lang: en

ecip: 1049

title: Change the ETC Proof of Work Algorithm to Keccak256

status: kast-€aliDraft

type: Standards Track

category: Core

discussions-to: https://github.com/ethereumclassic/ECIPs/issues/#3394

author: Bob Summerwill <bob@etccooperative.org>, Alexander Tsankov
<alexander.tsankov@colorado.edu>

created: 2019-01-08

#it#t Abstract

A proposal to replace the current Ethereum Classic proof of work algorithm Etchash with Keccak-256.

Motivation

* A response to the recent double-spend attacks against Ethereum Classic. Most of this hashpower was
rented or came from other chains, specfically Ethereum (ETH). A seperate proof of work algorithm would
encourage the development of a specialized Ethereum Classic mining community, and blunt the ability
for attackers to purchase mercenary hash power on the open-market.

* As a secondary benefit, deployed smart contracts and dapps running on chain are currently able to use
“keccak256()" in their code. This ECIP could open the possibility of smart contracts being able to evaluate
chain state, and simplify second layer (L2) development.

#it# Rationale

Reason 1: Similarity to Bitcoin

The Bitcoin network currently uses the CPU-intensive SHA256 Algorithm to evaluate blocks. When
Ethereum was deployed it used a different algorithm, Dagger-Hashimoto, which eventually became
Ethash on 1.0 launch. Dagger-Hashimoto was explicitly designed to be memory-intensive with the goal of
ASIC resistance [1]. It has been provably unsuccessful at this goal, with Ethash ASICs currently easily
availalble on the market.

Keccak256 (aka SHA3) is the product of decades of research and the winner of a multi-year contest held
by NIST that has rigorously verified its robustness and quality as a hashing algorithm. It is one of the only
hashing algorithms besides SHA256 that is allowed for military and scientific-grade applications, and can
provide sufficient hashing entropy for a proof of work system. This algorithm would position Ethereum
Classic at an advantage in mission-critical blockchain applications that are required to use provably
high-strength algorithms. [2]

A CPU-intensive algorithm like Keccak256 would allow both the uniqueness of a fresh PoW algorithm
that has not had ASICs developed against it, while at the same time allowing for organic optimization of a
dedicated and financially commited miner base, much the way Bitcoin did with its own SHA256
algorithm.

If Ethereum Classic is to succeed as a project, we need to take what we have learned from Bitcoin and
move towards CPU-hard PoW algorithms.

> At first, most users would run network nodes, but as the network grows beyond a certain point, it
would be left more and more to specialists with server farms of specialized hardware. - Satoshi
Nakamoto (2008-11-03) [3]

*Note: Please consider this is from 2008, and the Bitcoin community at that time did not differentiate
between node operators and miners. | interpret "network nodes" in this quote to refer to miners, and
"server farms of specialized hardware" to refer to mining farms.*

Reason 2: Value to Smart Contract Developers

In Solidity, developers have access to the "keccak256()" function, which allows a smart contract to
efficiently calculate the hash of a given input. This has been used in a number of interesting projects
launched on both Ethereum and Ethereum-Classic. Most Specifcally a project called 0xBitcoin [4] - which
the ERC-918 spec was based on.

OxBitcoin is a security-audited [5] dapp that allows users to submit a proof of work hash directly to a
smart contract running on the Ethereum blockchain. If the sent hash matches the given requirements, a
token reward is trustlessly dispensed to the sender, along with the contract reevaluating difficulty
parameters. This project has run successfully for over 10 months, and has minted over 3 million tokens

[6].

With the direction that Ethereum Classic is taking: a focus on Layer-2 solutions and cross-chain
compatibility; being able to evaluate proof of work on chain, will be tremendously valuable to
developers of both smart-contracts and node software writers. This could greatly simplify
interoperability.

##H Implementation

Work in Progress:

Example of a Smart contract hashing being able to trustlessly Keccak hash a hypothetical block header.

I[example](https://i.imgur.com/xh3WgCF.png)

Here is an analysis of Monero's nonce-distribution for "cryptonight", an algorithm similar to Ethash,
which also attempts to be "ASIC-Resistant" it is very clear in the picture that before the hashing
algorithm is changed there is a clear nonce-pattern. This is indicative of a major failure in a hashing
algorithm, and should illustrate the dangers of disregarding proper cryptographic security. Finding a
hashing pattern would be far harder using a proven system like Keccak:

I[example](https://i.imgur.com/vWdmzm?9.jpg)

Based on analysis of the EVM architecture
[here](https://cdn.discordapp.com/attachments/223675625334898688/534597157693685760/eth.jpg)
there are two main pieces that need to be changed:

1. The Proof of work function needs to be replaced with Keccak256

$2. The Function that checks the nonce-header in the block needs to know to accept Keccak256 hashes
as valid for a block.

I[example](https://i.imgur.com/2hobgOL.png)

After doing further analysis it the best way forward to begin work is to implement this change in
[Multi-Geth](https://github.com/ethoxy/multi-geth) instead of any other client. This is because
Multi-geth is organized for multi-chain development, it seems to be more recently updated than
classic-geth, and it is designed to be used with alternative consensus methods- which is necessary for
implementing ECIP-1049.

The area where most of the changes will be in ‘multi-geth/consensus’

H### References:

1. https://github.com/ethereum/wiki/wiki/Dagger-Hashimoto#introduction
42. https://en.wikipedia.org/wiki/SHA-3

%3. https://satoshi.nakamotoinstitute.org/emails/cryptography/2/

24, https://github.com/0Oxbitcoin/white-paper

45, https://github.com/EthereumCommonwealth/Auditing/issues/102

46. https://etherscan.io/address/Oxb6ed7644c69416d67b522e20bc294a9a9b405b31

Related Discussions:

1. https://github.com/ethereumclassic/ECIPs/pull/8

2. https://github.com/ethereumclassic/ECIPs/issues/13
3. https://github.com/ethereumclassic/ECIPs/issues/342
4. https://github.com/ethereumclassic/ECIPs/issues/333
5. https://github.com/ethereumclassic/ECIPs/issues/362
6. https://github.com/ethereumclassic/ECIPs/issues/382
7. https://github.com/ethereum/EIPs/issues/2951

8. https://vimeo.com/464336957

9. https://github.com/ethereumclassic/ECIPs/issues/394

