

known files and locations, checking file permissions and attempting to

find common rooting services like SuperSU, Magisk or OpenSSH, for example.

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:H/UI:R/S:C/C:L/I:L/A:N

Remediation Plan:

SOLVED: The Earth team has resolved the issue by integrating

jailbreak/root detection into the application’s build.

References:

• OWASP Tampering and Reverse Engineering

• OWASP Root Detection Methods

• OWASP Android Lack of binary protections

• Android SafetyNet Attestation API

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://owasp.org/www-project-mobile-top-10/2014-risks/m10-lack-of-binary-protections
https://developer.android.com/training/safetynet/attestation

3.9 (HAL-09) ANDROID - LACK OF
ANTI-HOOK ANTI-DEBUG MECHANISMS -
LOW

Description:

The tested application does not have any security features or mechanisms

to prevent malicious actions, Anti Hook and Anti Debug mechanisms.

Example Command:

• Install Frida on the rooted phone. Frida for Android

• Use the Objection Tool to investigate the Anti-Hook mechanisms in

the application. Objection

• Use the following command in the objection tool to investigate the

rooted device.

Listing 3

1 objection -g <package -name > explore --startup -command "android

ë hooking watch class_method <package -name >. MainActivity.onCreate"

You can see that the application does not terminate; therefore the

application does not have anti-hook or anti-tampering mechanisms.

CVSS Vector:

• CVSS:3.1/AV:P/AC:H/PR:H/UI:R/S:C/C:L/I:L/A:N

Risk Level:

Likelihood - 2

Impact - 2

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://frida.re/docs/android/
https://github.com/sensepost/objection
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:H/UI:R/S:C/C:L/I:L/A:N

Recommendation:

Anti-Debug, Anti-Hook and Integrity Check mechanism (completed in

the native code), will protect against injection of various types of

scripts into it, i.e., Frida Gadgets. The application should not allow

modifications in its operation.

Remediation Plan:

PARTIALLY SOLVED: The Earth team partially addressed the issue by

implementing the jailbreak/root detection in the build of application.

References:

• OWASP Reverse Engineering and Tampering

• AppKnox anti debugging techniques

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://www.appknox.com/blog/anti-debugging-techniques

3.10 (HAL-10) ANDROID - FAILURE IN
RENDERING TRANSACTION AND BALANCE
INFORMATION - LOW

Description:

The mobile application was found to be experiencing a functional issue

where transaction information and Ethereum balance are not correctly

rendered in the UI. This issue compromises the usability of the application

and could potentially cause confusion or misinterpretation of information

among users.

The application currently does not correctly render transaction data and

balance information for Ethereum. This can lead to a user being unable

to verify their transaction history or accurately assess their account

balance, both crucial aspects of cryptocurrency management.

This issue appears to be rooted in the application’s UI rendering process

rather than a security flaw. Nevertheless, it’s essential to address this

problem promptly, as it impacts the overall user experience and could

lead to misunderstandings or errors in financial management.

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

Proof of concept:

Figure 11: Transaction in application history

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

Figure 12: Failed to render balance amount on UI

CVSS Vector:

• CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

Risk Level:

Likelihood - 3

Impact - 2

Recommendation:

It is recommended to investigate the root cause of the rendering issue

and implement appropriate fixes to ensure correct display of balance and

transaction data. Conduct thorough testing to ensure the issue is fully

resolved and the application displays accurate data consistently.

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

Remediation Plan:

SOLVED: The Earth team fixed the issue by implementing the appropriate

checks.

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

3.11 (HAL-11) ANDROID - BACKGROUND
SCREEN CATCHING - LOW

Description:

Manufacturers want to provide device users with an aesthetically pleasing

experience at application startup and exit, so they introduced the

screenshot-saving feature for use when the application has been executed

in the background. This feature may pose a security risk since a user

can deliberately screenshot the application while sensitive data is being

displayed. A malicious application that is running on the device and able

to continuously capture the screen may also expose data. Screenshots are

written to local storage, from which they may be recovered by a rogue

application (if the device is rooted) or someone who has stolen the

device.

For example, capturing a screenshot of a banking application may reveal

information about the user’s account, credit, transactions, and so on.

In this specific case of the android application, the mnemonic phrase can

be captured while the application is not active.

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

Proof of concept:

CVSS Vector:

• CVSS:3.1/AV:P/AC:L/PR:H/UI:N/S:U/C:L/I:N/A:N

Risk Level:

Likelihood - 1

Impact - 4

Recommendation:

This vulnerability represents a minimal exposure to exploitation. Only

the users of the mobile devices to which the attacker has access are

affected by this vulnerability.

As a best practice, consider preventing run background screen caching if

the application displays sensitive data.

49

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:L/PR:H/UI:N/S:U/C:L/I:N/A:N

Remediation Plan:

SOLVED: The Earth team fixed the issue by implementing the appropriate

checks.

50

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
AN

DR
OI

D

51

FINDINGS & TECH
DETAILS IOS

4.1 (HAL-12) MNEMONICS STORED CLEAR
TEXT IN THE KEYCHAIN - HIGH

Description:

The iOS mobile keychain is a secure storage mechanism designed to store

sensitive data, such as passwords, tokens, and private keys. However,

if an application stores the mnemonic phrase and private keys in clear

text format in the iOS mobile keychain, it could potentially expose this

sensitive information to attackers if they gain access to the device.

Storing sensitive data in clear text format in the iOS mobile keychain is

a serious security vulnerability, as it allows attackers to easily access

and steal the mnemonic phrase and private keys without any additional

authentication or encryption. This could lead to theft of funds or

unauthorized access to user accounts.

Proof of concept:

1. Create an account through an iOS application.

2. Use the following code to explore an application via the objection

tool.

Listing 4

1 objection -g <package.name > explore

3. Type the following command for dumping keychain.

Listing 5

1 ios keychain dump

4. In the keychain, password stored clearly.

52

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

Figure 13: Mnemonic found stored in cleartext format in Keychain

CVSS Vector:

• CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Risk Level:

Likelihood - 3

Impact - 5

Recommendation:

To address this vulnerability, the application should ensure that the

mnemonic phrase and private keys and related sensitive information are

not stored in clear text format in the iOS mobile keychain. Instead,

the sensitive information should be encrypted using a secure encryption

algorithm and stored in the keychain.

• Make sure object references are set correctly in the Key chain.

• The flags on the keychain should be reviewed.

• Jailbreak detection should be implemented in the application.

Remediation Plan:

SOLVED: The Earth team fixed the issue by implementing the appropriate

checks.

Reference:

• Restricting Keychain Item Accessibility

• iOS Application Security

53

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
https://developer.apple.com/documentation/security/keychain_services/keychain_items/restricting_keychain_item_accessibility
https://resources.infosecinstitute.com/topic/ios-application-security-part-12-dumping-keychain-data/

4.2 (HAL-13) iOS - EXPOSED API KEYS
IN APPLICATION REQUESTS - HIGH

Description:

The mobile application was found to expose services API keys in HTTPS

requests when chaining with HAL-12 SSL pinning is bypassed. This

exposure can lead to unauthorized access and misuse of the APIs,

potentially leading to data leakage, service disruption, or other

malicious activities.

SSL Pinning is a security measure used to prevent man-in-the-middle

attacks by associating a host with their expected SSL certificate or

public key. Bypassing SSL Pinning allows intercepting the application’s

network traffic, even when it’s protected with HTTPS.

In this case, it has been identified that API keys are included in HTTPS

requests and can be exposed if SSL Pinning is bypassed. Exposed API keys

can lead to unauthorized access to the API, misuse of the application’s

data and services, and can potentially violate users’ privacy or result

in financial loss.

54

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

Proof of concept:

Figure 14: SSL pinning bypassed and application traffic intercepted

55

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

Figure 15: API keys found in application requests

56

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

Figure 16: API keys found in application requests

CVSS Vector:

• CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Risk Level:

Likelihood - 4

Impact - 4

Recommendation:

It is recommended to avoid including services API keys in requests.

Instead, use methods like OAuth tokens that are tied to specific users

or sessions. Implement server-side controls to limit the actions that

can be performed with the API keys. Also recommended reviewing the

current implementation of SSL Pinning to prevent bypassing, ensuring the

application’s network traffic cannot be intercepted easily.

One other common way to implement this is using a proxy server that

your app communicates with, and which in turn communicates with the API

endpoints. It is further recommended to revoke all the identified secrets

with new one to limit the exposure.

57

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Remediation Plan:

SOLVED: The Earth team fixed the issue by implementing the appropriate

checks.

58

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

4.3 (HAL-14) iOS - CERTIFICATE
PINNING BYPASS - MEDIUM

Description:

Certificate pinning is the process of associating the backend server

with a particular X.509 certificate or public key, instead of accepting

any certificate signed by a trusted certificate authority (CA). After

storing (“pinning”) the server’s certificate or public key, the mobile

app will subsequently connect only to the known server. Withdrawing trust

from external CAs reduces the attack surface (after all, there are many

cases of CAs being compromised or tricked into issuing certificates to

impostors).

The certificate can be pinned and hardcoded in the app or retrieved at

the time the app first connects to the backend. In the latter case, the

certificate is associated (“pinned” to) the host when the host is first

seen. This alternative is less secure because attackers intercepting the

initial connection can inject their certificates.

The target application has not correctly implemented SSL pinning when

establishing a trusted connection between the mobile applications and

the back-end web services. Without enforcing SSL pinning, an attacker

could man-in-the-middle the connection between mobile applications and

back-end web services. This allows an attacker to sniff user credentials,

session ID, etc. Certificate pinning is used in modern applications to

prevent users from intercepting and analyzing HTTP traffic. Using this

method, an application can verify the server’s certificate and, in case

there is a Man-in-The-Middle, not trust any other certificate than the

one stored as default. There are many ways to perform this security

countermeasure, and taking it in place does not ensure that a motivated

attacker will be able to bypass it in time, but it does represent the

first wall of defense against HTTP attacks.

However, in the case of Earth Wallet, although it implements SSL pinning,

it uses methods with common names and does not implement anti-hooking

mechanisms, which allows attackers to bypass this protection and make it

59

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

possible to steal the authentication token used in requests as well.

Proof of concept:

Figure 17: SSL Pinning Bypass

1. Connect to the application using Frida and Objection

Listing 6

1 objection --gadget "<package -name >" explore

2. Set the automatic certificate pinning bypass implemented by objection

Listing 7

1 ios sslpinning disable

CVSS Vector:

• CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

60

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

The application should detect jailbreak to prevent these types of attacks.

As a security best practice, it is recommended to implement a mechanism

to check the rooted status of the mobile device. This can be done either

manually by implementing a custom solution or using libraries already

built for this purpose. This can be done by searching for commonly known

files and locations, checking file permissions and attempting to find

common rooting services like Cydia, su, OpenSSH etc.

Remediation Plan:

SOLVED: The Earth team has resolved the issue by integrating

jailbreak/root detection into the application’s build.

Reference:

• OWASP Pinning Cheat Sheet

• OWASP Jailbreak Detection Methods

• IOSSecuritySuite

61

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Pinning_Cheat_Sheet.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06j-Testing-Resiliency-Against-Reverse-Engineering.md
https://github.com/securing/IOSSecuritySuite

4.4 (HAL-15) iOS - SENSITIVE
INFORMATION EXPOSURE VIA IOS
CLIPBOARD - MEDIUM

Description:

The iOS application allows users to copy the seed phrase to the iOS

clipboard. This can introduce potential security risks, as other

malicious apps could potentially access and compromise sensitive

information stored in the clipboard. Additionally, if the user has

iCloud clipboard enabled, the seed phrase could be accessible on other

devices connected to the same iCloud account.

If a malicious actor gains access to the user’s seed phrase, they could

potentially gain access to the user’s cryptocurrency wallets or other

accounts that rely on that seed phrase for authentication. This could

result in the theft of funds or other sensitive data, as well as damage

to the user’s reputation and trust in your application.

Proof of concept:

Figure 18: Mnemonic phrase captured from iOS Clipboard

62

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

CVSS Vector:

• CVSS:3.1/AV:N/AC:H/PR:H/UI:R/S:U/C:H/I:H/A:N

Risk Level:

Likelihood - 2

Impact - 5

Recommendation:

To mitigate this vulnerability, it is recommended to consider disabling

the ability to copy the seed phrase to the clipboard. Instead, alternative

methods can be implemented for users to securely store their seed phrase,

such as:

• Implementing a clipboard timeout for sensitive data, such as seed

phrases, will automatically clear the information from the clipboard

after a specified period of time.

• Allowing users to export the seed phrase as an encrypted file, which

can then be stored on an external storage device or a secure cloud

storage service.

• Integrating your app with hardware wallets or other secure storage

solutions to store the seed phrase.

• Encouraging users to write down the seed phrase on a piece of paper

and store it in a secure location.

Remediation Plan:

SOLVED: The Earth team fixed the issue by implementing the timeout on

clipboard to prevent the exposure.

Reference:

• OWASP Sensitive Data Exposure

63

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:H/UI:R/S:U/C:H/I:H/A:N
https://owasp.org/www-project-top-ten/2017/A3_2017-Sensitive_Data_Exposure.html

4.5 (HAL-16) iOS - SENSITIVE DATA
IN SNAPSHOT - MEDIUM

Description:

During the analysis, it has been observed that sensitive data like

seed-phrase and private-key can be saved as a snapshot in iOS. Whenever

you press the home button, iOS takes a snapshot of the current screen

to be able to do the transition to the application in a much smoother

way. However, if sensitive data is present in the current screen, it

will be saved in the image (which persists across reboots). These are

the snapshots that you can also access, by double tapping the home screen

to switch between apps.

Unless the iPhone is jailbroken, the attacker needs to have access to the

device unblocked to see these screenshots. By default, the last snapshot

is stored in the application’s sandbox in Library/Caches/Snapshots/ or

Library/SplashBoard/Snapshots folder and can leak the sensitive details

related to the user’s wallet.

64

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

Proof of concept:

Figure 19: Snapshot in iOS contains sensitive details

CVSS Vector:

• CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Risk Level:

Likelihood - 2

Impact - 5

Recommendation:

It is recommended to prevent sensitive data leaks in snapshots. One way to

prevent this bad behavior is to put a blank screen or remove the sensitive

data before taking the snapshot using the ApplicationDidEnterBackground()

function. The following is a sample remediation method that will set a

default screenshot.

Swift:

65

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Listing 8

1 private var backgroundImage: UIImageView?

2

3 func applicationDidEnterBackground(_ application: UIApplication) {

4 let myBanner = UIImageView(image: #imageLiteral(resourceName:

ë "overlayImage "))

5 myBanner.frame = UIScreen.main.bounds

6 backgroundImage = myBanner

7 window ?. addSubview(myBanner)

8 }

9

10 func applicationWillEnterForeground(_ application: UIApplication)

ë {

11 backgroundImage ?. removeFromSuperview ()

12 }

Objective-C:

Listing 9

1 @property (UIImageView *) backgroundImage;

2

3 - (void)applicationDidEnterBackground :(UIApplication *) application

ë {

4 UIImageView *myBanner = [[UIImageView alloc] initWithImage:@"

ë overlayImage.png "];

5 self.backgroundImage = myBanner;

6 self.backgroundImage.bounds = UIScreen.mainScreen.bounds;

7 [self.window addSubview:myBanner];

8 }

9

10 - (void)applicationWillEnterForeground :(UIApplication *)

ë application {

11 [self.backgroundImage removeFromSuperview];

12 }

This sets the background image to overlayImage.png whenever the

application is back grounded. It prevents sensitive data leaks because

overlayImage.png will always override the current view.

66

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

Remediation Plan:

SOLVED: The Earth team fixed the issue by implementing the appropriate

checks.

67

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

4.6 (HAL-17) iOS - DUMP MNEMONICS
FROM MEMORY - MEDIUM

Description:

During the assessment, it was observed that it was possible to dump the

mnemonic phrase from the memory of the application and find the mnemonic

pattern with regex. As there were no checks against the jailbroken

devices, which makes it possible to dump the running app memory and

extract the mnemonics from it.

Note: In the application, Fridump was used to dump memory. Our goal was

to dump the memory of the application and find the mnemonic pattern with

regex.

Proof of concept:

Figure 20: mnemonics found in memory dump

CVSS Vector:

• CVSS:3.1/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N

68

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N

Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

It is recommended to have protected measures against jailbreak detection

and some open-source tools like Frida in the application to prevent

loading/running the application if these tools are detected on the device.

Remediation Plan:

SOLVED: The Earth team has resolved the issue by integrating

jailbreak/root detection into the application’s build.

Reference:

• iOS Tampering and Reverse Engineering

• OWASP Jailbreak Detection Methods

• IOSSecuritySuite

69

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06j-Testing-Resiliency-Against-Reverse-Engineering.md
https://github.com/securing/IOSSecuritySuite

4.7 (HAL-18) iOS - LACK OF
AUTHENTICATION ON APP STARTUP - LOW

Description:

The mobile application was found to lack biometric or password

authentication upon startup, despite having these security measures

in place for money transactions and viewing the seed phrase. This

potentially exposes sensitive user information to unauthorized users who

have physical access to the device.

The application currently does not prompt for any form of biometric or

password authentication upon launch. This means that an individual who

gains physical access to a device where the app is installed can view the

account balance and other potentially sensitive information without any

additional security barriers.

While it is commendable that the application requests biometric or

password authentication for transactions and reviewing the seed phrase, it

is a security best practice to also require this level of authentication

at app startup to prevent unauthorized access to sensitive information.

Proof of concept:

Loom Video: Lack of authentication on application startup

CVSS Vector:

• CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Risk Level:

Likelihood - 2

Impact - 2

70

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://www.loom.com/share/a228bf9d58884daa96cd806ed4781ba6
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Recommendation:

It is recommended to introduce biometric or password authentication on

the application startup. This step will secure potentially sensitive

data from unauthorized users who gain physical access to the device.

Additionally, consider integrating an automatic timeout to log users out

after periods of inactivity, further minimizing risks.

Remediation Plan:

RISK ACCEPTED: The Earth team has acknowledged and accepted the

risk associated with the current finding, aligning with their design

principles.

71

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

4.8 (HAL-19) iOS - LACK OF
JAILBREAK DETECTION MECHANISM ON
THE iOS APPLICATION - LOW

Description:

Anti-jailbreak mechanisms are not used in the iOS application.

These mechanisms can help mitigate reverse engineering, application

modification, and unauthorized versions of mobile applications to some

extent, but few if any will be completely successful against a determined

adversary. However, they can be used as part of a defense-in-depth

strategy that seeks to minimize the impact and likelihood of such an

attack, along with binary patching, local resource modification, method

hooking, method swizzling, and heap modification.

CVSS Vector:

• CVSS:3.1/AV:P/AC:H/PR:H/UI:R/S:C/C:L/I:L/A:N

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

The application should not allow any modifications in its operation.

• Obfuscated code.

• Add Frida and other open-source jailbreak detection tools.

• Implement jailbreak detection.

72

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:H/UI:R/S:C/C:L/I:L/A:N

Remediation Plan:

SOLVED: The Earth team resolved the issue by integrating jailbreak/root

detection into the application’s build.

Reference:

• iOS Tampering and Reverse Engineering

• objection - Runtime Mobile Exploration

• iOS Platform Security & Anti-tampering Swift Library

73

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://github.com/sensepost/objection
https://github.com/securing/IOSSecuritySuite

4.9 (HAL-20) iOS - LACK OF
ANTI-HOOK ANTI-DEBUG MECHANISM ON
THE APPLICATION - LOW

Description:

The tested application does not have any security features or mechanisms

to prevent malicious actions, Anti Hook and Anti Debug.

Example Command:

• Install Frida on the jailbroken phone. Setup Jailbroken Device

• Use the Objection Tool to investigate the Anti-Hook mechanisms in

the application. Objection

• Use the following command in the objection tool to investigate the

Jailbroken device.

Listing 10

1 objection --gadget "<package name >" explore

• Run the following code in the objection.

Listing 11

1 # ios nsuserdefaults get

• You can see an application does not terminate; therefore, the

application does not have anti-hook or anti-tampering mechanisms.

CVSS Vector:

• CVSS:3.1/AV:P/AC:H/PR:H/UI:R/S:U/C:L/I:L/A:N

74

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://github.com/dpnishant/appmon/wiki/4.b-Setup-for-a-jailbroken-iOS-Device
https://github.com/sensepost/objection
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:H/UI:R/S:U/C:L/I:L/A:N

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

Anti-Debug, Anti-Hook and Integrity Check mechanism (completed in the

native code), which will protect against injection of various types of

scripts into it, i.e., Frida Gadgets. The application should not allow

modifications in its operation.

Remediation Plan:

PARTIALLY SOLVED: The Earth team partially addressed the issue by

implementing the jailbreak detection in the build of application.

Reference:

• Owasp MSTG

• IOS Security Suite

75

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://github.com/securing/IOSSecuritySuite

4.10 (HAL-21) iOS - BACKGROUND
SCREEN CATCHING - LOW

Description:

Manufacturers want to provide device users with an aesthetically pleasing

experience at application startup and exit, so they introduced the

screenshot-saving feature for use when the application has been executed

in the background. This feature may pose a security risk since a user

can deliberately screenshot the application while sensitive data is being

displayed. A malicious application that is running on the device and able

to continuously capture the screen may also expose data. Screenshots are

written to local storage, from which they may be recovered by a rogue

application (if the device is rooted) or someone who has stolen the

device.

For example, capturing a screenshot of a banking application may reveal

information about the user’s account, credit, transactions, and so on.

In this specific, the mnemonic phrase can be captured while the

application is not active.

76

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

Proof of concept:

Figure 21: Background screen cache

CVSS Vector:

• CVSS:3.1/AV:P/AC:L/PR:H/UI:N/S:U/C:L/I:N/A:N

Risk Level:

Likelihood - 1

Impact - 4

Recommendation:

This vulnerability represents a minimal exposure to exploitation. Only

the users of the mobile devices to which the attacker has access are

affected by this vulnerability.

As a best practice, consider preventing run background screen caching if

77

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:L/PR:H/UI:N/S:U/C:L/I:N/A:N

the application displays sensitive data.

Remediation Plan:

SOLVED: The Earth team fixed the issue by implementing the appropriate

checks.

78

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

4.11 (HAL-22) iOS - FAILURE IN
RENDERING TRANSACTION AND BALANCE
INFORMATION - LOW

Description:

The mobile application was found to be experiencing a functional issue

where transaction information and Ethereum balance are not correctly

rendered in the UI. This issue compromises the usability of the application

and could potentially cause confusion or misinterpretation of information

among users.

The application currently does not correctly render transaction data and

balance information for Ethereum. This can lead to a user being unable

to verify their transaction history or accurately assess their account

balance, both crucial aspects of cryptocurrency management.

This issue appears to be rooted in the application’s UI rendering process

rather than a security flaw. Nevertheless, it’s essential to address this

problem promptly, as it impacts the overall user experience and could

lead to misunderstandings or errors in financial management.

79

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

Proof of concept:

Figure 22: Transaction in application history

80

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

Figure 23: Failed to render balance amount on UI

CVSS Vector:

• CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

Risk Level:

Likelihood - 3

Impact - 2

Recommendation:

It is recommended to investigate the root cause of the rendering issue

and implement appropriate fixes to ensure correct display of balance and

transaction data. Conduct thorough testing to ensure the issue is fully

resolved and the application displays accurate data consistently.

81

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

Remediation Plan:

SOLVED: The Earth team fixed the issue by implementing the appropriate

checks.

82

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
IO

S

83

ANNEX

5.1 Mobile App Security Testing
Methodology

Local Authentication:

During local authentication, an app authenticates the user against

credentials stored locally on the device. In other words, the user

“unlocks” the app or some inner layer of functionality by providing

a valid PIN, password or biometric characteristics such as face or

fingerprint, which is verified by referencing local data. Generally,

this is done so that users can more conveniently resume an existing

session with a remote service or as a means of step-up authentication to

protect some critical function.

On Android, there are two mechanisms supported by the Android Runtime

for local authentication: the Confirm Credential flow and the Biometric

Authentication flow.

Fingerprint authentication on iOS is known as Touch ID. The fingerprint

ID sensor is operated by the SecureEnclave security coprocessor and does

not expose fingerprint data to any other parts of the system. Next to

Touch ID, Apple introduced Face ID: which allows authentication based on

facial recognition. Both use similar APIs on an application level, the

actual method of storing the data and retrieving the data (e.g. facial

data or fingerprint related data is different).

The tests performed include enforced password/PIN strength requirements,

2FA, and re-authentication to ensure that the application correctly

enforced password/PIN strength requirements, 2FA is functioning as

expected and re-authentication is correctly being prompted during

sensitive operations.

Data Storage:

Android Description

Protecting authentication tokens, private information, and other

84

AN
NE

X

sensitive data is key to mobile security. In this chapter, you will

learn about the APIs Android offers for local data storage and best

practices for using them.

The guidelines for saving data can be summarized easily: public data

should be available to everyone, but sensitive and private data must be

protected, or, better yet, kept out of device storage.

iOS Description

The protection of sensitive data, such as authentication tokens and

private information, is key for mobile security. In this chapter, you’ll

learn about the iOS APIs for local data storage, and best practices for

using them.

As little sensitive data as possible should be saved in permanent local

storage. However, in most practical scenarios, at least some user data

must be stored. Fortunately, iOS offers secure storage APIs, which

allow developers to use the cryptographic hardware available on every iOS

device. If these APIs are used correctly, sensitive data and files can

be secured via hardware-backed 256-bit AES encryption.

The tests performed include storage of application data, data encryption,

Keychain/Keystore access control, clipboard, sensitive data stored,

snapshots, and many more to ensure that all stored passwords/PINs

are properly encrypted, private keys are securely stored in an

encrypted format, the proper access control is implemented to limit the

accessibility of stored sensitive data, the clipboard is automatically

cleared, etc.

Network Communication:

Almost every Android/iOS app acts as a client to one or more remote

services. As this network communication usually takes place over

untrusted networks such as public Wi-Fi, classical network based-attacks

become a potential issue.

Most modern mobile apps use variants of HTTP-based web services, as these

protocols are well-documented and supported.

85

AN
NE

X

The tests performed include traffic inspection, HTTPS communications,

and cache to ensure that the application should use HTTPS or another

secure protocols, the application does not store sensitive information

in logs, cache, or analytics data that could potentially be accessed by

other applications or attackers.

Cryptographic APIs:

iOS Description

Apple provides libraries that include implementations of the most common

cryptographic algorithms. Apple’s Cryptographic Services Guide is a great

reference. It contains generalized documentation of how to use standard

libraries to initialize and use cryptographic primitives, information

that is useful for source code analysis.

Android Description:

Android cryptography APIs are based on the Java Cryptography Architecture

(JCA). JCA separates the interfaces and implementation, making it

possible to include several security providers that can implement sets

of cryptographic algorithms. Most of the JCA interfaces and classes

are defined in the java.security.* and javax.crypto.* packages. In

addition, there are Android-specific packages android.security.* and

android.security.keystore.*.

KeyStore and KeyChain provide APIs for storing and using keys (behind the

scene, KeyChain API uses KeyStore system). The tests performed included

The tests performed include cryptographic methods’ usage, and memory

analysis to ensure the application uses a secure and up-to-date algorithm,

and key material is not leaked in memory and is securely wiped from memory

after use.

Anti-Reversing Defenses:

Description

The lack of these measures does not cause a vulnerability - instead, they

86

AN
NE

X

are meant to increase the app’s resilience against reverse engineering

and specific client-side attacks.

The tests performed include jailbroken/rooted devices’ detection, reverse

engineer tasks on the code, binary manipulation, and debug scenario

to ensure that the application detects a jailbroken iOS device or a

rooted Android device and responds accordingly, obfuscation techniques

are employed to make reverse-engineering more difficult, mechanism to

detect binary tampering or modification are implemented, etc.

Tampering and Reverse Engineering:

iOS Description

iOS reverse engineering is a mixed bag. On one hand, apps programmed in

Objective-C and Swift can be disassembled nicely. In Objective-C, object

methods are called via dynamic function pointers called “selectors”,

which are resolved by name during runtime. The advantage of runtime

name resolution is that these names need to stay intact in the final

binary, making the disassembly more readable. Unfortunately, this also

means that no direct cross-references between methods are available in

the disassembler and constructing a flow graph is challenging.

Android Description

Android’s openness makes it a favorable environment for reverse engineers.

In the following chapter, we’ll look at some peculiarities of Android

reversing and OS-specific tools as processes.

Android offers reverse engineers big advantages that are not available

with iOS. Because Android is open-source, you can study its source code at

the Android Open-Source Project (AOSP) and modify the OS and its standard

tools any way you want. Even on standard retail devices, it is possible

to do things like activating developer mode and sideloading apps without

jumping through many hoops. From the powerful tools shipping with the

SDK to the wide range of available reverse engineering tools, there are

a lot of niceties to make your life easier.

The tests performed include injecting snippets with Frida to test the

application’s defense, assessment errors to examine the application’s

87

AN
NE

X

response to ensure that the application detects these tools and responded

as expected, and error messages should not disclose sensitive information

or information that could aid an attacker.

Input Validation:

For any publicly accessible data storage, any process can override the

data. This means that input validation needs to be applied the moment

the data is read back again.

The tests performed include different input injections and how the

application handles the malicious inputs to ensure that the application

sanitize and validate all user inputs before processing to prevent

potential attacks, mitigating the risk of injection attacks.

Server-Side APIs:

Attacks targeting APIs are one of the most serious security threats

facing businesses, as they provide direct access to sensitive data and

functionalities. And attackers have become aware of the popularity of

APIs and the existence of critical vulnerabilities in these interfaces.

The problem is that web applications remain the primary target of attacks

and APIs now represent 90% of the attack surface of web applications.

Thus, APIs have become one of the main attack vectors, with devastating

financial consequences for the companies that bear the costs.

The tests performed include server-side API testing, and high-load tests

in the backend to ensure that the API is not vulnerable to vulnerabilities

such as business logic vulnerabilities, access control, authentication,

etc. and the application should handle unexpected volumes of data or

requests gracefully, without crashing or becoming unresponsive and not

observing any application crashes or slowdowns.

88

AN
NE

X

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	SCOPE
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS ANDROID
	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	Reference

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	Reference

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	References

	
	Description
	Example Command
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	References

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	FINDINGS & TECH DETAILS iOS
	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	Reference

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	Reference

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	Reference

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	Reference

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	Reference

	
	Description
	Example Command
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	Reference

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	ANNEX
	Mobile App Security Testing Methodology
	Local Authentication
	Data Storage
	Network Communication
	Cryptographic APIs
	Android Description
	Anti-Reversing Defenses
	Tampering and Reverse Engineering
	Input Validation
	Server-Side APIs

