
 lang: en

 ecip: 1049

 �tle: Change the ETC Proof of Work Algorithm to Keccak256

 status: Last Call Dra�

 review-period-end: 2020-10-09 ¶

 type: Standards Track

 category: Core

 discussions-to: h�ps://github.com/ethereumclassic/ECIPs/issues/ 13 394

 author: Bob Summerwill <bob@etccoopera�ve.org>, Alexander Tsankov
 <alexander.tsankov@colorado.edu>

 created: 2019-01-08

 ### Abstract

 A proposal to replace the current Ethereum Classic proof of work algorithm Etchash with Keccak-256.

 ### Mo�va�on

 * A response to the recent double-spend a�acks against Ethereum Classic. Most of this hashpower was
 rented or came from other chains, specfically Ethereum (ETH). A seperate proof of work algorithm would
 encourage the development of a specialized Ethereum Classic mining community, and blunt the ability
 for a�ackers to purchase mercenary hash power on the open-market.

 * As a secondary benefit, deployed smart contracts and dapps running on chain are currently able to use
 ̀keccak256()` in their code. This ECIP could open the possibility of smart contracts being able to evaluate
 chain state, and simplify second layer (L2) development.

 ### Ra�onale

 ### Reason 1: Similarity to Bitcoin

 The Bitcoin network currently uses the CPU-intensive SHA256 Algorithm to evaluate blocks. When
 Ethereum was deployed it used a different algorithm, Dagger-Hashimoto, which eventually became
 Ethash on 1.0 launch. Dagger-Hashimoto was explicitly designed to be memory-intensive with the goal of
 ASIC resistance [1]. It has been provably unsuccessful at this goal, with Ethash ASICs currently easily
 availalble on the market.

 Keccak256 (aka SHA3) is the product of decades of research and the winner of a mul�-year contest held
 by NIST that has rigorously verified its robustness and quality as a hashing algorithm. It is one of the only
 hashing algorithms besides SHA256 that is allowed for military and scien�fic-grade applica�ons, and can
 provide sufficient hashing entropy for a proof of work system. This algorithm would posi�on Ethereum
 Classic at an advantage in mission-cri�cal blockchain applica�ons that are required to use provably
 high-strength algorithms. [2]

 A CPU-intensive algorithm like Keccak256 would allow both the uniqueness of a fresh PoW algorithm
 that has not had ASICs developed against it, while at the same �me allowing for organic op�miza�on of a
 dedicated and financially commited miner base, much the way Bitcoin did with its own SHA256
 algorithm.

 If Ethereum Classic is to succeed as a project, we need to take what we have learned from Bitcoin and
 move towards CPU-hard PoW algorithms.

 > At first, most users would run network nodes, but as the network grows beyond a certain point, it
 would be le� more and more to specialists with server farms of specialized hardware. - Satoshi
 Nakamoto (2008-11-03) [3]

 *Note: Please consider this is from 2008, and the Bitcoin community at that �me did not differen�ate
 between node operators and miners. I interpret "network nodes" in this quote to refer to miners, and
 "server farms of specialized hardware" to refer to mining farms.*

 ### Reason 2: Value to Smart Contract Developers

 In Solidity, developers have access to the `keccak256()` func�on, which allows a smart contract to
 efficiently calculate the hash of a given input. This has been used in a number of interes�ng projects
 launched on both Ethereum and Ethereum-Classic. Most Specifcally a project called 0xBitcoin [4] - which
 the ERC-918 spec was based on.

 0xBitcoin is a security-audited [5] dapp that allows users to submit a proof of work hash directly to a
 smart contract running on the Ethereum blockchain. If the sent hash matches the given requirements, a
 token reward is trustlessly dispensed to the sender, along with the contract reevalua�ng difficulty
 parameters. This project has run successfully for over 10 months, and has minted over 3 million tokens
 [6].

 With the direc�on that Ethereum Classic is taking: a focus on Layer-2 solu�ons and cross-chain
 compa�bility; being able to evaluate proof of work on chain, will be tremendously valuable to
 developers of both smart-contracts and node so�ware writers. This could greatly simplify
 interoperability.

 ### Implementa�on

 Work in Progress:

 Example of a Smart contract hashing being able to trustlessly Keccak hash a hypothe�cal block header.

 ![example](h�ps://i.imgur.com/xh3WgCF.png)

 Here is an analysis of Monero's nonce-distribu�on for "cryptonight", an algorithm similar to Ethash,
 which also a�empts to be "ASIC-Resistant" it is very clear in the picture that before the hashing
 algorithm is changed there is a clear nonce-pa�ern. This is indica�ve of a major failure in a hashing
 algorithm, and should illustrate the dangers of disregarding proper cryptographic security. Finding a
 hashing pa�ern would be far harder using a proven system like Keccak:

 ![example](h�ps://i.imgur.com/vVdmzm9.jpg)

 Based on analysis of the EVM architecture
 [here](h�ps://cdn.discordapp.com/a�achments/223675625334898688/534597157693685760/eth.jpg)
 there are two main pieces that need to be changed:

 1. The Proof of work func�on needs to be replaced with Keccak256

 1 2 . The Func�on that checks the nonce-header in the block needs to know to accept Keccak256 hashes
 as valid for a block.

 ![example](h�ps://i.imgur.com/2hobqOL.png)

 A�er doing further analysis it the best way forward to begin work is to implement this change in
 [Mul�-Geth](h�ps://github.com/ethoxy/mul�-geth) instead of any other client. This is because
 Mul�-geth is organized for mul�-chain development, it seems to be more recently updated than
 classic-geth, and it is designed to be used with alterna�ve consensus methods- which is necessary for
 implemen�ng ECIP-1049.

 The area where most of the changes will be in `mul�-geth/consensus`

 ### References:

 1. h�ps://github.com/ethereum/wiki/wiki/Dagger-Hashimoto#introduc�on

 1 2 . h�ps://en.wikipedia.org/wiki/SHA-3

 1 3 . h�ps://satoshi.nakamotoins�tute.org/emails/cryptography/2/

 1 4 . h�ps://github.com/0xbitcoin/white-paper

 1 5 . h�ps://github.com/EthereumCommonwealth/Audi�ng/issues/102

 1 6 . h�ps://etherscan.io/address/0xb6ed7644c69416d67b522e20bc294a9a9b405b31

 ### Related Discussions:

 1. h�ps://github.com/ethereumclassic/ECIPs/pull/8

 2. h�ps://github.com/ethereumclassic/ECIPs/issues/13

 3. h�ps://github.com/ethereumclassic/ECIPs/issues/342

 4. h�ps://github.com/ethereumclassic/ECIPs/issues/333

 5. h�ps://github.com/ethereumclassic/ECIPs/issues/362

 6. h�ps://github.com/ethereumclassic/ECIPs/issues/382

 7. h�ps://github.com/ethereum/EIPs/issues/2951

 8. h�ps://vimeo.com/464336957

 9. h�ps://github.com/ethereumclassic/ECIPs/issues/394

