Permalink
Fetching contributors…
Cannot retrieve contributors at this time
executable file 1278 lines (1061 sloc) 49.3 KB
# Copyright (C) 2009, 2010, 2011 David Sauve
# Copyright (C) 2009, 2010 Trapeze
__author__ = 'David Sauve'
__version__ = (1, 1, 6, 'beta')
import time
import datetime
import cPickle as pickle
import os
import re
import shutil
import sys
import warnings
from django.conf import settings
from django.core.exceptions import ImproperlyConfigured
from django.utils.encoding import smart_unicode, force_unicode
from haystack.backends import BaseSearchBackend, BaseSearchQuery, SearchNode, log_query
from haystack.constants import ID, DJANGO_CT, DJANGO_ID
from haystack.exceptions import HaystackError, MissingDependency, MoreLikeThisError
from haystack.fields import DateField, DateTimeField, IntegerField, FloatField, BooleanField, MultiValueField
from haystack.models import SearchResult
from haystack.utils import get_identifier
try:
import xapian
except ImportError:
raise MissingDependency("The 'xapian' backend requires the installation of 'xapian'. Please refer to the documentation.")
DOCUMENT_ID_TERM_PREFIX = 'Q'
DOCUMENT_CUSTOM_TERM_PREFIX = 'X'
DOCUMENT_CT_TERM_PREFIX = DOCUMENT_CUSTOM_TERM_PREFIX + 'CONTENTTYPE'
MEMORY_DB_NAME = ':memory:'
BACKEND_NAME = 'xapian'
DEFAULT_XAPIAN_FLAGS = (
xapian.QueryParser.FLAG_PHRASE |
xapian.QueryParser.FLAG_BOOLEAN |
xapian.QueryParser.FLAG_LOVEHATE |
xapian.QueryParser.FLAG_WILDCARD |
xapian.QueryParser.FLAG_PURE_NOT
)
class InvalidIndexError(HaystackError):
"""Raised when an index can not be opened."""
pass
class XHValueRangeProcessor(xapian.ValueRangeProcessor):
def __init__(self, backend):
self.backend = backend or SearchBackend()
xapian.ValueRangeProcessor.__init__(self)
def __call__(self, begin, end):
"""
Construct a tuple for value range processing.
`begin` -- a string in the format '<field_name>:[low_range]'
If 'low_range' is omitted, assume the smallest possible value.
`end` -- a string in the the format '[high_range|*]'. If '*', assume
the highest possible value.
Return a tuple of three strings: (column, low, high)
"""
colon = begin.find(':')
field_name = begin[:colon]
begin = begin[colon + 1:len(begin)]
for field_dict in self.backend.schema:
if field_dict['field_name'] == field_name:
if not begin:
if field_dict['type'] == 'text':
begin = u'a' # TODO: A better way of getting a min text value?
elif field_dict['type'] == 'long':
begin = -sys.maxint - 1
elif field_dict['type'] == 'float':
begin = float('-inf')
elif field_dict['type'] == 'date' or field_dict['type'] == 'datetime':
begin = u'00010101000000'
elif end == '*':
if field_dict['type'] == 'text':
end = u'z' * 100 # TODO: A better way of getting a max text value?
elif field_dict['type'] == 'long':
end = sys.maxint
elif field_dict['type'] == 'float':
end = float('inf')
elif field_dict['type'] == 'date' or field_dict['type'] == 'datetime':
end = u'99990101000000'
if field_dict['type'] == 'float':
begin = _marshal_value(float(begin))
end = _marshal_value(float(end))
elif field_dict['type'] == 'long':
begin = _marshal_value(long(begin))
end = _marshal_value(long(end))
return field_dict['column'], str(begin), str(end)
class XHExpandDecider(xapian.ExpandDecider):
def __call__(self, term):
"""
Return True if the term should be used for expanding the search
query, False otherwise.
Currently, we only want to ignore terms beginning with `DOCUMENT_CT_TERM_PREFIX`
"""
if term.startswith(DOCUMENT_CT_TERM_PREFIX):
return False
return True
class SearchBackend(BaseSearchBackend):
"""
`SearchBackend` defines the Xapian search backend for use with the Haystack
API for Django search.
It uses the Xapian Python bindings to interface with Xapian, and as
such is subject to this bug: <http://trac.xapian.org/ticket/364> when
Django is running with mod_python or mod_wsgi under Apache.
Until this issue has been fixed by Xapian, it is neccessary to set
`WSGIApplicationGroup to %{GLOBAL}` when using mod_wsgi, or
`PythonInterpreter main_interpreter` when using mod_python.
In order to use this backend, `HAYSTACK_XAPIAN_PATH` must be set in
your settings. This should point to a location where you would your
indexes to reside.
"""
inmemory_db = None
def __init__(self, site=None, language=None):
"""
Instantiates an instance of `SearchBackend`.
Optional arguments:
`site` -- The site to associate the backend with (default = None)
"""
super(SearchBackend, self).__init__(site)
if not hasattr(settings, 'HAYSTACK_XAPIAN_PATH'):
raise ImproperlyConfigured('You must specify a HAYSTACK_XAPIAN_PATH in your settings.')
if language:
raise AttributeError('Language arg is now deprecated. Please use settings.HAYSTACK_XAPIAN_LANGUAGE instead.')
if settings.HAYSTACK_XAPIAN_PATH != MEMORY_DB_NAME and \
not os.path.exists(settings.HAYSTACK_XAPIAN_PATH):
os.makedirs(settings.HAYSTACK_XAPIAN_PATH)
self.language = getattr(settings, 'HAYSTACK_XAPIAN_LANGUAGE', 'english')
self._schema = None
self._content_field_name = None
@property
def schema(self):
if not self._schema:
self._content_field_name, self._schema = self.build_schema(self.site.all_searchfields())
return self._schema
@property
def content_field_name(self):
if not self._content_field_name:
self._content_field_name, self._schema = self.build_schema(self.site.all_searchfields())
return self._content_field_name
def update(self, index, iterable):
"""
Updates the `index` with any objects in `iterable` by adding/updating
the database as needed.
Required arguments:
`index` -- The `SearchIndex` to process
`iterable` -- An iterable of model instances to index
For each object in `iterable`, a document is created containing all
of the terms extracted from `index.full_prepare(obj)` with field prefixes,
and 'as-is' as needed. Also, if the field type is 'text' it will be
stemmed and stored with the 'Z' prefix as well.
eg. `content:Testing` ==> `testing, Ztest, ZXCONTENTtest, XCONTENTtest`
Each document also contains an extra term in the format:
`XCONTENTTYPE<app_name>.<model_name>`
As well as a unique identifier in the the format:
`Q<app_name>.<model_name>.<pk>`
eg.: foo.bar (pk=1) ==> `Qfoo.bar.1`, `XCONTENTTYPEfoo.bar`
This is useful for querying for a specific document corresponding to
a model instance.
The document also contains a pickled version of the object itself and
the document ID in the document data field.
Finally, we also store field values to be used for sorting data. We
store these in the document value slots (position zero is reserver
for the document ID). All values are stored as unicode strings with
conversion of float, int, double, values being done by Xapian itself
through the use of the :method:xapian.sortable_serialise method.
"""
database = self._database(writable=True)
try:
for obj in iterable:
document = xapian.Document()
term_generator = xapian.TermGenerator()
term_generator.set_database(database)
term_generator.set_stemmer(xapian.Stem(self.language))
if getattr(settings, 'HAYSTACK_INCLUDE_SPELLING', False) is True:
term_generator.set_flags(xapian.TermGenerator.FLAG_SPELLING)
term_generator.set_document(document)
document_id = DOCUMENT_ID_TERM_PREFIX + get_identifier(obj)
data = index.full_prepare(obj)
weights = index.get_field_weights()
for field in self.schema:
if field['field_name'] in data.keys():
prefix = DOCUMENT_CUSTOM_TERM_PREFIX + field['field_name'].upper()
value = data[field['field_name']]
try:
weight = int(weights[field['field_name']])
except KeyError:
weight = 1
if field['type'] == 'text':
if field['multi_valued'] == 'false':
term = _marshal_term(value)
term_generator.index_text(term, weight)
term_generator.index_text(term, weight, prefix)
if len(term.split()) == 1:
document.add_term(term, weight)
document.add_term(prefix + term, weight)
document.add_value(field['column'], _marshal_value(value))
else:
for term in value:
term = _marshal_term(term)
term_generator.index_text(term, weight)
term_generator.index_text(term, weight, prefix)
if len(term.split()) == 1:
document.add_term(term, weight)
document.add_term(prefix + term, weight)
else:
if field['multi_valued'] == 'false':
term = _marshal_term(value)
if len(term.split()) == 1:
document.add_term(term, weight)
document.add_term(prefix + term, weight)
document.add_value(field['column'], _marshal_value(value))
else:
for term in value:
term = _marshal_term(term)
if len(term.split()) == 1:
document.add_term(term, weight)
document.add_term(prefix + term, weight)
document.set_data(pickle.dumps(
(obj._meta.app_label, obj._meta.module_name, obj.pk, data),
pickle.HIGHEST_PROTOCOL
))
document.add_term(document_id)
document.add_term(
DOCUMENT_CT_TERM_PREFIX + u'%s.%s' %
(obj._meta.app_label, obj._meta.module_name)
)
database.replace_document(document_id, document)
except UnicodeDecodeError:
sys.stderr.write('Chunk failed.\n')
pass
finally:
database = None
def remove(self, obj):
"""
Remove indexes for `obj` from the database.
We delete all instances of `Q<app_name>.<model_name>.<pk>` which
should be unique to this object.
"""
database = self._database(writable=True)
database.delete_document(DOCUMENT_ID_TERM_PREFIX + get_identifier(obj))
def clear(self, models=[]):
"""
Clear all instances of `models` from the database or all models, if
not specified.
Optional Arguments:
`models` -- Models to clear from the database (default = [])
If `models` is empty, an empty query is executed which matches all
documents in the database. Afterwards, each match is deleted.
Otherwise, for each model, a `delete_document` call is issued with
the term `XCONTENTTYPE<app_name>.<model_name>`. This will delete
all documents with the specified model type.
"""
database = self._database(writable=True)
if not models:
# Because there does not appear to be a "clear all" method,
# it's much quicker to remove the contents of the `HAYSTACK_XAPIAN_PATH`
# folder than it is to remove each document one at a time.
if os.path.exists(settings.HAYSTACK_XAPIAN_PATH):
shutil.rmtree(settings.HAYSTACK_XAPIAN_PATH)
else:
for model in models:
database.delete_document(
DOCUMENT_CT_TERM_PREFIX + '%s.%s' %
(model._meta.app_label, model._meta.module_name)
)
def document_count(self):
try:
return self._database().get_doccount()
except InvalidIndexError:
return 0
@log_query
def search(self, query, sort_by=None, start_offset=0, end_offset=None,
fields='', highlight=False, facets=None, date_facets=None,
query_facets=None, narrow_queries=None, spelling_query=None,
limit_to_registered_models=True, result_class=None, **kwargs):
"""
Executes the Xapian::query as defined in `query`.
Required arguments:
`query` -- Search query to execute
Optional arguments:
`sort_by` -- Sort results by specified field (default = None)
`start_offset` -- Slice results from `start_offset` (default = 0)
`end_offset` -- Slice results at `end_offset` (default = None), if None, then all documents
`fields` -- Filter results on `fields` (default = '')
`highlight` -- Highlight terms in results (default = False)
`facets` -- Facet results on fields (default = None)
`date_facets` -- Facet results on date ranges (default = None)
`query_facets` -- Facet results on queries (default = None)
`narrow_queries` -- Narrow queries (default = None)
`spelling_query` -- An optional query to execute spelling suggestion on
`limit_to_registered_models` -- Limit returned results to models registered in the current `SearchSite` (default = True)
Returns:
A dictionary with the following keys:
`results` -- A list of `SearchResult`
`hits` -- The total available results
`facets` - A dictionary of facets with the following keys:
`fields` -- A list of field facets
`dates` -- A list of date facets
`queries` -- A list of query facets
If faceting was not used, the `facets` key will not be present
If `query` is None, returns no results.
If `HAYSTACK_INCLUDE_SPELLING` was enabled in `settings.py`, the
extra flag `FLAG_SPELLING_CORRECTION` will be passed to the query parser
and any suggestions for spell correction will be returned as well as
the results.
"""
if not self.site:
from haystack import site
else:
site = self.site
if xapian.Query.empty(query):
return {
'results': [],
'hits': 0,
}
database = self._database()
if result_class is None:
result_class = SearchResult
if getattr(settings, 'HAYSTACK_INCLUDE_SPELLING', False) is True:
spelling_suggestion = self._do_spelling_suggestion(database, query, spelling_query)
else:
spelling_suggestion = ''
if narrow_queries is not None:
query = xapian.Query(
xapian.Query.OP_AND, query, xapian.Query(
xapian.Query.OP_OR, [self.parse_query(narrow_query) for narrow_query in narrow_queries]
)
)
if limit_to_registered_models:
registered_models = self.build_registered_models_list()
if len(registered_models) > 0:
query = xapian.Query(
xapian.Query.OP_AND, query,
xapian.Query(
xapian.Query.OP_OR, [
xapian.Query('%s%s' % (DOCUMENT_CT_TERM_PREFIX, model)) for model in registered_models
]
)
)
enquire = xapian.Enquire(database)
if hasattr(settings, 'HAYSTACK_XAPIAN_WEIGHTING_SCHEME'):
enquire.set_weighting_scheme(xapian.BM25Weight(*settings.HAYSTACK_XAPIAN_WEIGHTING_SCHEME))
enquire.set_query(query)
if sort_by:
sorter = xapian.MultiValueSorter()
for sort_field in sort_by:
if sort_field.startswith('-'):
reverse = True
sort_field = sort_field[1:] # Strip the '-'
else:
reverse = False # Reverse is inverted in Xapian -- http://trac.xapian.org/ticket/311
sorter.add(self._value_column(sort_field), reverse)
enquire.set_sort_by_key_then_relevance(sorter, True)
results = []
facets_dict = {
'fields': {},
'dates': {},
'queries': {},
}
if not end_offset:
end_offset = database.get_doccount() - start_offset
matches = self._get_enquire_mset(database, enquire, start_offset, end_offset)
for match in matches:
app_label, module_name, pk, model_data = pickle.loads(self._get_document_data(database, match.document))
if highlight:
model_data['highlighted'] = {
self.content_field_name: self._do_highlight(
model_data.get(self.content_field_name), query
)
}
results.append(
result_class(app_label, module_name, pk, match.percent, searchsite=site, **model_data)
)
if facets:
facets_dict['fields'] = self._do_field_facets(results, facets)
if date_facets:
facets_dict['dates'] = self._do_date_facets(results, date_facets)
if query_facets:
facets_dict['queries'] = self._do_query_facets(results, query_facets)
return {
'results': results,
'hits': self._get_hit_count(database, enquire),
'facets': facets_dict,
'spelling_suggestion': spelling_suggestion,
}
def more_like_this(self, model_instance, additional_query=None,
start_offset=0, end_offset=None,
limit_to_registered_models=True, result_class=None, **kwargs):
"""
Given a model instance, returns a result set of similar documents.
Required arguments:
`model_instance` -- The model instance to use as a basis for
retrieving similar documents.
Optional arguments:
`additional_query` -- An additional query to narrow results
`start_offset` -- The starting offset (default=0)
`end_offset` -- The ending offset (default=None), if None, then all documents
`limit_to_registered_models` -- Limit returned results to models registered in the current `SearchSite` (default = True)
Returns:
A dictionary with the following keys:
`results` -- A list of `SearchResult`
`hits` -- The total available results
Opens a database connection, then builds a simple query using the
`model_instance` to build the unique identifier.
For each document retrieved(should always be one), adds an entry into
an RSet (relevance set) with the document id, then, uses the RSet
to query for an ESet (A set of terms that can be used to suggest
expansions to the original query), omitting any document that was in
the original query.
Finally, processes the resulting matches and returns.
"""
if not self.site:
from haystack import site
else:
site = self.site
database = self._database()
if result_class is None:
result_class = SearchResult
query = xapian.Query(DOCUMENT_ID_TERM_PREFIX + get_identifier(model_instance))
enquire = xapian.Enquire(database)
enquire.set_query(query)
rset = xapian.RSet()
if not end_offset:
end_offset = database.get_doccount()
for match in self._get_enquire_mset(database, enquire, 0, end_offset):
rset.add_document(match.docid)
query = xapian.Query(
xapian.Query.OP_ELITE_SET,
[expand.term for expand in enquire.get_eset(match.document.termlist_count(), rset, XHExpandDecider())],
match.document.termlist_count()
)
query = xapian.Query(
xapian.Query.OP_AND_NOT, [query, DOCUMENT_ID_TERM_PREFIX + get_identifier(model_instance)]
)
if limit_to_registered_models:
registered_models = self.build_registered_models_list()
if len(registered_models) > 0:
query = xapian.Query(
xapian.Query.OP_AND, query,
xapian.Query(
xapian.Query.OP_OR, [
xapian.Query('%s%s' % (DOCUMENT_CT_TERM_PREFIX, model)) for model in registered_models
]
)
)
if additional_query:
query = xapian.Query(
xapian.Query.OP_AND, query, additional_query
)
enquire.set_query(query)
results = []
matches = self._get_enquire_mset(database, enquire, start_offset, end_offset)
for match in matches:
app_label, module_name, pk, model_data = pickle.loads(self._get_document_data(database, match.document))
results.append(
result_class(app_label, module_name, pk, match.percent, searchsite=site, **model_data)
)
return {
'results': results,
'hits': self._get_hit_count(database, enquire),
'facets': {
'fields': {},
'dates': {},
'queries': {},
},
'spelling_suggestion': None,
}
def parse_query(self, query_string):
"""
Given a `query_string`, will attempt to return a xapian.Query
Required arguments:
``query_string`` -- A query string to parse
Returns a xapian.Query
"""
if query_string == '*':
return xapian.Query('') # Match everything
elif query_string == '':
return xapian.Query() # Match nothing
flags = getattr(settings, 'HAYSTACK_XAPIAN_FLAGS', DEFAULT_XAPIAN_FLAGS)
qp = xapian.QueryParser()
qp.set_database(self._database())
qp.set_stemmer(xapian.Stem(self.language))
qp.set_stemming_strategy(xapian.QueryParser.STEM_SOME)
qp.add_boolean_prefix('django_ct', DOCUMENT_CT_TERM_PREFIX)
for field_dict in self.schema:
qp.add_prefix(
field_dict['field_name'],
DOCUMENT_CUSTOM_TERM_PREFIX + field_dict['field_name'].upper()
)
vrp = XHValueRangeProcessor(self)
qp.add_valuerangeprocessor(vrp)
return qp.parse_query(query_string, flags)
def build_schema(self, fields):
"""
Build the schema from fields.
Required arguments:
``fields`` -- A list of fields in the index
Returns a list of fields in dictionary format ready for inclusion in
an indexed meta-data.
"""
content_field_name = ''
schema_fields = [
{'field_name': ID, 'type': 'text', 'multi_valued': 'false', 'column': 0},
]
column = len(schema_fields)
for field_name, field_class in sorted(fields.items(), key=lambda n: n[0]):
if field_class.document is True:
content_field_name = field_class.index_fieldname
if field_class.indexed is True:
field_data = {
'field_name': field_class.index_fieldname,
'type': 'text',
'multi_valued': 'false',
'column': column,
}
if field_class.field_type in ['date', 'datetime']:
field_data['type'] = 'date'
elif field_class.field_type == 'integer':
field_data['type'] = 'long'
elif field_class.field_type == 'float':
field_data['type'] = 'float'
elif field_class.field_type == 'boolean':
field_data['type'] = 'boolean'
if field_class.is_multivalued:
field_data['multi_valued'] = 'true'
schema_fields.append(field_data)
column += 1
return (content_field_name, schema_fields)
def _do_highlight(self, content, query, tag='em'):
"""
Highlight `query` terms in `content` with html `tag`.
This method assumes that the input text (`content`) does not contain
any special formatting. That is, it does not contain any html tags
or similar markup that could be screwed up by the highlighting.
Required arguments:
`content` -- Content to search for instances of `text`
`text` -- The text to be highlighted
"""
for term in query:
for match in re.findall('[^A-Z]+', term): # Ignore field identifiers
match_re = re.compile(match, re.I)
content = match_re.sub('<%s>%s</%s>' % (tag, term, tag), content)
return content
def _do_field_facets(self, results, field_facets):
"""
Private method that facets a document by field name.
Fields of type MultiValueField will be faceted on each item in the
(containing) list.
Required arguments:
`results` -- A list SearchResults to facet
`field_facets` -- A list of fields to facet on
"""
facet_dict = {}
# DS_TODO: Improve this algorithm. Currently, runs in O(N^2), ouch.
for field in field_facets:
facet_list = {}
for result in results:
field_value = getattr(result, field)
if self._multi_value_field(field):
for item in field_value: # Facet each item in a MultiValueField
facet_list[item] = facet_list.get(item, 0) + 1
else:
facet_list[field_value] = facet_list.get(field_value, 0) + 1
facet_dict[field] = facet_list.items()
return facet_dict
def _do_date_facets(self, results, date_facets):
"""
Private method that facets a document by date ranges
Required arguments:
`results` -- A list SearchResults to facet
`date_facets` -- A dictionary containing facet parameters:
{'field': {'start_date': ..., 'end_date': ...: 'gap_by': '...', 'gap_amount': n}}
nb., gap must be one of the following:
year|month|day|hour|minute|second
For each date facet field in `date_facets`, generates a list
of date ranges (from `start_date` to `end_date` by `gap_by`) then
iterates through `results` and tallies the count for each date_facet.
Returns a dictionary of date facets (fields) containing a list with
entries for each range and a count of documents matching the range.
eg. {
'pub_date': [
('2009-01-01T00:00:00Z', 5),
('2009-02-01T00:00:00Z', 0),
('2009-03-01T00:00:00Z', 0),
('2009-04-01T00:00:00Z', 1),
('2009-05-01T00:00:00Z', 2),
],
}
"""
facet_dict = {}
for date_facet, facet_params in date_facets.iteritems():
gap_type = facet_params.get('gap_by')
gap_value = facet_params.get('gap_amount', 1)
date_range = facet_params['start_date']
facet_list = []
while date_range < facet_params['end_date']:
facet_list.append((date_range.isoformat(), 0))
if gap_type == 'year':
date_range = date_range.replace(
year=date_range.year + int(gap_value)
)
elif gap_type == 'month':
if date_range.month + int(gap_value) > 12:
date_range = date_range.replace(
month=((date_range.month + int(gap_value)) % 12),
year=(date_range.year + (date_range.month + int(gap_value)) / 12)
)
else:
date_range = date_range.replace(
month=date_range.month + int(gap_value)
)
elif gap_type == 'day':
date_range += datetime.timedelta(days=int(gap_value))
elif gap_type == 'hour':
date_range += datetime.timedelta(hours=int(gap_value))
elif gap_type == 'minute':
date_range += datetime.timedelta(minutes=int(gap_value))
elif gap_type == 'second':
date_range += datetime.timedelta(seconds=int(gap_value))
facet_list = sorted(facet_list, key=lambda n:n[0], reverse=True)
for result in results:
result_date = getattr(result, date_facet)
if result_date:
if not isinstance(result_date, datetime.datetime):
result_date = datetime.datetime(
year=result_date.year,
month=result_date.month,
day=result_date.day,
)
for n, facet_date in enumerate(facet_list):
if result_date > datetime.datetime(*(time.strptime(facet_date[0], '%Y-%m-%dT%H:%M:%S')[0:6])):
facet_list[n] = (facet_list[n][0], (facet_list[n][1] + 1))
break
facet_dict[date_facet] = facet_list
return facet_dict
def _do_query_facets(self, results, query_facets):
"""
Private method that facets a document by query
Required arguments:
`results` -- A list SearchResults to facet
`query_facets` -- A dictionary containing facet parameters:
{'field': 'query', [...]}
For each query in `query_facets`, generates a dictionary entry with
the field name as the key and a tuple with the query and result count
as the value.
eg. {'name': ('a*', 5)}
"""
facet_dict = {}
for field, query in query_facets.iteritems():
facet_dict[field] = (query, self.search(self.parse_query(query))['hits'])
return facet_dict
def _do_spelling_suggestion(self, database, query, spelling_query):
"""
Private method that returns a single spelling suggestion based on
`spelling_query` or `query`.
Required arguments:
`database` -- The database to check spelling against
`query` -- The query to check
`spelling_query` -- If not None, this will be checked instead of `query`
Returns a string with a suggested spelling
"""
if spelling_query:
if ' ' in spelling_query:
return ' '.join([database.get_spelling_suggestion(term) for term in spelling_query.split()])
else:
return database.get_spelling_suggestion(spelling_query)
term_set = set()
for term in query:
for match in re.findall('[^A-Z]+', term): # Ignore field identifiers
term_set.add(database.get_spelling_suggestion(match))
return ' '.join(term_set)
def _database(self, writable=False):
"""
Private method that returns a xapian.Database for use.
Optional arguments:
``writable`` -- Open the database in read/write mode (default=False)
Returns an instance of a xapian.Database or xapian.WritableDatabase
"""
if settings.HAYSTACK_XAPIAN_PATH == MEMORY_DB_NAME:
if not SearchBackend.inmemory_db:
SearchBackend.inmemory_db = xapian.inmemory_open()
return SearchBackend.inmemory_db
if writable:
database = xapian.WritableDatabase(settings.HAYSTACK_XAPIAN_PATH, xapian.DB_CREATE_OR_OPEN)
else:
try:
database = xapian.Database(settings.HAYSTACK_XAPIAN_PATH)
except xapian.DatabaseOpeningError:
raise InvalidIndexError(u'Unable to open index at %s' % settings.HAYSTACK_XAPIAN_PATH)
return database
def _get_enquire_mset(self, database, enquire, start_offset, end_offset):
"""
A safer version of Xapian.enquire.get_mset
Simply wraps the Xapian version and catches any `Xapian.DatabaseModifiedError`,
attempting a `database.reopen` as needed.
Required arguments:
`database` -- The database to be read
`enquire` -- An instance of an Xapian.enquire object
`start_offset` -- The start offset to pass to `enquire.get_mset`
`end_offset` -- The end offset to pass to `enquire.get_mset`
"""
try:
return enquire.get_mset(start_offset, end_offset)
except xapian.DatabaseModifiedError:
database.reopen()
return enquire.get_mset(start_offset, end_offset)
def _get_document_data(self, database, document):
"""
A safer version of Xapian.document.get_data
Simply wraps the Xapian version and catches any `Xapian.DatabaseModifiedError`,
attempting a `database.reopen` as needed.
Required arguments:
`database` -- The database to be read
`document` -- An instance of an Xapian.document object
"""
try:
return document.get_data()
except xapian.DatabaseModifiedError:
database.reopen()
return document.get_data()
def _get_hit_count(self, database, enquire):
"""
Given a database and enquire instance, returns the estimated number
of matches.
Required arguments:
`database` -- The database to be queried
`enquire` -- The enquire instance
"""
return self._get_enquire_mset(
database, enquire, 0, database.get_doccount()
).size()
def _value_column(self, field):
"""
Private method that returns the column value slot in the database
for a given field.
Required arguemnts:
`field` -- The field to lookup
Returns an integer with the column location (0 indexed).
"""
for field_dict in self.schema:
if field_dict['field_name'] == field:
return field_dict['column']
return 0
def _multi_value_field(self, field):
"""
Private method that returns `True` if a field is multi-valued, else
`False`.
Required arguemnts:
`field` -- The field to lookup
Returns a boolean value indicating whether the field is multi-valued.
"""
for field_dict in self.schema:
if field_dict['field_name'] == field:
return field_dict['multi_valued'] == 'true'
return False
class SearchQuery(BaseSearchQuery):
"""
This class is the Xapian specific version of the SearchQuery class.
It acts as an intermediary between the ``SearchQuerySet`` and the
``SearchBackend`` itself.
"""
def __init__(self, backend=None, site=None):
"""
Create a new instance of the SearchQuery setting the backend as
specified. If no backend is set, will use the Xapian `SearchBackend`.
Optional arguments:
``backend`` -- The ``SearchBackend`` to use (default = None)
``site`` -- The site to use (default = None)
"""
super(SearchQuery, self).__init__(backend=backend)
self.backend = backend or SearchBackend(site=site)
def build_params(self, *args, **kwargs):
kwargs = super(SearchQuery, self).build_params(*args, **kwargs)
if self.end_offset is not None:
kwargs['end_offset'] = self.end_offset - self.start_offset
return kwargs
def build_query(self):
if not self.query_filter:
query = xapian.Query('')
else:
query = self._query_from_search_node(self.query_filter)
if self.models:
subqueries = [
xapian.Query(
xapian.Query.OP_SCALE_WEIGHT, xapian.Query('%s%s.%s' % (
DOCUMENT_CT_TERM_PREFIX,
model._meta.app_label, model._meta.module_name
)
), 0 # Pure boolean sub-query
) for model in self.models
]
query = xapian.Query(
xapian.Query.OP_AND, query,
xapian.Query(xapian.Query.OP_OR, subqueries)
)
if self.boost:
subqueries = [
xapian.Query(
xapian.Query.OP_SCALE_WEIGHT, self._content_field(term, False), value
) for term, value in self.boost.iteritems()
]
query = xapian.Query(
xapian.Query.OP_AND_MAYBE, query,
xapian.Query(xapian.Query.OP_OR, subqueries)
)
return query
def _query_from_search_node(self, search_node, is_not=False):
query_list = []
for child in search_node.children:
if isinstance(child, SearchNode):
query_list.append(
self._query_from_search_node(child, child.negated)
)
else:
expression, term = child
field, filter_type = search_node.split_expression(expression)
# Handle when we've got a ``ValuesListQuerySet``...
if hasattr(term, 'values_list'):
term = list(term)
if isinstance(term, (list, tuple)):
term = [_marshal_term(t) for t in term]
else:
term = _marshal_term(term)
if field == 'content':
query_list.append(self._content_field(term, is_not))
else:
if filter_type == 'exact':
query_list.append(self._filter_exact(term, field, is_not))
elif filter_type == 'gt':
query_list.append(self._filter_gt(term, field, is_not))
elif filter_type == 'gte':
query_list.append(self._filter_gte(term, field, is_not))
elif filter_type == 'lt':
query_list.append(self._filter_lt(term, field, is_not))
elif filter_type == 'lte':
query_list.append(self._filter_lte(term, field, is_not))
elif filter_type == 'startswith':
query_list.append(self._filter_startswith(term, field, is_not))
elif filter_type == 'in':
query_list.append(self._filter_in(term, field, is_not))
if search_node.connector == 'OR':
return xapian.Query(xapian.Query.OP_OR, query_list)
else:
return xapian.Query(xapian.Query.OP_AND, query_list)
def _content_field(self, term, is_not):
"""
Private method that returns a xapian.Query that searches for `value`
in all fields.
Required arguments:
``term`` -- The term to search for
``is_not`` -- Invert the search results
Returns:
A xapian.Query
"""
if ' ' in term:
if is_not:
return xapian.Query(
xapian.Query.OP_AND_NOT, self._all_query(), self._phrase_query(
term.split(), self.backend.content_field_name
)
)
else:
return self._phrase_query(term.split(), self.backend.content_field_name)
else:
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(), self._term_query(term))
else:
return self._term_query(term)
def _filter_exact(self, term, field, is_not):
"""
Private method that returns a xapian.Query that searches for `term`
in a specified `field`.
Required arguments:
``term`` -- The term to search for
``field`` -- The field to search
``is_not`` -- Invert the search results
Returns:
A xapian.Query
"""
if ' ' in term:
if is_not:
return xapian.Query(
xapian.Query.OP_AND_NOT, self._all_query(), self._phrase_query(term.split(), field)
)
else:
return self._phrase_query(term.split(), field)
else:
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(), self._term_query(term, field))
else:
return self._term_query(term, field)
def _filter_in(self, term_list, field, is_not):
"""
Private method that returns a xapian.Query that searches for any term
of `value_list` in a specified `field`.
Required arguments:
``term_list`` -- The terms to search for
``field`` -- The field to search
``is_not`` -- Invert the search results
Returns:
A xapian.Query
"""
query_list = []
for term in term_list:
if ' ' in term:
query_list.append(
self._phrase_query(term.split(), field)
)
else:
query_list.append(
self._term_query(term, field)
)
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(), xapian.Query(xapian.Query.OP_OR, query_list))
else:
return xapian.Query(xapian.Query.OP_OR, query_list)
def _filter_startswith(self, term, field, is_not):
"""
Private method that returns a xapian.Query that searches for any term
that begins with `term` in a specified `field`.
Required arguments:
``term`` -- The terms to search for
``field`` -- The field to search
``is_not`` -- Invert the search results
Returns:
A xapian.Query
"""
if is_not:
return xapian.Query(
xapian.Query.OP_AND_NOT,
self._all_query(),
self.backend.parse_query('%s:%s*' % (field, term)),
)
return self.backend.parse_query('%s:%s*' % (field, term))
def _filter_gt(self, term, field, is_not):
return self._filter_lte(term, field, is_not=(is_not != True))
def _filter_lt(self, term, field, is_not):
return self._filter_gte(term, field, is_not=(is_not != True))
def _filter_gte(self, term, field, is_not):
"""
Private method that returns a xapian.Query that searches for any term
that is greater than `term` in a specified `field`.
"""
vrp = XHValueRangeProcessor(self.backend)
pos, begin, end = vrp('%s:%s' % (field, _marshal_value(term)), '*')
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT,
self._all_query(),
xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
)
return xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
def _filter_lte(self, term, field, is_not):
"""
Private method that returns a xapian.Query that searches for any term
that is less than `term` in a specified `field`.
"""
vrp = XHValueRangeProcessor(self.backend)
pos, begin, end = vrp('%s:' % field, '%s' % _marshal_value(term))
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT,
self._all_query(),
xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
)
return xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
def _all_query(self):
"""
Private method that returns a xapian.Query that returns all documents,
Returns:
A xapian.Query
"""
return xapian.Query('')
def _term_query(self, term, field=None):
"""
Private method that returns a term based xapian.Query that searches
for `term`.
Required arguments:
``term`` -- The term to search for
``field`` -- The field to search (If `None`, all fields)
Returns:
A xapian.Query
"""
stem = xapian.Stem(self.backend.language)
if field == 'id':
return xapian.Query('%s%s' % (DOCUMENT_ID_TERM_PREFIX, term))
elif field == 'django_ct':
return xapian.Query('%s%s' % (DOCUMENT_CT_TERM_PREFIX, term))
elif field:
stemmed = 'Z%s%s%s' % (
DOCUMENT_CUSTOM_TERM_PREFIX, field.upper(), stem(term)
)
unstemmed = '%s%s%s' % (
DOCUMENT_CUSTOM_TERM_PREFIX, field.upper(), term
)
else:
stemmed = 'Z%s' % stem(term)
unstemmed = term
return xapian.Query(
xapian.Query.OP_OR,
xapian.Query(stemmed),
xapian.Query(unstemmed)
)
def _phrase_query(self, term_list, field=None):
"""
Private method that returns a phrase based xapian.Query that searches
for terms in `term_list.
Required arguments:
``term_list`` -- The terms to search for
``field`` -- The field to search (If `None`, all fields)
Returns:
A xapian.Query
"""
if field:
return xapian.Query(
xapian.Query.OP_PHRASE, [
'%s%s%s' % (
DOCUMENT_CUSTOM_TERM_PREFIX, field.upper(), term
) for term in term_list
]
)
else:
return xapian.Query(xapian.Query.OP_PHRASE, term_list)
def _marshal_value(value):
"""
Private utility method that converts Python values to a string for Xapian values.
"""
if isinstance(value, datetime.datetime):
value = _marshal_datetime(value)
elif isinstance(value, datetime.date):
value = _marshal_date(value)
elif isinstance(value, bool):
if value:
value = u't'
else:
value = u'f'
elif isinstance(value, float):
value = xapian.sortable_serialise(value)
elif isinstance(value, (int, long)):
value = u'%012d' % value
else:
value = force_unicode(value).lower()
return value
def _marshal_term(term):
"""
Private utility method that converts Python terms to a string for Xapian terms.
"""
if isinstance(term, datetime.datetime):
term = _marshal_datetime(term)
elif isinstance(term, datetime.date):
term = _marshal_date(term)
else:
term = force_unicode(term).lower()
return term
def _marshal_date(d):
return u'%04d%02d%02d000000' % (d.year, d.month, d.day)
def _marshal_datetime(dt):
if dt.microsecond:
return u'%04d%02d%02d%02d%02d%02d%06d' % (
dt.year, dt.month, dt.day, dt.hour,
dt.minute, dt.second, dt.microsecond
)
else:
return u'%04d%02d%02d%02d%02d%02d' % (
dt.year, dt.month, dt.day, dt.hour,
dt.minute, dt.second
)