Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

1977 lines (1600 sloc) 53.344 kb
/*****************************************************************************
$Id$
File: ed.cpp
Date: 06Apr06
Copyright (C) 2006-07 by Francis Cianfrocca. All Rights Reserved.
Gmail: blackhedd
This program is free software; you can redistribute it and/or modify
it under the terms of either: 1) the GNU General Public License
as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version; or 2) Ruby's License.
See the file COPYING for complete licensing information.
*****************************************************************************/
#include "project.h"
/********************
SetSocketNonblocking
********************/
bool SetSocketNonblocking (SOCKET sd)
{
#ifdef OS_UNIX
int val = fcntl (sd, F_GETFL, 0);
return (fcntl (sd, F_SETFL, val | O_NONBLOCK) != SOCKET_ERROR) ? true : false;
#endif
#ifdef OS_WIN32
#ifdef BUILD_FOR_RUBY
// 14Jun09 Ruby provides its own wrappers for ioctlsocket. On 1.8 this is a simple wrapper,
// however, 1.9 keeps its own state about the socket.
// NOTE: F_GETFL is not supported
return (fcntl (sd, F_SETFL, O_NONBLOCK) == 0) ? true : false;
#else
unsigned long one = 1;
return (ioctlsocket (sd, FIONBIO, &one) == 0) ? true : false;
#endif
#endif
}
/****************************************
EventableDescriptor::EventableDescriptor
****************************************/
EventableDescriptor::EventableDescriptor (int sd, EventMachine_t *em):
bCloseNow (false),
bCloseAfterWriting (false),
MySocket (sd),
bAttached (false),
bWatchOnly (false),
EventCallback (NULL),
bCallbackUnbind (true),
UnbindReasonCode (0),
ProxyTarget(NULL),
ProxiedFrom(NULL),
ProxiedBytes(0),
MaxOutboundBufSize(0),
MyEventMachine (em),
PendingConnectTimeout(20000000),
InactivityTimeout (0),
bPaused (false)
{
/* There are three ways to close a socket, all of which should
* automatically signal to the event machine that this object
* should be removed from the polling scheduler.
* First is a hard close, intended for bad errors or possible
* security violations. It immediately closes the connection
* and puts this object into an error state.
* Second is to set bCloseNow, which will cause the event machine
* to delete this object (and thus close the connection in our
* destructor) the next chance it gets. bCloseNow also inhibits
* the writing of new data on the socket (but not necessarily
* the reading of new data).
* The third way is to set bCloseAfterWriting, which inhibits
* the writing of new data and converts to bCloseNow as soon
* as everything in the outbound queue has been written.
* bCloseAfterWriting is really for use only by protocol handlers
* (for example, HTTP writes an HTML page and then closes the
* connection). All of the error states we generate internally
* cause an immediate close to be scheduled, which may have the
* effect of discarding outbound data.
*/
if (sd == INVALID_SOCKET)
throw std::runtime_error ("bad eventable descriptor");
if (MyEventMachine == NULL)
throw std::runtime_error ("bad em in eventable descriptor");
CreatedAt = MyEventMachine->GetCurrentLoopTime();
#ifdef HAVE_EPOLL
EpollEvent.events = 0;
EpollEvent.data.ptr = this;
#endif
LastActivity = MyEventMachine->GetCurrentLoopTime();
}
/*****************************************
EventableDescriptor::~EventableDescriptor
*****************************************/
EventableDescriptor::~EventableDescriptor()
{
if (NextHeartbeat)
MyEventMachine->ClearHeartbeat(NextHeartbeat, this);
if (EventCallback && bCallbackUnbind)
(*EventCallback)(GetBinding(), EM_CONNECTION_UNBOUND, NULL, UnbindReasonCode);
if (ProxiedFrom) {
(*EventCallback)(ProxiedFrom->GetBinding(), EM_PROXY_TARGET_UNBOUND, NULL, 0);
ProxiedFrom->StopProxy();
}
MyEventMachine->NumCloseScheduled--;
StopProxy();
Close();
}
/*************************************
EventableDescriptor::SetEventCallback
*************************************/
void EventableDescriptor::SetEventCallback (EMCallback cb)
{
EventCallback = cb;
}
/**************************
EventableDescriptor::Close
**************************/
void EventableDescriptor::Close()
{
/* EventMachine relies on the fact that when close(fd)
* is called that the fd is removed from any
* epoll event queues.
*
* However, this is not *always* the behavior of close(fd)
*
* See man 4 epoll Q6/A6 and then consider what happens
* when using pipes with eventmachine.
* (As is often done when communicating with a subprocess)
*
* The pipes end up looking like:
*
* ls -l /proc/<pid>/fd
* ...
* lr-x------ 1 root root 64 2011-08-19 21:31 3 -> pipe:[940970]
* l-wx------ 1 root root 64 2011-08-19 21:31 4 -> pipe:[940970]
*
* This meets the critera from man 4 epoll Q6/A4 for not
* removing fds from epoll event queues until all fds
* that reference the underlying file have been removed.
*
* If the EventableDescriptor associated with fd 3 is deleted,
* its dtor will call EventableDescriptor::Close(),
* which will call ::close(int fd).
*
* However, unless the EventableDescriptor associated with fd 4 is
* also deleted before the next call to epoll_wait, events may fire
* for fd 3 that were registered with an already deleted
* EventableDescriptor.
*
* Therefore, it is necessary to notify EventMachine that
* the fd associated with this EventableDescriptor is
* closing.
*
* EventMachine also never closes fds for STDIN, STDOUT and
* STDERR (0, 1 & 2)
*/
// Close the socket right now. Intended for emergencies.
if (MySocket != INVALID_SOCKET) {
MyEventMachine->Deregister (this);
// Do not close STDIN, STDOUT, STDERR
if (MySocket > 2 && !bAttached) {
shutdown (MySocket, 1);
close (MySocket);
}
MySocket = INVALID_SOCKET;
}
}
/*********************************
EventableDescriptor::ShouldDelete
*********************************/
bool EventableDescriptor::ShouldDelete()
{
/* For use by a socket manager, which needs to know if this object
* should be removed from scheduling events and deleted.
* Has an immediate close been scheduled, or are we already closed?
* If either of these are the case, return true. In theory, the manager will
* then delete us, which in turn will make sure the socket is closed.
* Note, if bCloseAfterWriting is true, we check a virtual method to see
* if there is outbound data to write, and only request a close if there is none.
*/
return ((MySocket == INVALID_SOCKET) || bCloseNow || (bCloseAfterWriting && (GetOutboundDataSize() <= 0)));
}
/**********************************
EventableDescriptor::ScheduleClose
**********************************/
void EventableDescriptor::ScheduleClose (bool after_writing)
{
MyEventMachine->NumCloseScheduled++;
// KEEP THIS SYNCHRONIZED WITH ::IsCloseScheduled.
if (after_writing)
bCloseAfterWriting = true;
else
bCloseNow = true;
}
/*************************************
EventableDescriptor::IsCloseScheduled
*************************************/
bool EventableDescriptor::IsCloseScheduled()
{
// KEEP THIS SYNCHRONIZED WITH ::ScheduleClose.
return (bCloseNow || bCloseAfterWriting);
}
/*******************************
EventableDescriptor::StartProxy
*******************************/
void EventableDescriptor::StartProxy(const unsigned long to, const unsigned long bufsize, const unsigned long length)
{
EventableDescriptor *ed = dynamic_cast <EventableDescriptor*> (Bindable_t::GetObject (to));
if (ed) {
StopProxy();
ProxyTarget = ed;
BytesToProxy = length;
ProxiedBytes = 0;
ed->SetProxiedFrom(this, bufsize);
return;
}
throw std::runtime_error ("Tried to proxy to an invalid descriptor");
}
/******************************
EventableDescriptor::StopProxy
******************************/
void EventableDescriptor::StopProxy()
{
if (ProxyTarget) {
ProxyTarget->SetProxiedFrom(NULL, 0);
ProxyTarget = NULL;
}
}
/***********************************
EventableDescriptor::SetProxiedFrom
***********************************/
void EventableDescriptor::SetProxiedFrom(EventableDescriptor *from, const unsigned long bufsize)
{
if (from != NULL && ProxiedFrom != NULL)
throw std::runtime_error ("Tried to proxy to a busy target");
ProxiedFrom = from;
MaxOutboundBufSize = bufsize;
}
/********************************************
EventableDescriptor::_GenericInboundDispatch
********************************************/
void EventableDescriptor::_GenericInboundDispatch(const char *buf, int size)
{
assert(EventCallback);
if (ProxyTarget) {
if (BytesToProxy > 0) {
unsigned long proxied = min(BytesToProxy, (unsigned long) size);
ProxyTarget->SendOutboundData(buf, proxied);
ProxiedBytes += (unsigned long) proxied;
BytesToProxy -= proxied;
if (BytesToProxy == 0) {
StopProxy();
(*EventCallback)(GetBinding(), EM_PROXY_COMPLETED, NULL, 0);
if (proxied < size) {
(*EventCallback)(GetBinding(), EM_CONNECTION_READ, buf + proxied, size - proxied);
}
}
} else {
ProxyTarget->SendOutboundData(buf, size);
ProxiedBytes += (unsigned long) size;
}
} else {
(*EventCallback)(GetBinding(), EM_CONNECTION_READ, buf, size);
}
}
/*********************************************
EventableDescriptor::GetPendingConnectTimeout
*********************************************/
uint64_t EventableDescriptor::GetPendingConnectTimeout()
{
return PendingConnectTimeout / 1000;
}
/*********************************************
EventableDescriptor::SetPendingConnectTimeout
*********************************************/
int EventableDescriptor::SetPendingConnectTimeout (uint64_t value)
{
if (value > 0) {
PendingConnectTimeout = value * 1000;
MyEventMachine->QueueHeartbeat(this);
return 1;
}
return 0;
}
/*************************************
EventableDescriptor::GetNextHeartbeat
*************************************/
uint64_t EventableDescriptor::GetNextHeartbeat()
{
if (NextHeartbeat)
MyEventMachine->ClearHeartbeat(NextHeartbeat, this);
NextHeartbeat = 0;
if (!ShouldDelete()) {
uint64_t time_til_next = InactivityTimeout;
if (IsConnectPending()) {
if (time_til_next == 0 || PendingConnectTimeout < time_til_next)
time_til_next = PendingConnectTimeout;
}
if (time_til_next == 0)
return 0;
NextHeartbeat = time_til_next + MyEventMachine->GetRealTime();
}
return NextHeartbeat;
}
/******************************************
ConnectionDescriptor::ConnectionDescriptor
******************************************/
ConnectionDescriptor::ConnectionDescriptor (int sd, EventMachine_t *em):
EventableDescriptor (sd, em),
bConnectPending (false),
bNotifyReadable (false),
bNotifyWritable (false),
bReadAttemptedAfterClose (false),
bWriteAttemptedAfterClose (false),
OutboundDataSize (0),
#ifdef WITH_SSL
SslBox (NULL),
bHandshakeSignaled (false),
bSslVerifyPeer (false),
bSslPeerAccepted(false),
#endif
#ifdef HAVE_KQUEUE
bGotExtraKqueueEvent(false),
#endif
bIsServer (false)
{
// 22Jan09: Moved ArmKqueueWriter into SetConnectPending() to fix assertion failure in _WriteOutboundData()
// 5May09: Moved EPOLLOUT into SetConnectPending() so it doesn't happen for attached read pipes
}
/*******************************************
ConnectionDescriptor::~ConnectionDescriptor
*******************************************/
ConnectionDescriptor::~ConnectionDescriptor()
{
// Run down any stranded outbound data.
for (size_t i=0; i < OutboundPages.size(); i++)
OutboundPages[i].Free();
#ifdef WITH_SSL
if (SslBox)
delete SslBox;
#endif
}
/***********************************
ConnectionDescriptor::_UpdateEvents
************************************/
void ConnectionDescriptor::_UpdateEvents()
{
_UpdateEvents(true, true);
}
void ConnectionDescriptor::_UpdateEvents(bool read, bool write)
{
if (MySocket == INVALID_SOCKET)
return;
#ifdef HAVE_EPOLL
unsigned int old = EpollEvent.events;
if (read) {
if (SelectForRead())
EpollEvent.events |= EPOLLIN;
else
EpollEvent.events &= ~EPOLLIN;
}
if (write) {
if (SelectForWrite())
EpollEvent.events |= EPOLLOUT;
else
EpollEvent.events &= ~EPOLLOUT;
}
if (old != EpollEvent.events)
MyEventMachine->Modify (this);
#endif
#ifdef HAVE_KQUEUE
if (read && SelectForRead())
MyEventMachine->ArmKqueueReader (this);
if (write && SelectForWrite())
MyEventMachine->ArmKqueueWriter (this);
#endif
}
/***************************************
ConnectionDescriptor::SetConnectPending
****************************************/
void ConnectionDescriptor::SetConnectPending(bool f)
{
bConnectPending = f;
MyEventMachine->QueueHeartbeat(this);
_UpdateEvents();
}
/**********************************
ConnectionDescriptor::SetAttached
***********************************/
void ConnectionDescriptor::SetAttached(bool state)
{
bAttached = state;
}
/**********************************
ConnectionDescriptor::SetWatchOnly
***********************************/
void ConnectionDescriptor::SetWatchOnly(bool watching)
{
bWatchOnly = watching;
_UpdateEvents();
}
/*********************************
ConnectionDescriptor::HandleError
*********************************/
void ConnectionDescriptor::HandleError()
{
if (bWatchOnly) {
// An EPOLLHUP | EPOLLIN condition will call Read() before HandleError(), in which case the
// socket is already detached and invalid, so we don't need to do anything.
if (MySocket == INVALID_SOCKET) return;
// HandleError() is called on WatchOnly descriptors by the epoll reactor
// when it gets a EPOLLERR | EPOLLHUP. Usually this would show up as a readable and
// writable event on other reactors, so we have to fire those events ourselves.
if (bNotifyReadable) Read();
if (bNotifyWritable) Write();
} else {
ScheduleClose (false);
}
}
/***********************************
ConnectionDescriptor::ScheduleClose
***********************************/
void ConnectionDescriptor::ScheduleClose (bool after_writing)
{
if (bWatchOnly)
throw std::runtime_error ("cannot close 'watch only' connections");
EventableDescriptor::ScheduleClose(after_writing);
}
/***************************************
ConnectionDescriptor::SetNotifyReadable
****************************************/
void ConnectionDescriptor::SetNotifyReadable(bool readable)
{
if (!bWatchOnly)
throw std::runtime_error ("notify_readable must be on 'watch only' connections");
bNotifyReadable = readable;
_UpdateEvents(true, false);
}
/***************************************
ConnectionDescriptor::SetNotifyWritable
****************************************/
void ConnectionDescriptor::SetNotifyWritable(bool writable)
{
if (!bWatchOnly)
throw std::runtime_error ("notify_writable must be on 'watch only' connections");
bNotifyWritable = writable;
_UpdateEvents(false, true);
}
/**************************************
ConnectionDescriptor::SendOutboundData
**************************************/
int ConnectionDescriptor::SendOutboundData (const char *data, int length)
{
if (bWatchOnly)
throw std::runtime_error ("cannot send data on a 'watch only' connection");
if (ProxiedFrom && MaxOutboundBufSize && (unsigned int)(GetOutboundDataSize() + length) > MaxOutboundBufSize)
ProxiedFrom->Pause();
#ifdef WITH_SSL
if (SslBox) {
if (length > 0) {
int w = SslBox->PutPlaintext (data, length);
if (w < 0)
ScheduleClose (false);
else
_DispatchCiphertext();
}
// TODO: What's the correct return value?
return 1; // That's a wild guess, almost certainly wrong.
}
else
#endif
return _SendRawOutboundData (data, length);
}
/******************************************
ConnectionDescriptor::_SendRawOutboundData
******************************************/
int ConnectionDescriptor::_SendRawOutboundData (const char *data, int length)
{
/* This internal method is called to schedule bytes that
* will be sent out to the remote peer.
* It's not directly accessed by the caller, who hits ::SendOutboundData,
* which may or may not filter or encrypt the caller's data before
* sending it here.
*/
// Highly naive and incomplete implementation.
// There's no throttle for runaways (which should abort only this connection
// and not the whole process), and no coalescing of small pages.
// (Well, not so bad, small pages are coalesced in ::Write)
if (IsCloseScheduled())
return 0;
// 25Mar10: Ignore 0 length packets as they are not meaningful in TCP (as opposed to UDP)
// and can cause the assert(nbytes>0) to fail when OutboundPages has a bunch of 0 length pages.
if (length == 0)
return 0;
if (!data && (length > 0))
throw std::runtime_error ("bad outbound data");
char *buffer = (char *) malloc (length + 1);
if (!buffer)
throw std::runtime_error ("no allocation for outbound data");
memcpy (buffer, data, length);
buffer [length] = 0;
OutboundPages.push_back (OutboundPage (buffer, length));
OutboundDataSize += length;
_UpdateEvents(false, true);
return length;
}
/***********************************
ConnectionDescriptor::SelectForRead
***********************************/
bool ConnectionDescriptor::SelectForRead()
{
/* A connection descriptor is always scheduled for read,
* UNLESS it's in a pending-connect state.
* On Linux, unlike Unix, a nonblocking socket on which
* connect has been called, does NOT necessarily select
* both readable and writable in case of error.
* The socket will select writable when the disposition
* of the connect is known. On the other hand, a socket
* which successfully connects and selects writable may
* indeed have some data available on it, so it will
* select readable in that case, violating expectations!
* So we will not poll for readability until the socket
* is known to be in a connected state.
*/
if (bPaused)
return false;
else if (bConnectPending)
return false;
else if (bWatchOnly)
return bNotifyReadable ? true : false;
else
return true;
}
/************************************
ConnectionDescriptor::SelectForWrite
************************************/
bool ConnectionDescriptor::SelectForWrite()
{
/* Cf the notes under SelectForRead.
* In a pending-connect state, we ALWAYS select for writable.
* In a normal state, we only select for writable when we
* have outgoing data to send.
*/
if (bPaused)
return false;
else if (bConnectPending)
return true;
else if (bWatchOnly)
return bNotifyWritable ? true : false;
else
return (GetOutboundDataSize() > 0);
}
/***************************
ConnectionDescriptor::Pause
***************************/
bool ConnectionDescriptor::Pause()
{
if (bWatchOnly)
throw std::runtime_error ("cannot pause/resume 'watch only' connections, set notify readable/writable instead");
bool old = bPaused;
bPaused = true;
_UpdateEvents();
return old == false;
}
/****************************
ConnectionDescriptor::Resume
****************************/
bool ConnectionDescriptor::Resume()
{
if (bWatchOnly)
throw std::runtime_error ("cannot pause/resume 'watch only' connections, set notify readable/writable instead");
bool old = bPaused;
bPaused = false;
_UpdateEvents();
return old == true;
}
/**************************
ConnectionDescriptor::Read
**************************/
void ConnectionDescriptor::Read()
{
/* Read and dispatch data on a socket that has selected readable.
* It's theoretically possible to get and dispatch incoming data on
* a socket that has already been scheduled for closing or close-after-writing.
* In those cases, we'll leave it up the to protocol handler to "do the
* right thing" (which probably means to ignore the incoming data).
*
* 22Aug06: Chris Ochs reports that on FreeBSD, it's possible to come
* here with the socket already closed, after the process receives
* a ctrl-C signal (not sure if that's TERM or INT on BSD). The application
* was one in which network connections were doing a lot of interleaved reads
* and writes.
* Since we always write before reading (in order to keep the outbound queues
* as light as possible), I think what happened is that an interrupt caused
* the socket to be closed in ConnectionDescriptor::Write. We'll then
* come here in the same pass through the main event loop, and won't get
* cleaned up until immediately after.
* We originally asserted that the socket was valid when we got here.
* To deal properly with the possibility that we are closed when we get here,
* I removed the assert. HOWEVER, the potential for an infinite loop scares me,
* so even though this is really clunky, I added a flag to assert that we never
* come here more than once after being closed. (FCianfrocca)
*/
int sd = GetSocket();
//assert (sd != INVALID_SOCKET); (original, removed 22Aug06)
if (sd == INVALID_SOCKET) {
assert (!bReadAttemptedAfterClose);
bReadAttemptedAfterClose = true;
return;
}
if (bWatchOnly) {
if (bNotifyReadable && EventCallback)
(*EventCallback)(GetBinding(), EM_CONNECTION_NOTIFY_READABLE, NULL, 0);
return;
}
LastActivity = MyEventMachine->GetCurrentLoopTime();
int total_bytes_read = 0;
char readbuffer [16 * 1024 + 1];
for (int i=0; i < 10; i++) {
// Don't read just one buffer and then move on. This is faster
// if there is a lot of incoming.
// But don't read indefinitely. Give other sockets a chance to run.
// NOTICE, we're reading one less than the buffer size.
// That's so we can put a guard byte at the end of what we send
// to user code.
int r = read (sd, readbuffer, sizeof(readbuffer) - 1);
int e = errno;
//cerr << "<R:" << r << ">";
if (r > 0) {
total_bytes_read += r;
// Add a null-terminator at the the end of the buffer
// that we will send to the callback.
// DO NOT EVER CHANGE THIS. We want to explicitly allow users
// to be able to depend on this behavior, so they will have
// the option to do some things faster. Additionally it's
// a security guard against buffer overflows.
readbuffer [r] = 0;
_DispatchInboundData (readbuffer, r);
}
else if (r == 0) {
break;
}
else {
#ifdef OS_UNIX
if ((e != EINPROGRESS) && (e != EWOULDBLOCK) && (e != EAGAIN) && (e != EINTR)) {
#endif
#ifdef OS_WIN32
if ((e != WSAEINPROGRESS) && (e != WSAEWOULDBLOCK)) {
#endif
// 26Mar11: Previously, all read errors were assumed to be EWOULDBLOCK and ignored.
// Now, instead, we call Close() on errors like ECONNRESET and ENOTCONN.
UnbindReasonCode = e;
Close();
break;
} else {
// Basically a would-block, meaning we've read everything there is to read.
break;
}
}
}
if (total_bytes_read == 0) {
// If we read no data on a socket that selected readable,
// it generally means the other end closed the connection gracefully.
ScheduleClose (false);
//bCloseNow = true;
}
}
/******************************************
ConnectionDescriptor::_DispatchInboundData
******************************************/
void ConnectionDescriptor::_DispatchInboundData (const char *buffer, int size)
{
#ifdef WITH_SSL
if (SslBox) {
SslBox->PutCiphertext (buffer, size);
int s;
char B [2048];
while ((s = SslBox->GetPlaintext (B, sizeof(B) - 1)) > 0) {
_CheckHandshakeStatus();
B [s] = 0;
_GenericInboundDispatch(B, s);
}
// If our SSL handshake had a problem, shut down the connection.
if (s == -2) {
ScheduleClose(false);
return;
}
_CheckHandshakeStatus();
_DispatchCiphertext();
}
else {
_GenericInboundDispatch(buffer, size);
}
#endif
#ifdef WITHOUT_SSL
_GenericInboundDispatch(buffer, size);
#endif
}
/*******************************************
ConnectionDescriptor::_CheckHandshakeStatus
*******************************************/
void ConnectionDescriptor::_CheckHandshakeStatus()
{
#ifdef WITH_SSL
if (SslBox && (!bHandshakeSignaled) && SslBox->IsHandshakeCompleted()) {
bHandshakeSignaled = true;
if (EventCallback)
(*EventCallback)(GetBinding(), EM_SSL_HANDSHAKE_COMPLETED, NULL, 0);
}
#endif
}
/***************************
ConnectionDescriptor::Write
***************************/
void ConnectionDescriptor::Write()
{
/* A socket which is in a pending-connect state will select
* writable when the disposition of the connect is known.
* At that point, check to be sure there are no errors,
* and if none, then promote the socket out of the pending
* state.
* TODO: I haven't figured out how Windows signals errors on
* unconnected sockets. Maybe it does the untraditional but
* logical thing and makes the socket selectable for error.
* If so, it's unsupported here for the time being, and connect
* errors will have to be caught by the timeout mechanism.
*/
if (bConnectPending) {
int error;
socklen_t len;
len = sizeof(error);
#ifdef OS_UNIX
int o = getsockopt (GetSocket(), SOL_SOCKET, SO_ERROR, &error, &len);
#endif
#ifdef OS_WIN32
int o = getsockopt (GetSocket(), SOL_SOCKET, SO_ERROR, (char*)&error, &len);
#endif
if ((o == 0) && (error == 0)) {
if (EventCallback)
(*EventCallback)(GetBinding(), EM_CONNECTION_COMPLETED, "", 0);
// 5May09: Moved epoll/kqueue read/write arming into SetConnectPending, so it can be called
// from EventMachine_t::AttachFD as well.
SetConnectPending (false);
}
else {
if (o == 0)
UnbindReasonCode = error;
ScheduleClose (false);
//bCloseNow = true;
}
}
else {
if (bNotifyWritable) {
if (EventCallback)
(*EventCallback)(GetBinding(), EM_CONNECTION_NOTIFY_WRITABLE, NULL, 0);
_UpdateEvents(false, true);
return;
}
assert(!bWatchOnly);
/* 5May09: Kqueue bugs on OSX cause one extra writable event to fire even though we're using
EV_ONESHOT. We ignore this extra event once, but only the first time. If it happens again,
we should fall through to the assert(nbytes>0) failure to catch any EM bugs which might cause
::Write to be called in a busy-loop.
*/
#ifdef HAVE_KQUEUE
if (MyEventMachine->UsingKqueue()) {
if (OutboundDataSize == 0 && !bGotExtraKqueueEvent) {
bGotExtraKqueueEvent = true;
return;
} else if (OutboundDataSize > 0) {
bGotExtraKqueueEvent = false;
}
}
#endif
_WriteOutboundData();
}
}
/****************************************
ConnectionDescriptor::_WriteOutboundData
****************************************/
void ConnectionDescriptor::_WriteOutboundData()
{
/* This is a helper function called by ::Write.
* It's possible for a socket to select writable and then no longer
* be writable by the time we get around to writing. The kernel might
* have used up its available output buffers between the select call
* and when we get here. So this condition is not an error.
*
* 20Jul07, added the same kind of protection against an invalid socket
* that is at the top of ::Read. Not entirely how this could happen in
* real life (connection-reset from the remote peer, perhaps?), but I'm
* doing it to address some reports of crashing under heavy loads.
*/
int sd = GetSocket();
//assert (sd != INVALID_SOCKET);
if (sd == INVALID_SOCKET) {
assert (!bWriteAttemptedAfterClose);
bWriteAttemptedAfterClose = true;
return;
}
LastActivity = MyEventMachine->GetCurrentLoopTime();
size_t nbytes = 0;
#ifdef HAVE_WRITEV
int iovcnt = OutboundPages.size();
// Max of 16 outbound pages at a time
if (iovcnt > 16) iovcnt = 16;
#ifdef CC_SUNWspro
struct iovec iov[16];
#else
struct iovec iov[ iovcnt ];
#endif
for(int i = 0; i < iovcnt; i++){
OutboundPage *op = &(OutboundPages[i]);
#ifdef CC_SUNWspro
iov[i].iov_base = (char *)(op->Buffer + op->Offset);
#else
iov[i].iov_base = (void *)(op->Buffer + op->Offset);
#endif
iov[i].iov_len = op->Length - op->Offset;
nbytes += iov[i].iov_len;
}
#else
char output_buffer [16 * 1024];
while ((OutboundPages.size() > 0) && (nbytes < sizeof(output_buffer))) {
OutboundPage *op = &(OutboundPages[0]);
if ((nbytes + op->Length - op->Offset) < sizeof (output_buffer)) {
memcpy (output_buffer + nbytes, op->Buffer + op->Offset, op->Length - op->Offset);
nbytes += (op->Length - op->Offset);
op->Free();
OutboundPages.pop_front();
}
else {
int len = sizeof(output_buffer) - nbytes;
memcpy (output_buffer + nbytes, op->Buffer + op->Offset, len);
op->Offset += len;
nbytes += len;
}
}
#endif
// We should never have gotten here if there were no data to write,
// so assert that as a sanity check.
// Don't bother to make sure nbytes is less than output_buffer because
// if it were we probably would have crashed already.
assert (nbytes > 0);
assert (GetSocket() != INVALID_SOCKET);
#ifdef HAVE_WRITEV
int bytes_written = writev (GetSocket(), iov, iovcnt);
#else
int bytes_written = write (GetSocket(), output_buffer, nbytes);
#endif
bool err = false;
int e = errno;
if (bytes_written < 0) {
err = true;
bytes_written = 0;
}
assert (bytes_written >= 0);
OutboundDataSize -= bytes_written;
if (ProxiedFrom && MaxOutboundBufSize && (unsigned int)GetOutboundDataSize() < MaxOutboundBufSize && ProxiedFrom->IsPaused())
ProxiedFrom->Resume();
#ifdef HAVE_WRITEV
if (!err) {
unsigned int sent = bytes_written;
deque<OutboundPage>::iterator op = OutboundPages.begin();
for (int i = 0; i < iovcnt; i++) {
if (iov[i].iov_len <= sent) {
// Sent this page in full, free it.
op->Free();
OutboundPages.pop_front();
sent -= iov[i].iov_len;
} else {
// Sent part (or none) of this page, increment offset to send the remainder
op->Offset += sent;
break;
}
// Shouldn't be possible run out of pages before the loop ends
assert(op != OutboundPages.end());
*op++;
}
}
#else
if ((size_t)bytes_written < nbytes) {
int len = nbytes - bytes_written;
char *buffer = (char*) malloc (len + 1);
if (!buffer)
throw std::runtime_error ("bad alloc throwing back data");
memcpy (buffer, output_buffer + bytes_written, len);
buffer [len] = 0;
OutboundPages.push_front (OutboundPage (buffer, len));
}
#endif
_UpdateEvents(false, true);
if (err) {
#ifdef OS_UNIX
if ((e != EINPROGRESS) && (e != EWOULDBLOCK) && (e != EINTR)) {
#endif
#ifdef OS_WIN32
if ((e != WSAEINPROGRESS) && (e != WSAEWOULDBLOCK)) {
#endif
UnbindReasonCode = e;
Close();
}
}
}
/***************************************
ConnectionDescriptor::ReportErrorStatus
***************************************/
int ConnectionDescriptor::ReportErrorStatus()
{
if (MySocket == INVALID_SOCKET) {
return -1;
}
int error;
socklen_t len;
len = sizeof(error);
#ifdef OS_UNIX
int o = getsockopt (GetSocket(), SOL_SOCKET, SO_ERROR, &error, &len);
#endif
#ifdef OS_WIN32
int o = getsockopt (GetSocket(), SOL_SOCKET, SO_ERROR, (char*)&error, &len);
#endif
if ((o == 0) && (error == 0))
return 0;
else if (o == 0)
return error;
else
return -1;
}
/******************************
ConnectionDescriptor::StartTls
******************************/
void ConnectionDescriptor::StartTls()
{
#ifdef WITH_SSL
if (SslBox)
throw std::runtime_error ("SSL/TLS already running on connection");
SslBox = new SslBox_t (bIsServer, PrivateKeyFilename, CertChainFilename, bSslVerifyPeer, GetBinding());
_DispatchCiphertext();
#endif
#ifdef WITHOUT_SSL
throw std::runtime_error ("Encryption not available on this event-machine");
#endif
}
/*********************************
ConnectionDescriptor::SetTlsParms
*********************************/
void ConnectionDescriptor::SetTlsParms (const char *privkey_filename, const char *certchain_filename, bool verify_peer)
{
#ifdef WITH_SSL
if (SslBox)
throw std::runtime_error ("call SetTlsParms before calling StartTls");
if (privkey_filename && *privkey_filename)
PrivateKeyFilename = privkey_filename;
if (certchain_filename && *certchain_filename)
CertChainFilename = certchain_filename;
bSslVerifyPeer = verify_peer;
#endif
#ifdef WITHOUT_SSL
throw std::runtime_error ("Encryption not available on this event-machine");
#endif
}
/*********************************
ConnectionDescriptor::GetPeerCert
*********************************/
#ifdef WITH_SSL
X509 *ConnectionDescriptor::GetPeerCert()
{
if (!SslBox)
throw std::runtime_error ("SSL/TLS not running on this connection");
return SslBox->GetPeerCert();
}
#endif
/***********************************
ConnectionDescriptor::VerifySslPeer
***********************************/
#ifdef WITH_SSL
bool ConnectionDescriptor::VerifySslPeer(const char *cert)
{
bSslPeerAccepted = false;
if (EventCallback)
(*EventCallback)(GetBinding(), EM_SSL_VERIFY, cert, strlen(cert));
return bSslPeerAccepted;
}
#endif
/***********************************
ConnectionDescriptor::AcceptSslPeer
***********************************/
#ifdef WITH_SSL
void ConnectionDescriptor::AcceptSslPeer()
{
bSslPeerAccepted = true;
}
#endif
/*****************************************
ConnectionDescriptor::_DispatchCiphertext
*****************************************/
#ifdef WITH_SSL
void ConnectionDescriptor::_DispatchCiphertext()
{
assert (SslBox);
char BigBuf [2048];
bool did_work;
do {
did_work = false;
// try to drain ciphertext
while (SslBox->CanGetCiphertext()) {
int r = SslBox->GetCiphertext (BigBuf, sizeof(BigBuf));
assert (r > 0);
_SendRawOutboundData (BigBuf, r);
did_work = true;
}
// Pump the SslBox, in case it has queued outgoing plaintext
// This will return >0 if data was written,
// 0 if no data was written, and <0 if there was a fatal error.
bool pump;
do {
pump = false;
int w = SslBox->PutPlaintext (NULL, 0);
if (w > 0) {
did_work = true;
pump = true;
}
else if (w < 0)
ScheduleClose (false);
} while (pump);
// try to put plaintext. INCOMPLETE, doesn't belong here?
// In SendOutboundData, we're spooling plaintext directly
// into SslBox. That may be wrong, we may need to buffer it
// up here!
/*
const char *ptr;
int ptr_length;
while (OutboundPlaintext.GetPage (&ptr, &ptr_length)) {
assert (ptr && (ptr_length > 0));
int w = SslMachine.PutPlaintext (ptr, ptr_length);
if (w > 0) {
OutboundPlaintext.DiscardBytes (w);
did_work = true;
}
else
break;
}
*/
} while (did_work);
}
#endif
/*******************************
ConnectionDescriptor::Heartbeat
*******************************/
void ConnectionDescriptor::Heartbeat()
{
/* Only allow a certain amount of time to go by while waiting
* for a pending connect. If it expires, then kill the socket.
* For a connected socket, close it if its inactivity timer
* has expired.
*/
if (bConnectPending) {
if ((MyEventMachine->GetCurrentLoopTime() - CreatedAt) >= PendingConnectTimeout) {
UnbindReasonCode = ETIMEDOUT;
ScheduleClose (false);
//bCloseNow = true;
}
}
else {
if (InactivityTimeout && ((MyEventMachine->GetCurrentLoopTime() - LastActivity) >= InactivityTimeout)) {
UnbindReasonCode = ETIMEDOUT;
ScheduleClose (false);
//bCloseNow = true;
}
}
}
/****************************************
LoopbreakDescriptor::LoopbreakDescriptor
****************************************/
LoopbreakDescriptor::LoopbreakDescriptor (int sd, EventMachine_t *parent_em):
EventableDescriptor (sd, parent_em)
{
/* This is really bad and ugly. Change someday if possible.
* We have to know about an event-machine (probably the one that owns us),
* so we can pass newly-created connections to it.
*/
bCallbackUnbind = false;
#ifdef HAVE_EPOLL
EpollEvent.events = EPOLLIN;
#endif
#ifdef HAVE_KQUEUE
MyEventMachine->ArmKqueueReader (this);
#endif
}
/*************************
LoopbreakDescriptor::Read
*************************/
void LoopbreakDescriptor::Read()
{
// TODO, refactor, this code is probably in the wrong place.
assert (MyEventMachine);
MyEventMachine->_ReadLoopBreaker();
}
/**************************
LoopbreakDescriptor::Write
**************************/
void LoopbreakDescriptor::Write()
{
// Why are we here?
throw std::runtime_error ("bad code path in loopbreak");
}
/**************************************
AcceptorDescriptor::AcceptorDescriptor
**************************************/
AcceptorDescriptor::AcceptorDescriptor (int sd, EventMachine_t *parent_em):
EventableDescriptor (sd, parent_em)
{
#ifdef HAVE_EPOLL
EpollEvent.events = EPOLLIN;
#endif
#ifdef HAVE_KQUEUE
MyEventMachine->ArmKqueueReader (this);
#endif
}
/***************************************
AcceptorDescriptor::~AcceptorDescriptor
***************************************/
AcceptorDescriptor::~AcceptorDescriptor()
{
}
/****************************************
STATIC: AcceptorDescriptor::StopAcceptor
****************************************/
void AcceptorDescriptor::StopAcceptor (const unsigned long binding)
{
// TODO: This is something of a hack, or at least it's a static method of the wrong class.
AcceptorDescriptor *ad = dynamic_cast <AcceptorDescriptor*> (Bindable_t::GetObject (binding));
if (ad)
ad->ScheduleClose (false);
else
throw std::runtime_error ("failed to close nonexistent acceptor");
}
/************************
AcceptorDescriptor::Read
************************/
void AcceptorDescriptor::Read()
{
/* Accept up to a certain number of sockets on the listening connection.
* Don't try to accept all that are present, because this would allow a DoS attack
* in which no data were ever read or written. We should accept more than one,
* if available, to keep the partially accepted sockets from backing up in the kernel.
*/
/* Make sure we use non-blocking i/o on the acceptor socket, since we're selecting it
* for readability. According to Stevens UNP, it's possible for an acceptor to select readable
* and then block when we call accept. For example, the other end resets the connection after
* the socket selects readable and before we call accept. The kernel will remove the dead
* socket from the accept queue. If the accept queue is now empty, accept will block.
*/
struct sockaddr_in pin;
socklen_t addrlen = sizeof (pin);
for (int i=0; i < 10; i++) {
int sd = accept (GetSocket(), (struct sockaddr*)&pin, &addrlen);
if (sd == INVALID_SOCKET) {
// This breaks the loop when we've accepted everything on the kernel queue,
// up to 10 new connections. But what if the *first* accept fails?
// Does that mean anything serious is happening, beyond the situation
// described in the note above?
break;
}
// Set the newly-accepted socket non-blocking.
// On Windows, this may fail because, weirdly, Windows inherits the non-blocking
// attribute that we applied to the acceptor socket into the accepted one.
if (!SetSocketNonblocking (sd)) {
//int val = fcntl (sd, F_GETFL, 0);
//if (fcntl (sd, F_SETFL, val | O_NONBLOCK) == -1) {
shutdown (sd, 1);
close (sd);
continue;
}
// Disable slow-start (Nagle algorithm). Eventually make this configurable.
int one = 1;
setsockopt (sd, IPPROTO_TCP, TCP_NODELAY, (char*) &one, sizeof(one));
ConnectionDescriptor *cd = new ConnectionDescriptor (sd, MyEventMachine);
if (!cd)
throw std::runtime_error ("no newly accepted connection");
cd->SetServerMode();
if (EventCallback) {
(*EventCallback) (GetBinding(), EM_CONNECTION_ACCEPTED, NULL, cd->GetBinding());
}
#ifdef HAVE_EPOLL
cd->GetEpollEvent()->events =
(cd->SelectForRead() ? EPOLLIN : 0) | (cd->SelectForWrite() ? EPOLLOUT : 0);
#endif
assert (MyEventMachine);
MyEventMachine->Add (cd);
#ifdef HAVE_KQUEUE
if (cd->SelectForWrite())
MyEventMachine->ArmKqueueWriter (cd);
if (cd->SelectForRead())
MyEventMachine->ArmKqueueReader (cd);
#endif
}
}
/*************************
AcceptorDescriptor::Write
*************************/
void AcceptorDescriptor::Write()
{
// Why are we here?
throw std::runtime_error ("bad code path in acceptor");
}
/*****************************
AcceptorDescriptor::Heartbeat
*****************************/
void AcceptorDescriptor::Heartbeat()
{
// No-op
}
/*******************************
AcceptorDescriptor::GetSockname
*******************************/
bool AcceptorDescriptor::GetSockname (struct sockaddr *s, socklen_t *len)
{
bool ok = false;
if (s) {
int gp = getsockname (GetSocket(), s, len);
if (gp == 0)
ok = true;
}
return ok;
}
/**************************************
DatagramDescriptor::DatagramDescriptor
**************************************/
DatagramDescriptor::DatagramDescriptor (int sd, EventMachine_t *parent_em):
EventableDescriptor (sd, parent_em),
OutboundDataSize (0)
{
memset (&ReturnAddress, 0, sizeof(ReturnAddress));
/* Provisionally added 19Oct07. All datagram sockets support broadcasting.
* Until now, sending to a broadcast address would give EACCES (permission denied)
* on systems like Linux and BSD that require the SO_BROADCAST socket-option in order
* to accept a packet to a broadcast address. Solaris doesn't require it. I think
* Windows DOES require it but I'm not sure.
*
* Ruby does NOT do what we're doing here. In Ruby, you have to explicitly set SO_BROADCAST
* on a UDP socket in order to enable broadcasting. The reason for requiring the option
* in the first place is so that applications don't send broadcast datagrams by mistake.
* I imagine that could happen if a user of an application typed in an address that happened
* to be a broadcast address on that particular subnet.
*
* This is provisional because someone may eventually come up with a good reason not to
* do it for all UDP sockets. If that happens, then we'll need to add a usercode-level API
* to set the socket option, just like Ruby does. AND WE'LL ALSO BREAK CODE THAT DOESN'T
* EXPLICITLY SET THE OPTION.
*/
int oval = 1;
setsockopt (GetSocket(), SOL_SOCKET, SO_BROADCAST, (char*)&oval, sizeof(oval));
#ifdef HAVE_EPOLL
EpollEvent.events = EPOLLIN;
#endif
#ifdef HAVE_KQUEUE
MyEventMachine->ArmKqueueReader (this);
#endif
}
/***************************************
DatagramDescriptor::~DatagramDescriptor
***************************************/
DatagramDescriptor::~DatagramDescriptor()
{
// Run down any stranded outbound data.
for (size_t i=0; i < OutboundPages.size(); i++)
OutboundPages[i].Free();
}
/*****************************
DatagramDescriptor::Heartbeat
*****************************/
void DatagramDescriptor::Heartbeat()
{
// Close it if its inactivity timer has expired.
if (InactivityTimeout && ((MyEventMachine->GetCurrentLoopTime() - LastActivity) >= InactivityTimeout))
ScheduleClose (false);
//bCloseNow = true;
}
/************************
DatagramDescriptor::Read
************************/
void DatagramDescriptor::Read()
{
int sd = GetSocket();
assert (sd != INVALID_SOCKET);
LastActivity = MyEventMachine->GetCurrentLoopTime();
// This is an extremely large read buffer.
// In many cases you wouldn't expect to get any more than 4K.
char readbuffer [16 * 1024];
for (int i=0; i < 10; i++) {
// Don't read just one buffer and then move on. This is faster
// if there is a lot of incoming.
// But don't read indefinitely. Give other sockets a chance to run.
// NOTICE, we're reading one less than the buffer size.
// That's so we can put a guard byte at the end of what we send
// to user code.
struct sockaddr_in sin;
socklen_t slen = sizeof (sin);
memset (&sin, 0, slen);
int r = recvfrom (sd, readbuffer, sizeof(readbuffer) - 1, 0, (struct sockaddr*)&sin, &slen);
//cerr << "<R:" << r << ">";
// In UDP, a zero-length packet is perfectly legal.
if (r >= 0) {
// Add a null-terminator at the the end of the buffer
// that we will send to the callback.
// DO NOT EVER CHANGE THIS. We want to explicitly allow users
// to be able to depend on this behavior, so they will have
// the option to do some things faster. Additionally it's
// a security guard against buffer overflows.
readbuffer [r] = 0;
// Set up a "temporary" return address so that callers can "reply" to us
// from within the callback we are about to invoke. That means that ordinary
// calls to "send_data_to_connection" (which is of course misnamed in this
// case) will result in packets being sent back to the same place that sent
// us this one.
// There is a different call (evma_send_datagram) for cases where the caller
// actually wants to send a packet somewhere else.
memset (&ReturnAddress, 0, sizeof(ReturnAddress));
memcpy (&ReturnAddress, &sin, slen);
_GenericInboundDispatch(readbuffer, r);
}
else {
// Basically a would-block, meaning we've read everything there is to read.
break;
}
}
}
/*************************
DatagramDescriptor::Write
*************************/
void DatagramDescriptor::Write()
{
/* It's possible for a socket to select writable and then no longer
* be writable by the time we get around to writing. The kernel might
* have used up its available output buffers between the select call
* and when we get here. So this condition is not an error.
* This code is very reminiscent of ConnectionDescriptor::_WriteOutboundData,
* but differs in the that the outbound data pages (received from the
* user) are _message-structured._ That is, we send each of them out
* one message at a time.
* TODO, we are currently suppressing the EMSGSIZE error!!!
*/
int sd = GetSocket();
assert (sd != INVALID_SOCKET);
LastActivity = MyEventMachine->GetCurrentLoopTime();
assert (OutboundPages.size() > 0);
// Send out up to 10 packets, then cycle the machine.
for (int i = 0; i < 10; i++) {
if (OutboundPages.size() <= 0)
break;
OutboundPage *op = &(OutboundPages[0]);
// The nasty cast to (char*) is needed because Windows is brain-dead.
int s = sendto (sd, (char*)op->Buffer, op->Length, 0, (struct sockaddr*)&(op->From), sizeof(op->From));
int e = errno;
OutboundDataSize -= op->Length;
op->Free();
OutboundPages.pop_front();
if (s == SOCKET_ERROR) {
#ifdef OS_UNIX
if ((e != EINPROGRESS) && (e != EWOULDBLOCK) && (e != EINTR)) {
#endif
#ifdef OS_WIN32
if ((e != WSAEINPROGRESS) && (e != WSAEWOULDBLOCK)) {
#endif
UnbindReasonCode = e;
Close();
break;
}
}
}
#ifdef HAVE_EPOLL
EpollEvent.events = (EPOLLIN | (SelectForWrite() ? EPOLLOUT : 0));
assert (MyEventMachine);
MyEventMachine->Modify (this);
#endif
#ifdef HAVE_KQUEUE
if (SelectForWrite())
MyEventMachine->ArmKqueueWriter (this);
#endif
}
/**********************************
DatagramDescriptor::SelectForWrite
**********************************/
bool DatagramDescriptor::SelectForWrite()
{
/* Changed 15Nov07, per bug report by Mark Zvillius.
* The outbound data size will be zero if there are zero-length outbound packets,
* so we now select writable in case the outbound page buffer is not empty.
* Note that the superclass ShouldDelete method still checks for outbound data size,
* which may be wrong.
*/
//return (GetOutboundDataSize() > 0); (Original)
return (OutboundPages.size() > 0);
}
/************************************
DatagramDescriptor::SendOutboundData
************************************/
int DatagramDescriptor::SendOutboundData (const char *data, int length)
{
// This is almost an exact clone of ConnectionDescriptor::_SendRawOutboundData.
// That means most of it could be factored to a common ancestor. Note that
// empty datagrams are meaningful, which isn't the case for TCP streams.
if (IsCloseScheduled())
return 0;
if (!data && (length > 0))
throw std::runtime_error ("bad outbound data");
char *buffer = (char *) malloc (length + 1);
if (!buffer)
throw std::runtime_error ("no allocation for outbound data");
memcpy (buffer, data, length);
buffer [length] = 0;
OutboundPages.push_back (OutboundPage (buffer, length, ReturnAddress));
OutboundDataSize += length;
#ifdef HAVE_EPOLL
EpollEvent.events = (EPOLLIN | EPOLLOUT);
assert (MyEventMachine);
MyEventMachine->Modify (this);
#endif
#ifdef HAVE_KQUEUE
MyEventMachine->ArmKqueueWriter (this);
#endif
return length;
}
/****************************************
DatagramDescriptor::SendOutboundDatagram
****************************************/
int DatagramDescriptor::SendOutboundDatagram (const char *data, int length, const char *address, int port)
{
// This is an exact clone of ConnectionDescriptor::SendOutboundData.
// That means it needs to move to a common ancestor.
// TODO: Refactor this so there's no overlap with SendOutboundData.
if (IsCloseScheduled())
//if (bCloseNow || bCloseAfterWriting)
return 0;
if (!address || !*address || !port)
return 0;
sockaddr_in pin;
unsigned long HostAddr;
HostAddr = inet_addr (address);
if (HostAddr == INADDR_NONE) {
// The nasty cast to (char*) is because Windows is brain-dead.
hostent *hp = gethostbyname ((char*)address);
if (!hp)
return 0;
HostAddr = ((in_addr*)(hp->h_addr))->s_addr;
}
memset (&pin, 0, sizeof(pin));
pin.sin_family = AF_INET;
pin.sin_addr.s_addr = HostAddr;
pin.sin_port = htons (port);
if (!data && (length > 0))
throw std::runtime_error ("bad outbound data");
char *buffer = (char *) malloc (length + 1);
if (!buffer)
throw std::runtime_error ("no allocation for outbound data");
memcpy (buffer, data, length);
buffer [length] = 0;
OutboundPages.push_back (OutboundPage (buffer, length, pin));
OutboundDataSize += length;
#ifdef HAVE_EPOLL
EpollEvent.events = (EPOLLIN | EPOLLOUT);
assert (MyEventMachine);
MyEventMachine->Modify (this);
#endif
#ifdef HAVE_KQUEUE
MyEventMachine->ArmKqueueWriter (this);
#endif
return length;
}
/*********************************
ConnectionDescriptor::GetPeername
*********************************/
bool ConnectionDescriptor::GetPeername (struct sockaddr *s, socklen_t *len)
{
bool ok = false;
if (s) {
int gp = getpeername (GetSocket(), s, len);
if (gp == 0)
ok = true;
}
return ok;
}
/*********************************
ConnectionDescriptor::GetSockname
*********************************/
bool ConnectionDescriptor::GetSockname (struct sockaddr *s, socklen_t *len)
{
bool ok = false;
if (s) {
int gp = getsockname (GetSocket(), s, len);
if (gp == 0)
ok = true;
}
return ok;
}
/**********************************************
ConnectionDescriptor::GetCommInactivityTimeout
**********************************************/
uint64_t ConnectionDescriptor::GetCommInactivityTimeout()
{
return InactivityTimeout / 1000;
}
/**********************************************
ConnectionDescriptor::SetCommInactivityTimeout
**********************************************/
int ConnectionDescriptor::SetCommInactivityTimeout (uint64_t value)
{
InactivityTimeout = value * 1000;
MyEventMachine->QueueHeartbeat(this);
return 1;
}
/*******************************
DatagramDescriptor::GetPeername
*******************************/
bool DatagramDescriptor::GetPeername (struct sockaddr *s, socklen_t *len)
{
bool ok = false;
if (s) {
*len = sizeof(struct sockaddr);
memset (s, 0, sizeof(struct sockaddr));
memcpy (s, &ReturnAddress, sizeof(ReturnAddress));
ok = true;
}
return ok;
}
/*******************************
DatagramDescriptor::GetSockname
*******************************/
bool DatagramDescriptor::GetSockname (struct sockaddr *s, socklen_t *len)
{
bool ok = false;
if (s) {
int gp = getsockname (GetSocket(), s, len);
if (gp == 0)
ok = true;
}
return ok;
}
/********************************************
DatagramDescriptor::GetCommInactivityTimeout
********************************************/
uint64_t DatagramDescriptor::GetCommInactivityTimeout()
{
return InactivityTimeout / 1000;
}
/********************************************
DatagramDescriptor::SetCommInactivityTimeout
********************************************/
int DatagramDescriptor::SetCommInactivityTimeout (uint64_t value)
{
if (value > 0) {
InactivityTimeout = value * 1000;
MyEventMachine->QueueHeartbeat(this);
return 1;
}
return 0;
}
/************************************
InotifyDescriptor::InotifyDescriptor
*************************************/
InotifyDescriptor::InotifyDescriptor (EventMachine_t *em):
EventableDescriptor(0, em)
{
bCallbackUnbind = false;
#ifndef HAVE_INOTIFY
throw std::runtime_error("no inotify support on this system");
#else
int fd = inotify_init();
if (fd == -1) {
char buf[200];
snprintf (buf, sizeof(buf)-1, "unable to create inotify descriptor: %s", strerror(errno));
throw std::runtime_error (buf);
}
MySocket = fd;
SetSocketNonblocking(MySocket);
#ifdef HAVE_EPOLL
EpollEvent.events = EPOLLIN;
#endif
#endif
}
/*************************************
InotifyDescriptor::~InotifyDescriptor
**************************************/
InotifyDescriptor::~InotifyDescriptor()
{
close(MySocket);
MySocket = INVALID_SOCKET;
}
/***********************
InotifyDescriptor::Read
************************/
void InotifyDescriptor::Read()
{
assert (MyEventMachine);
MyEventMachine->_ReadInotifyEvents();
}
/************************
InotifyDescriptor::Write
*************************/
void InotifyDescriptor::Write()
{
throw std::runtime_error("bad code path in inotify");
}
Jump to Line
Something went wrong with that request. Please try again.