
TOWARD GENERAL PURPOSE 3D USER INTERFACES: EXTENDING

WINDOWING SYSTEMS TO THREE DIMENSIONS

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Forrest Reiling

June 2014

c© 2014

Forrest Reiling

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Toward General Purpose 3D User Inter-

faces: Extending Windowing Systems to

Three Dimensions

AUTHOR: Forrest Reiling

DATE SUBMITTED: June 2014

COMMITTEE CHAIR: Assistant Professor Zoë Wood, Ph.D.,

Department of Computer Science

COMMITTEE MEMBER: Assistant Professor Chris Lupo, Ph.D.,

Department of Computer Science

COMMITTEE MEMBER: Professor Franz Kurfess, Ph.D.,

Department of Computer Science

iii

ABSTRACT

Toward General Purpose 3D User Interfaces: Extending Windowing Systems to

Three Dimensions

Forrest Reiling

Recent growth in the commercial availability of consumer grade 3D user interface de-

vices like the Microsoft Kinect and the Oculus Rift, coupled with the broad availability

of high performance 3D graphics hardware, has put high quality 3D user interfaces

firmly within the reach of consumer markets for the first time ever. However, these

devices require custom integration with every application which wishes to use them,

seriously limiting application support, and there is no established mechanism for mul-

tiple applications to use the same 3D interface hardware simultaneously. This thesis

proposes that these problems can be solved in the same way that the same problems

were solved for 2D interfaces: by abstracting the input hardware behind input prim-

itives provided by the windowing system and compositing the output of applications

within the windowing system before displaying it. To demonstrate the feasibility

of this approach this thesis also presents a novel Wayland compositor which allows

clients to create 3D interface contexts within a 3D interface space in the same way

that traditional windowing systems allow applications to create 2D interface contexts

(windows) within a 2D interface space (the desktop), as well as allowing unmodified

2D Wayland clients to window into the same 3D interface space and receive standard

2D input events. This implementation demonstrates the ability of consumer 3D in-

terface hardware to support a 3D windowing system, the ability of this 3D windowing

system to support applications with compelling 3D interfaces, the ability of this style

of windowing system to be built on top of existing hardware accelerated graphics

and windowing infrastructure, and the ability of such a windowing system to support

unmodified 2D interface applications windowing into the same 3D windowing space

iv

as the 3D interface applications. This means that application developers could create

compelling 3D interfaces with no knowledge of the hardware that supports them, that

new hardware could be introduced without needing to integrate it with individual ap-

plications, and that users could mix whatever 2D and 3D applications they wish in

an immersive 3D interface space regardless of the details of the underlying hardware.

v

ACKNOWLEDGMENTS

Thanks to:

• My advisor Zoë Wood, for all of her guidance and wit.

• The wonderful people in the Wayland and QtWayland communities, without

whom I would not have a functioning prototype.

• My parents, my family, and my girlfriend Katy, for supporting me always.

vi

TABLE OF CONTENTS

List of Figures x

1 Introduction 1

1.1 Two Dimensional User Interfaces . 1

1.2 Three Dimensional User Interfaces . 4

1.2.1 Three Dimensional Input Devices 5

1.2.2 Immersive Three Dimensional Displays 8

2 Motivation 10

2.1 Obstacles Facing the Adoption of Three Dimensional Interfaces . . . 10

2.1.1 Device Abstraction . 11

2.1.2 Multiple Application Support 12

2.2 Insights from Two Dimensional User Interfaces 13

2.2.1 Windowing Systems . 14

2.3 Proposed Solution: A Three Dimensional Windowing System 15

2.3.1 Advantages of This Approach 16

2.3.1.1 Hardware Abstraction and Multiple Application Sup-
port . 16

2.3.1.2 Compatibility With Existing Graphics and Window-
ing Infrastructure . 17

3 Contribution 19

4 Related Works 21

4.1 Two Dimensional Windows in Three Dimensional Environments . . . 21

4.1.1 In Production Software . 24

4.2 Three Dimensional Windows . 25

4.3 The Three Dimensional Workspace Manager (3DWM) 27

5 Technical Background 30

5.1 Computer Graphics . 30

vii

5.1.1 The Vertex Transformation 32

5.1.1.1 A Simple Example: Transformations 33

5.1.2 Rasterization and The Depth Test 34

5.1.3 Framebuffers . 35

5.2 Human Perception of Three Dimensions 36

5.2.1 Motion Parallax and Stereopsis 37

5.2.2 Relative Size . 38

5.2.3 Occlusion . 39

5.3 Open Source Windowing Systems . 39

5.3.1 Basic Architecture . 40

5.3.2 Wayland and X . 40

5.3.3 Wayland Display Server Protocol 42

5.3.4 EGL . 43

6 Design: A Unified Windowing System 45

6.1 Windowing System Services . 45

6.1.1 Graphical Interface Hardware and The Graphical Interface Space 46

6.1.2 Interface Contexts Within the Graphical Interface Space . . . 47

6.1.2.1 Three Dimensional Interface Contexts 47

6.1.2.1.1 Cuboid Bounded 48

6.1.2.1.2 Portal-Like 49

6.1.2.1.3 Unbounded 49

6.1.2.1.4 Correct Interpretation 50

6.1.2.2 Two Dimensional Interface Contexts 50

6.2 Three Dimensional Windows With Two Dimensional Buffers 50

6.2.1 Synchronized View And Projection Matrices 52

6.2.1.1 Buffer Size and the Projection Matrix 52

6.2.2 Stereo Images . 53

6.2.3 Depth Buffers . 54

6.2.4 Clipping . 54

6.3 Design Decision Summary . 55

7 Implementation 56

viii

7.1 Wayland Protocol Extensions . 56

7.1.1 Interfaces . 57

7.1.1.1 Motorcar Shell . 57

7.1.1.2 Motorcar Surface . 57

7.1.1.3 Motorcar Viewpoint 58

7.1.1.3.1 EGL and the Depth View Port 59

7.1.2 Current Protocol Limitations 61

7.2 Client Operation . 62

7.3 Compositor Operation . 63

7.3.1 The Motorcar Compositor Framework 64

7.3.1.1 The QtWayland Motorcar Compositor 64

7.3.1.2 The Compositor Scene Graph 65

7.3.1.2.1 Traversing the Scene Graph 66

7.3.2 Frame Timing and Latency 67

7.3.3 Three Dimensional Compositing 68

7.3.3.1 Clipping and Depth Compositing 69

7.4 Test Hardware Configuration . 72

8 Future Work 75

8.1 Input Events . 75

8.1.1 Skeleton Tracking . 75

8.1.2 Gestures . 76

8.2 User Interface Toolkits . 77

8.3 EGL Depth Buffer Extensions . 78

8.4 Immersive Vitrual Reality Mode . 78

8.5 Feasibility in Other Windowing Systems 79

9 Conclusion 80

Bibliography 82

ix

LIST OF FIGURES

1.1 An example of a typical 2D user interface, showing windows and the
desktop environment on a Linux system. Image taken from [45] . . . 2

1.2 Examples of 3D user interfaces. On the left is ARWin [5], on the
top right is an example file browser from [32], on the bottom right is
Windows on the World [8] . 4

1.3 From left to right the Wiimote, Playstation Move, and Razer Hydra.
Images taken from [42], [43], and [44], respectively. 5

1.4 From left to right the Oculus Rift DK1, Sony’s Project Morpheus,
and True Player Gear’s Totem. Images taken from [26], [36], and [41],
respectively. 8

4.1 The Task Gallery [31] . 22

4.2 Windows on the World [8] . 23

4.3 Compiz Desktop Cube [2] . 24

4.4 The n-Vision Test Bed [9] . 26

4.5 Example ARWin Desktops [4][5]. Note the function graph and bouquet
programs, which draw 3D content into the 3D interface space. 27

4.6 The Three Dimensional Workspace Manager [6]. On the left is a con-
structive solid geometry modeller, demonstrating the support for 3D
applications. On the left we see it texturing multiple X11 desktops
(over VNC) onto a 3D cube. 28

5.1 The basic structure of the graphics pipeline. Note the vertex proces-
sor, rasterizer, fragment processor, and termination in a frame buffer.
Image taken from [23] . 31

5.2 The basic sequence of transformations applied to geometry in the ver-
tex processor. The final transformation in this sequence is applied after
the vertex processor and is not part of the composite transformation
matrix. Image taken from [30] . 32

x

5.3 High level architecture of the X and Wayland windowing systems. Note
that the X compositor is a separate entity from the display server,
whereas the Wayland compositor provides the functionality of the dis-
play server internally. Images taken from [10] 41

6.1 A screenshot of the sompositor implementation showing the different
types of interface contexts in 3D space. From left to right: a standard
2D window with 2D content, a cuboid window with its 3D content (the
colored cube) embedded directly in the interface space, and a portal
window, demonstrating how its 3D content is only visible through the
window surface, much like a physical window. 48

7.1 A high level conceptual illustration of the depth compositing process.
Clients draw their depth and color images into the same, double-height
color buffer, which the compositor then draws back into normal sized
depth and color buffers, and then composites with other 3D clients
using the traditional depth test. Lighter color in the depth images
indicates that those pixels are further away. 61

7.2 The inheritance graph for the classes composing the scene graph. Note
the division between virtual nodes (which can be children of any other
node) and physical nodes (which can only be children of other physical
nodes) to reflect the impossibility of a physical object being attached
to a virtual one. 66

7.3 This image shows the behavior of cuboid and portal windows with
depth compositing enabled and disabled. Note that the sample client
uses the light blue color as its background, and that those pixels have
the maximum possible depth value 70

7.4 A screenshot of the motorcar compositor showing the content of the
cuboid window (the colored cube) being clipped against the near clip-
ping surface. Notice how the fragments are completely dropped and
other appear to be simply non-existent. 71

7.5 A test subject wearing the hardware system on which this implemen-
tation was developed. Notice that one Hydra handset is held in her
right hand and being used for 3D input, while the other is attached to
the Rift headset and used for tracking the position of her head. . . . 73

7.6 An image showing the stereo rendering of the windowing space with
the Oculus Rift distortion applied. This is the final image which is sent
to the Rift display. 74

xi

CHAPTER 1

Introduction

The space we exist in is three dimensional, and this pervades every aspect of our

interaction with reality. Everything we touch, see, and hear behaves according to

the rules of this three dimensional space and this has made humans exceptionally

proficient at reasoning about it, navigating through it, and modeling the behavior of

things within it. Yet when we interact with our computers, an increasingly important

part of our everyday lives, most of us do so exclusively through two dimensional user

interfaces.

1.1 Two Dimensional User Interfaces

The two dimensional space in which we interact with computers has come to define

these interactions in the same way that the three dimensional space in which we

exist defines our interaction with reality. We use our fingers or a mouse to select 2D

buttons and open 2D menus, driving change in the application’s 2D interfaces which

the windowing system composites into a 2D image to be sent to a 2D display. While

this is natural for some intrinsically 2D concepts, like documents and images, other

concepts which have no intrinsic spatial embedding, like file systems and networks,

are also embedded in 2D when they are presented to the user in order to allow users

to reason about them spatially. Even in applications which are intrinsically 3D, like

physical simulation and modeling tools, the 3D application space is disjoint from the

space in which the user exists (by necessity, since the application has no knowledge

1

of the 3D relationship between the display and the user) and interaction between the

3D application space and the 3D user is traditionally done with 2D input events and

2D images.

Figure 1.1: An example of a typical 2D user interface, showing windows and the

desktop environment on a Linux system. Image taken from [45]

The flat nature of contemporary graphical user interfaces has come to define not

just the way we interact with applications, but has also become an important factor

in the physical design of the computers that run these applications. This is particu-

larly apparent in the mobile computer space, where cost, weight, display power, and

mobility concerns push devices toward ever smaller physical profiles, while usability

concerns drive the devices toward larger interface surfaces, leading the profile of mo-

bile computers to become flattened against their displays, with the devices acting as

a physical embedding of the 2D computer interface within the 3D space in which the

computer exists. This forces users to make a trade-off between the physical profile of

their device and the usable size of their interface; larger displays drive up mass both

directly and through the need for a larger battery to meet increased power demands,

2

but smaller displays limit the usable size of the human-computer interface which

limits the usability of the device. In desktop computers the same trade-off must be

made, because even absent power and weight concerns the size of the interface is still

constrained by the cost of the displays and the physical space needed to mount them

in view of the user.

Two dimensional user interfaces are certainly not all bad. There is a natural ana-

log between interacting with documents, images, and folders on a desk and interacting

with their digital counterparts on a 2D display (which forms the underpinnings of the

familiar desktop metaphor). Two dimensional interfaces also map well onto commer-

cially available display hardware as a result of the two co-evolving for several decades,

which keeps the hardware cost of 2D interfaces relatively low. Two dimensional inter-

faces are mature and well studied, and there is a rich software ecosystem surrounding

them which includes sophisticated, full featured user interface toolkits and advanced

windowing systems, as well as a broad set of end user applications that provide 2D

graphical front-ends for almost every task a user needs to perform on a computer.

Users are also familiar with the operation of 2D interfaces, which greatly reduces the

time needed for users to learn new applications and improves users’ productivity with

existing applications.

There are certain applications, like document and photo editing and command

line interaction, which fit well with 2D interfaces, and in these applications moving

away from 2D interactions would likely be detrimental. However, many applications

are intrinsically 3D, or are not intrinsically spatial at all and are embedded in a 2D

space because it is simple and well supported, and a transition to 3D interaction has

the potential to greatly improve the usability of such applications [1].

3

Figure 1.2: Examples of 3D user interfaces. On the left is ARWin [5], on the top right

is an example file browser from [32], on the bottom right is Windows on the World

[8]

1.2 Three Dimensional User Interfaces

The hardware, software, and theory surrounding high quality 3D human-computer

interaction has been the subject of academic research for many decades, and the

improved spatial reasoning this provides has been demonstrated to improve usability

in a number of applications [1]. Three dimensional user interfaces are a broad group of

interaction paradigms, including everything from desktop 3D modeling with a mouse

and keyboard to fully immersive virtual reality. This thesis focuses on immersive’

3D interfaces, where the qualifier ‘immersive’ used here to refer to 3D interfaces

4

in which the user perceives the 3D interface elements to be in the same 3D space

as their body, and has some way of manipulating these interface elements in 3D

with corresponding 3D motion by some part of their body. The hardware needed to

support these types of interfaces has traditionally been very expensive, but recent

technological improvements in a number of fields have brought many of the core

hardware technologies onto the consumer market, bringing both high quality 3D input

devices and immersive 3D displays into the reach of everyday computer users.

1.2.1 Three Dimensional Input Devices

Early 3D input devices to come into the consumer 3D interaction market were largely

marketed as video game accessories, though their availability has led to their use in a

wide variety of other application. These devices can be broadly categorized into two

groups: devices which resolve the position and/or orientation of an element held or

worn by the user, and range-imaging cameras, which produce a 3D image of a passive

scene which contains no sensing elements itself.

Figure 1.3: From left to right the Wiimote, Playstation Move, and Razer Hydra.

Images taken from [42], [43], and [44], respectively.

The first category had its first commercial success in consumer markets in 2006,

when Nintendo introduced the Wii Remote, or ‘Wiimote’, as the primary controller

5

for its new Wii entertainment system. This controller, unlike traditional game console

controllers, was able to sense its position, orientation, and acceleration along 3 axes.

The Wiimote provided limited 3D control within Wii games, and was soon adopted

by developers for a wider variety of tasks, including controlling the visualization of

volumetric medical data [12] and enabling head tracking 3D on traditional displays

[24]. Several devices which provided similar input using a variety of different track-

ing technologies soon came to market, including Sony’s ‘Playstation Move’ in 2009,

and the ‘Razer Hydra’ in 2011 (Produced by Sixense Entertainment in partnership

with Razer USA). Until the time of this writing all commercially available, consumer

grade, 3D tracking solutions have been hand held controllers gripped by the user, but

two new multi-sensor, wearable, full-body tracking solutions (Sixense’s new magnetic

tracking system, STEM, and PrioVR’s inertial tracking system) are due to become

commercially available within the next year in response to an emerging consumer

virtual reality market.

Range imaging cameras can be based on a variety of technologies, many of which

have been commercially available for many years but have been too expensive to be

accessible to a wide body of consumers. In 2009, following advances in real-time

structured-light 3D scanning by Primesense Ltd, Microsoft released a range imaging

camera based on a Primesense sensor to the public, under the name ‘Kinect’, as an

accessory for their Xbox 360 game console. Designed to perform full body tracking in

3D on multiple users, the Kinect enabled a variety of new interaction techniques in

Xbox games. Like the Wiimote, the Kinect was quickly adopted by third party devel-

opers and applied to numerous non-gaming domains, including robotics applications

like Simultaneous Location and Mapping [16], and a variety of medical applications

[13]. Although the Kinect has received a great deal of attention, being the first con-

sumer grade sensor capable of producing high quality images in real time, many other

sensors have since come to market which offer comparable or better performance in a

6

variety of applications and operating conditions. Primesense Ltd., the company that

developed the technology underpinning the first generation Kinect, also developed

sensors based on the same technology that were released both directly by Primesense

under the name Carmine, and through Asus as the Xtion and Xtion Live, which

all offer very similar performance to the first generation Kinect [19]. Very recently,

several consumer-grade range imaging cameras have become commercially available

which rely on ‘time-of-flight’ technology, which has several advantages over struc-

tured lighting including lower software overhead, faster response time, and better

bright light performance [25]. This includes Microsoft’s next generation Kinect, re-

leased with the Xbox One in 2013, and the DS310 and DS325 from Belgium based

SoftKinetic. The SoftKinetic DS325, also sold re-branded as the Creative Senz3D,

is designed for close interaction and finger tracking rather than full body tracking

[35], and competes in the consumer market with the Leap Motion, a desktop stereo

camera designed specifically for hand, finger and stylus tracking in the space immedi-

ately above the keyboard. Several other companies, notably Texas Instruments and

pmdVision, provide Time of Flight solutions, but to the author’s knowledge they do

not sell consumer time of flight products as of the time of this writing.

This is by no means an exhaustive list of 3D input devices; it is meant only to

demonstrate the growing diversity of 3D input devices reaching the consumer market,

and that this is a relatively recent development. At the surface level, these devices

appear to produce a wide variety of input, but when constrained to human-computer

interaction applications it becomes apparent that simple input models can capture

the useful input produced by all of these devices. Essentially this is because the only

mechanism humans have to produce 3D input is the movement of their body through

the 3D space or the use of this movement to move an object through 3D space, which

can be captured, respectively, by the notions of skeletal tracking and 3D pointing

devices [33].

7

1.2.2 Immersive Three Dimensional Displays

The term ‘3D display’ has come to refer to a very broad category of devices, so the

term ‘immersive 3D display’ is used here to refer to graphical displays which support

both stereo parallax (rendering the scene from a separate viewpoint for each eye)

and head-tracking motion parallax (adjusting the position and orientation of these

viewpoints based on the 3D relationship between the user and the display), as both

are required to create a convincing 3D experience for the user. This is discussed

in more detail in the Section 5.2.1). This excludes commercial 3D televisions and

3D movie theaters because they do not provide head tracking, and excludes haptic

and audio ‘displays’ because they are not graphical. It also excludes the popular

Google Glass and similar head-mounted wearable computers because they do not had

stereo displays and do not provide head tracking. There have been many systems

which meet these requirements in research and industrial applications, including Re-

sponsive Workbenches [22], Hemispherical Displays [17], CAVE Automated Virtual

Environments (CAVEs) [3], and Head Mounted Displays (HMDs) [38], and some of

these technologies, particularly CAVEs and HMD’s, have received significant research

and developments, allowing the technology to mature significantly.

Figure 1.4: From left to right the Oculus Rift DK1, Sony’s Project Morpheus, and

True Player Gear’s Totem. Images taken from [26], [36], and [41], respectively.

Most of these technologies have remained outside of consumer reach, largely due

8

to the large size and high cost of such systems, with the exception of HMDs, whose

simplicity and compact design has led them to enjoy intermittent commercial avail-

ability for many years. A comprehensive discussion of commercially available HMDs

is outside the scope of this paper, but it is worth noting that the recent release of Ocu-

lusVR’s ‘Oculus Rift’ development kit to consumer markets has sparked a resurgence

in interest in virtual reality for video games and other entertainment applications,

leading to the announcement of several new consumer HMDs, including a consumer

version of the Oculus Rift [26], Sony’s ‘Project Morpheus’ [36], and True Player Gear’s

‘Totem’ [41].

Priced at only a few hundred dollars, these HMDs put high resolution, wide field-

of-view, immersive 3D display technology in the hands of everyday computer users,

and the continuing advances of consumer graphics processing hardware gives them the

ability to drive convincing 3D scenes onto these displays with commodity hardware.

Furthermore, like 3D input devices, the similarity in function between these devices

means their behavior can be captured abstractly by relatively simple input and output

models.

9

CHAPTER 2

Motivation

The recent influx of commercially available 3D input devices and immersive 3D dis-

plays to the consumer market, coupled with high performance consumer graphics

hardware, has given end users access to all of the hardware needed to support high

quality, immersive 3D human-computer interaction for the first time ever. However,

current application support of this kind of hardware is very limited, consisting mainly

of demo applications and video games, and applications which support more than one

of these devices are even more rare.

2.1 Obstacles Facing the Adoption of Three Dimensional Interfaces

In general, immersive 3D user interfaces require both a good 3D input device and

an immersive 3D display, and with such limited device support it is rare that an

application supports both and even more rare that an end user will own a 3D input

device and an immersive 3D display which are both supported by the 3D user interface

application they wish to use (much less every 3D user interface application they wish

to use). This problem could be attributed to many factors, including that it is too

early in the life of these devices for applications to have been developed, or that there

is simply limited application potential for these devices. And while these certainly

could be contributing factors, there are also tangible shortcomings in the software

ecosystem surrounding this new hardware which indicate that this problem is not

simply going to go away on its own.

10

2.1.1 Device Abstraction

The first problem to become immediately apparent is the sheer diversity of 3D inter-

face devices, a problem which will only get worse as more and more devices come to

market. There is a fair amount of similarity within these devices, and the even greater

similarity within the actual 3D interface primitives which each is actually capable of

providing. Every 3D input device discussed above provides either some information

about the 3D pose of the users body [33] or the 3D transform of some kind of hand-

held device, and immersive 3D displays all serve the same purpose of giving the user

a sense of presence in a virtual (or mixed reality) 3D space. Despite this, there is

no widely adopted abstraction for either 3D input devices or immersive 3D displays,

and while some such abstractions exist, each has its own unique shortcomings (this

is discussed further in Section 5.2.1)).

Rather, every one of these devices comes with its own API, designed to work

with that device and usually other devices from the same manufacturer. If an ap-

plication wishes to use this device it must be ported to use that device’s API, and

if the application wishes to be compatible with multiple devices in the same class

from different manufacturers it must include dedicated code for each of the devices

it wishes to support, and this code must be maintained by the developers of each

application independently. Support for devices can be abstracted by a user interface

toolkit like Vrui [21], a video game engine like Unity or Unreal (via vendor provided

plugins), or even dedicated abstraction libraries like MiddleVR [18] or VRPN [39].

Each of these has its own strengths and weaknesses, but there are also overarching

shortcomings of including the abstraction layer in toolkits used on a per application

basis. First, this means that the device abstraction layer has to be replicated for each

toolkit (causing the same problems as replicating abstraction for each application).

This could hypothetically be resolved by the uniform adoption of a single toolkit

11

which meets the need of every application needing a 3D user interface, but given the

wide variance in demands between something like a 3D file browser and an immersive

VR experience, this seems both unrealistic and, in the author’s opinion, very much

undesirable. Secondly, if the abstraction is done within toolkits used on a per appli-

cation basis, then two applications using different toolkits (or perhaps even the same

toolkit) that attempt to use the same device simultaneously could block one another

from accessing the device. This is closely related to the next major problem with the

software ecosystem surrounding 3D user interface devices.

2.1.2 Multiple Application Support

The ability to use multiple applications simultaneously has become a core feature

of the interface paradigms we use today, and the ability of a user to install and run

together whichever set of applications they like is the key point of software modularity

that has allowed personal computers to be useful to a broad class of users with highly

diverse requirements.

This same point of modularity can be applied to 3D user interfaces, and to a cer-

tain extent it already is. It is certainly possible to install multiple 3D user interface

applications and, depending on the applications, maybe even run them simultane-

ously. However, there are serious limitations here as well, particularly when it comes

to immersive 3D displays. These displays require custom projection of a 3D scene for

each eye, and this projection must be consistent with the 3D position of the users

head relative to this scene and the display surface, and many HMDs require a post-

projection adjustment to correct for distortion introduced by the optical system (this

is discussed in detail in Section 5)). While it is relatively straightforward to imple-

ment this behavior in an application which draws itself (and only itself) to the entire

display surface, sharing the 3D display between multiple applications with 3D user

12

interfaces introduces significant problems.

The essential problem is that in order for the 3D interface space to be divided be-

tween multiple 3D interfaces from different applications in a meaningful way, it must

be divided in 3D. This is difficult because current graphics and windowing infrastruc-

ture, as well as the 2D display technology underlying the immersive 3D display, is

designed around the paradigm of applications producing 2D output which is combined

in 2D by the windowing system and driven onto the 2D interface space of a traditional

display. This works well for dividing the 2D space of a display among multiple 2D

interfaces, since they can each be given a rectangular region of the rectangular dis-

play, but dividing the 2D display surface of an immersive 3D display among multiple

3D interfaces in the same way (without applying the correct stereo projection and

optical distortion correction) produces results which do not appear to be in the same

3D space.

This means that while an immersive 3D display can produce a compelling 3D

interface space for a single application, it is not possible for multiple 3D interface

applications to share the 3D display in the same way that 2D applications can share

a 2D display. It also means that 2D applications which have no reason to need a 3D

interface are also unable to use the immersive display, despite the fact that embedding

a 2D interface surface in a 3D interface space is conceptually simple and well defined.

2.2 Insights from Two Dimensional User Interfaces

The core goal of this thesis is derived from the simple observation that the problems

currently facing the development of applications with 3D user interfaces and the

integration of the hardware that supports them are present for 2D interfaces as well,

with the key difference that in the domain of 2D interfaces these problems have already

been solved. Despite the fact that the diversity of displays, mice, and keyboards

13

dwarfs the diversity of 3D user interface devices, users are able to assemble a hardware

interface from almost any combination of devices they like and run all of their favorite

applications on top of their custom hardware interface. New 2D interface devices need

not be integrated into every application that uses them, and multiple 2D interfaces

from different applications can be used together in the same 2D interface space in

arbitrary combinations.

2.2.1 Windowing Systems

Applications with 2D interfaces no longer suffer these problems because modern con-

sumer operating systems provide a set of 2D interface abstractions called a windowing

system. Windowing applications do not interact directly with the mouse, keyboard,

or display. Rather the windowing system manages input devices and displays (usually

through lower level abstractions provided by the kernel), and provides the interface

capabilities of these devices as services to applications. Applications receive input

events like mouse movement from the windowing system abstractly without needing

any knowledge of what type of mouse is used, how it is connected, or who manu-

factured it. The 2D images produced by applications are not drawn directly to the

display, they are given to the windowing system which then composites the output

of all running applications (sometimes in a separate compositor program, depending

on the windowing system) into a final 2D image which is scanned out to the display

itself.

This basic system architecture is present, with slight variation, in every major

graphical operating system. It is connected with the prevalent ‘Windows, Icons,

Menus, Pointer’ (WIMP) interaction paradigm and the popular desktop metaphor,

which are well understood, well tested, and familiar to users. This architecture has

also strongly influenced the way applications interact with hardware accelerated 3D

14

graphics systems, leading to a design pattern where applications are responsible for

projecting their 3D content into a 2D image before delivering it to the windowing

systems, and this has in turn influenced both the design of 3D graphics API’s as

well as the hardware which underlies them. The ubiquity of windowing systems has

also profoundly affected the high level topology of the software ecosystem surround-

ing WIMP interaction, leading to the emergence of user interface toolkits like QT

and Java Swing that abstract popular windowing systems behind their common func-

tionality so that sophisticated, cross platform, WIMP applications can be developed

without knowledge of the underlying software mechanisms, much less the hardware

devices, that support them.

Even existing 3D interface applications use the windowing system to abstract

traditional input and to draw to the 2D display that underlies its immersive 3D

display, but without the ability to abstract 3D input devices and to mix 3D interfaces

in 3D, these windowing systems do not give applications the ability to share 3D

interface hardware in a meaningful way.

2.3 Proposed Solution: A Three Dimensional Windowing System

The primary goal of this thesis is to demonstrate that windowing systems are capable

of solving some of the core problems facing 3D user interfaces in the same way that

they have already solved the exact same problems for 2D user interfaces, and that

this can be done with extensions to an existing windowing system, allowing both

unmodified 2D applications and as device-agnostic 3D applications to window into

the same 3D interface space.

The type of windowing system described here extends the concept of a window

as a 2D region of a 2D interface space to the 3D interface space provided by the 3D

user interface hardware described above. It allows 3D applications to create a 3D

15

analog of a traditional window, representing a 3D region of the 3D interface space

which can be manipulated in 3D in much the same way as a traditional 2D window

can be manipulated in 2D. These 3D windows can listen for 3D input events via the

same mechanism that is used to listen to 2D input events, and the 3D output they

produce is mixed in 3D with the 3D output of other 3D applications.

Additionally, this type of windowing system allows traditional, unmodified 2D

applications to create a 2D interface context in this 3D windowing space which be-

have exactly the same as a normal window from the applications perspective. The

windowing system embeds these 2D windows in the space in much the same way that

a sheet of paper embeds a 2D document in 3D reality, allowing the user to manipulate

and manage these windows as 3D objects. Three dimensional input events managed

by the windowing system are projected onto the 2D window before being delivered to

the 2D application, allowing the user to send meaningful 2D input to the application

with a 3D input device.

2.3.1 Advantages of This Approach

There are numerous advantages to solving these problems for 3D user interfaces in

the same way that we solve them for 2D interfaces, a few of which are discussed here

in detail. Some of these advantages are the same advantages that led to the adoption

of windowing systems in the first place, and others simply result from leveraging

extensive work put into windowing systems for 2D interfaces. This is by no means

meant to be an exhaustive list.

2.3.1.1 Hardware Abstraction and Multiple Application Support

This approach allows a hardware 3D interface (consisting of at least one immer-

sive 3D display and at least one 3D input device) to support a unified 3D interface

16

space, where both 2D and 3D applications are treated as first class components of

the human-computer interface and managed together in the 3D space via a unified

window management mechanism.

This means that any hardware capable of supporting the 3D windowing system

can support all 3D applications which use it (as is the case with 2D applications), and

that new hardware need only provide a driver for the windowing system abstraction

to achieve support from all applications using the system (as is also the case with 2D

interfaces).

It also means that the structure of the software ecosystem surrounding 2D WIMP

interaction can be applied to the software ecosystem surrounding 3D interfaces, al-

lowing the development of a wide variety of user interface toolkits which provide

high-level, domain-specific interaction metaphors built on top of common abstrac-

tions provided by the windowing system, allowing multiple applications using dif-

ferent toolkits (or no toolkit at all) to share the 3D interface hardware supporting

the system in a meaningful way. Furthermore, because the system supports unmodi-

fied 2D applications, support for 3D interface elements could even be integrated into

existing 2D interface toolkits where appropriate.

2.3.1.2 Compatibility With Existing Graphics and Windowing Infrastructure

As the provided implementation demonstrates, it is possible to support compositing

3D content in a 3D space while only needing to send 2D images from the application

to the windowing system. This means that existing, full-featured 3D graphics APIs,

which give the application full control over every aspect of how its 3D content is

drawn into a 2D image, are still perfectly well suited to this task. This means that

applications retain full flexibility in what they draw and how they draw it, and can

still benefit from acceleration by high performance consumer graphics processing units

17

(GPUs). It also means that 3D applications still benefit from the extensive software

infrastructure that has been put in place to allow 2D applications to efficiently pass

2D images to the windowing system and to allow the windowing system to composite

these images off screen. Together this means that the 3D windowing system can

efficiently support both 2D and 3D applications without needing to lay extensive new

infrastructure to do so.

18

CHAPTER 3

Contribution

The primary contribution of this work is an open source implementation of a 3D

windowing system built on top of the Wayland display server protocol. It is intended

both to demonstrate that windowing systems can solve some of problems hindering

the adoption of 3D user interfaces, as well as to provide a body of code capable of

forming the core of a functioning, full featured, open source 3D windowing system.

This implementation includes the Wayland protocol extensions necessary to en-

able 3D windowing, a framework for building Wayland compositors which support

these extensions (built on top of the QtWayland Compositor library), an example

compositor which uses this framework to support the windowing system on top of the

Oculus Rift Developer Kit HMD and the Razer Hydra motion controller, drivers for

these devices, a client side library for handling the protocol extensions and graphics

trickery needed for 3D windowing, and a few example clients which demonstrate how

to use the client side library.

This software demonstrates the ability of consumer 3D interface hardware to sup-

port a 3D windowing system, and the ability of this 3D windowing system to support

applications with compelling 3D interfaces. It also demonstrates that this style of

windowing system can be built on top of existing graphics and windowing infrastruc-

ture, and that it can support unmodified 2D applications windowing into the same

3D interface as the 3D applications.

This implementation is not intended to be release quality by the completion of

19

this thesis, and it is not intended to embody all of the functionality which such a

windowing system could hypothetically provide, particularly when it comes to device

abstraction. Rather, it is intended to show what is possible, and provide the core

functionality needed in a piece of software which is modular enough to form the core

of a comprehensive, open source solution.

20

CHAPTER 4

Related Works

Both windowing systems and 3D user interfaces have received a great deal of research

over the past few decades, and these fields intersect in a number of ways, so placing

this thesis within existing research is a somewhat involved process.

The system described in this paper has the key design goal of being able to seam-

lessly handle both 2D and 3D interface contexts in the same 3D interface space, and

we will therefore compare it to existing research based on this. This primary design

goal can be broken down into several secondary goals, including allowing applications

to request 2D and 3D windows in the same manner, allowing users to interact with

2D and 3D windows in the same manner, and allowing applications to receive 2D and

3D input in the same manner. Other design goals include allowing applications to

use the windowing system without needing to be started by it and allowing 2D appli-

cations to window into the 3D space without needing to be modified. To the author’s

knowledge this set of requirements is not met by any system in existing research.

4.1 Two Dimensional Windows in Three Dimensional Environments

A fair amount of work has been done on managing traditional 2D windows in a 3D

space, both in research and, more recently, in production software. These systems

can handle multiple 2D windows in a 3D space and can draw the 2D output of a

3D application as a 2D window, but none of them provide a mechanism for unifying

the application space with the windowing space for seamless 3D interaction between

21

multiple applications in a single 3D space.

Figure 4.1: The Task Gallery [31]

The Task Gallery [31] is a 3D window manager for Microsoft Windows which

embeds groups of related windows called tasks into a 3D space to make them appear

like artwork hung in a gallery, with the active task on a center stage. This system has

some truly 3D user interface elements, like the gallery and the stage, but it exclusively

supports 2D windows.

Topol describes a system for embedding standard X11 windows (X11 is the default

windowing system for most open source operating systems like Linux) into a 3D

workspace using techniques similar to those used by modern compositing window

managers [40]. However, like The Task Gallery, this system supports only flat, 2D

windows. Additionally, it does not appear that this system supports mapping input

22

from the 3D workbench space into the 2D window space.

Figure 4.2: Windows on the World [8]

Feiner et al. demonstrate a similar 3D window management system in an aug-

mented reality setting with their Windows on the World system [8]. This system uses

a very large X bitmap which applications draw into using traditional means. The

display server displays a small portion of this bitmap at a time on a see through head

mounted display, and determines which portion of the bitmap to draw into by map-

ping the pitch and yaw of the user’s head onto the x and y coordinates of the bitmap,

thereby mapping the bitmap onto a portion of a spherical surface surrounding the

users head. Windows can be moved within the bitmap such that they always track

the projection of a real world object onto the spherical surface, thereby creating the

illusion that the window is attached to that object.

23

4.1.1 In Production Software

As GPU accelerated window compositing has become widely available on consumer

hardware (following improved OpenGL support in X.org around 2006) the ability to

handle windows in 3D has become broadly available in consumer software. Some

widely used compositing window managers, like Compiz [2], draw window output as

textures on 2D surfaces in 3D, allowing them to create compelling 3D visual effects

and animate window transitions in 3D space. However, because the architecture

of X11 does not give the compositor control of the input system, X11 compositing

window managers like Compiz are unable to properly redirect input to the windows

while their output is transformed to appear 3D, which seriously limits the ability X

compositors to create useful 3D interfaces.

Figure 4.3: Compiz Desktop Cube [2]

The open source community has been seeking to address many of the problems

and shortcomings of X11 with the development of a completely new display server

24

protocol called Wayland [10]. One of the key differences between Wayland and X

is that the display server and the compositor are the same entity, meaning that the

compositor can both transform window output to appear embedded in a 3D space

while also mapping 3D input back into the 2D window space, allowing traditional 2D

windows to be first class citizens of new 3D user interfaces. This, coupled with the

simplified architecture of Wayland, is the reason why Wayland forms the basis of the

windowing system presented in this thesis.

There are other production windowing systems which allow output from windows

to be transformed to appear 3D, used mainly to provide 3D window transition ef-

fects like Flip 3D in Windows Vista and Windows 7. To the author’s knowledge no

production window manager allows normal window interaction while the windows’

output is transformed to appear 3D.

4.2 Three Dimensional Windows

There are systems in existing research which explore concepts similar to the 3D win-

dows described in this paper. For the most part what separates them from the work

in this thesis is lack of support for windowing by external applications, limitations

on what clients are allowed to draw within their windowing volumes, or lack of first

class support for 2D windows.

The earliest work (to the author’s knowledge) which explores such a concept is

Feiner and Besher’s n-Vision testbed [9] in 1990, a system designed to facilitate the

visualization of high dimensional data using a hierarchy of nested 3D visualization

volumes called ’boxes’. Each box draws a 3D slice of the multidimensional space

by mapping the high dimensional function across two selected independent variables

within the box, with all other independent variables held fixed within the box at a

value determined by the box’s position within its parent box. This nested hierarchy

25

Figure 4.4: The n-Vision Test Bed [9]

of boxes is much like a 3D analogue of the X protocol’s hierarchy of 2D rectilinear

windows (as the authors note), but it is not designed to allow third party applications

to create such volumes and draw content inside of them. It also lacks support for

2D windows, and the capabilities of the system appear to be limited to graphing

multivariate functions.

DiVerdi demonstrates a 3D augmented reality window manager called ARWin

[5] which he uses to manage 3D user interface elements and 2D windows in his Any-

where Augmentation system [4]. It is difficult to firmly compare this thesis to ARWin

because the description of ARWin does not go into great detail about the system’s

implementation. One difference that is clear is that the system lacks native support

26

Figure 4.5: Example ARWin Desktops [4][5]. Note the function graph and bouquet

programs, which draw 3D content into the 3D interface space.

for 2D windows, instead supporting 2D windows through a VNC client which outputs

the windows content to a texture (which limits 2D support to applications without

hard latency requirements). While their system supports multiple applications draw-

ing 3D user interface elements in the same 3D space, it is not clear what constraints

are imposed on this process or the mechanism by which 3D applications draw con-

tent in the 3D space. It is also unclear how applications request a session with the

display manager, and even if this is possible without the display manager starting the

application itself. No documentation regarding the windowing mechanism could be

found.

4.3 The Three Dimensional Workspace Manager (3DWM)

The system in existing research which appears to be the closest thing to the system

described in this thesis is 3DWM [6], a system designed to provide a network trans-

parent hardware abstraction layer for 3D user interfaces and a reusable 3DUI toolkit

to ease the development and research of new 3D user interfaces. Like the system de-

scribed in this thesis (and like the X Window Protocol and the Wayland display server

27

protocol) the basic system architecture consists of a display server which manages the

input and output hardware, and a set of independent client applications which are

able to request that the display server notify them of input events and draw content

for them on the output hardware.

Figure 4.6: The Three Dimensional Workspace Manager [6]. On the left is a construc-

tive solid geometry modeller, demonstrating the support for 3D applications. On the

left we see it texturing multiple X11 desktops (over VNC) onto a 3D cube.

Unlike the system described here, but much like early uses of X, their display

server draws user interface primitives on the behalf of the client and does not allow

the clients to directly control the way the primitives are drawn. This is done because

(like early X) network transparency was one of their core design goals, and trans-

mission of pixel buffers from real-time graphics applications to the display server

requires much greater bandwidth and much lower latency than most networks are

able to provide. The system described in this thesis avoids this (by sacrificing net-

work transparency) because although it gives the system a unified look and feel, it

requires that applications perform many transactions with the display server in order

to accomplish basic user interface tasks and limits the behavior and appearance of

application user interfaces to functionality supported by the display server. These are

the same factors which led to the abandonment of the widespread use of X11’s prim-

28

itive drawing capability and the loss of its pure network transparency (through the

use of direct rendering extensions to X) and are two of the major factors motivating

the development of Wayland as a replacement for X.

3DWM does support multiple application contexts in a single 3D space, and allows

applications to request volumes for their personal use, which is very similar to the

concept of 3D windows presented in this thesis (and is compared to the concept of

windows by the authors). However, unlike traditional windows, and unlike the 3D

windows presented in this thesis, client applications do not have full control of what is

drawn inside of their windowing context. Instead, clients are only able to request that

the display server draw primitives inside of their volume, and if the primitives the

display server provides do not meet the needs of the application then the developers

have no choice but to modify the display server.

Another shortcoming of 3DWM is the lack of native support for 2D windows

inside the 3D application space. While the need to support 2D applications is not

ignored completely, it is viewed as ’legacy’ support during a ’transitionary phase’ to

completely 3D interfaces and as such 2D applications are not treated as first class

clients of the display server. Instead, they implement a custom VNC client which

writes a remote desktop into a texture which the display server then applies to a

surface in the 3D space. While this does indeed provide simultaneous support for

2D applications running on many platforms, it does not allow individual 2D and 3D

applications to be mixed and used together in the same 3D space.

29

CHAPTER 5

Technical Background

Understanding the design and implementation of the windowing system presented in

this thesis requires understanding of some technical, domain-specific concepts which

may be outside the knowledge base of some readers, so this section is included to

consolidate and summarize these concepts. An in-depth discussion of most of these

concepts is well outside the scope of this thesis, but references to more detailed

explanations are provided where possible. No novel material is presented here, and

readers familiar with computer graphics, open-source windowing systems, and the way

humans perceive three dimensional space could certainly skip this chapter altogether.

5.1 Computer Graphics

The demands of computer graphics applications are fundamentally very different from

many other applications, and this has led to the development of specialized hardware

co-processors for accelerating these types of applications called Graphics Processing

Units (GPUs). Modern GPUs are programmable computers, much like the CPUs

that control them, but they are massively parallel and every aspect of their design is

oriented toward exceptionally high data throughput. GPUs are designed to execute

a single program on many similar pieces of data in no particular order, making them

well suited for computer graphics applications (where a substantial portion of the

computational load lies in transforming vertices and shading pixels), as well as many

other problems which map well onto the Single Program Multiple Data paradigm.

30

Depending on the GPU manufacturer access to this hardware may be possible through

several API’s, but for graphics applications on open source systems the API of choice

is OpenGL.

OpenGL organizes access to graphics hardware around a data pipeline commonly

referred to as ‘The Graphics Pipeline’, and while a detailed description of this pipeline

is certainly beyond the scope of this thesis, some of its stages are very important to

the design of the windowing system here, so a brief overview is included. Readers

seeking further explanation are directed to [15] for a good introductory overview of

the modern graphics pipeline and [14] for a very good and very in-depth discussion of

its function. The modern graphics pipeline is complex, and many data-paths exist,

but for the scope of this explanation we will focus on the primary data-path illustrated

in Figure 5.1.

Figure 5.1: The basic structure of the graphics pipeline. Note the vertex processor,

rasterizer, fragment processor, and termination in a frame buffer. Image taken from

[23]

31

5.1.1 The Vertex Transformation

In this datapath, incoming geometry is first transformed in the vertex processor from

the space in which it defined into the space in which it is projected onto the 2D output

surface. This vertex transformation, shown in Figure 5.2 is represented as the com-

position of several linear transformation matrices in a homogeneous coordinate space,

which, being linear transformations, can be applied to the vertices in a sequence or

as a composite transform computed as the outer product of the component matri-

ces. Though in principle any number of transformations can compose this composite

vertex transformation, it is typically thought of as being composed of three principal

transformations.

Figure 5.2: The basic sequence of transformations applied to geometry in the ver-

tex processor. The final transformation in this sequence is applied after the vertex

processor and is not part of the composite transformation matrix. Image taken from

[30]

The geometry of an object is defined in a space relative to that object, which

32

allows multiple copies of an object placed throughout a scene to share geometry

on the GPU. The first transformation, called the ‘modeling transform’ or ‘model

matrix’, maps geometry from object space into the space in which the scene is defined,

called ‘world space’. The second transformation, called the ‘camera transformation’ or

‘view matrix’, maps geometry from world space into the space of the virtual camera,

whose origin is the center of projection of the camera and whose axes are aligned

with the camera’s view vectors. This is followed by the projection transformation,

which (coupled with a hardware accelerated homogeneous divide following output

from the vertex processor) maps the vertices into ‘normalized device coordinates’,

where all vertices lying inside the view frustum defined by the projection matrix now

lie inside the ‘canonical view volume’ reaching from -1.0 to 1.0 along all axes of the new

space. Understanding how these transformations affect the user’s perception of 3D

information is important because the synchronization of the matrices that represent

them between the client application and the windowing system is the key to correctly

compositing 3D clients without needing to do the projection within the windowing

system. A simple example is included here to ensure this is clear to all readers.

5.1.1.1 A Simple Example: Transformations

Imagine we have a simple scene containing three objects, a table, a chair, and a room

which contains them. Each of these objects has its own model transform, allowing us

to move them around independently, but the view and projection matrices are global

for all objects, reflecting the idea that there is only one camera. Translating the

model matrix of the chair changes where the chair is projected onto the screen, but

has no effect on the table or the room, which gives the appearance of the chair moving

relative to the room and the table. Translating the view matrix, by contrast, changes

how all three objects are projected onto the screen in the same manner. Because

humans naturally contextualize the room as a static entity, given their experience

33

with similar structures in reality, this translation gives the viewer the impression of

their viewpoint moving through the space containing the objects. Changes to the

projection matrix also affect the projection of all three objects, again giving us the

impression of changing the properties of the virtual camera. For example, reducing

the field of view encoded in the projection matrix affects the resulting image in the

same way that a telephoto lens changes the image of reality produced by a real camera.

5.1.2 Rasterization and The Depth Test

Following output from the vertex processor primitives (like points and lines) are as-

sembled and clipped against the canonical view volume. A final transformation called

the ‘viewport transform’ is applied, mapping the X and Y components of the normal-

ized device coordinates into the screen space specified in pixels, and the primitives

undergo a process called ‘rasterization’ or ‘scan conversion’, which determines which

pixels are covered by the projection of the primitive. A data structure called a ‘frag-

ment’ is generated for each pixel that lies inside the projection of the primitive, and

all further stages of the graphics pipeline, including programmable fragment shaders,

operate on these fragments.

At this point we encounter the second concept which is critical to understanding

the windowing system presented in this thesis. The vertices (and the primitives assem-

bled from them) are three dimensional, but the screen space in which the fragments

are specified is only two dimensional, and in the projection from three dimensions to

two some information must be lost. More concretely, it is possible for one object to

partially occlude another if it is closer to the camera, and in this case it is necessary

that the we draw the closer object in front of the further one. To achieve this behavior

the graphics pipeline includes a step called the ‘depth test’ which, depending on the

behavior of the fragment shader, takes place either immediately before or immediately

34

after a fragment is run through the fragment processor.

The depth test operates on a two dimensional scalar buffer called the ‘depth buffer’

attached to the active frame buffer which is of the same dimensions as the color buffer

being drawn into. The depth of each fragment (the Z component of its position in

the projection space) is compared to the depth currently stored in the depth buffer

at the XY position of the fragment in question. If the depth of the current fragment

is closer than the current contents of the depth buffer the current fragment is drawn,

otherwise it is discarded. This guarantees that the closest fragment at a given screen

position always determines the color at that position regardless of how many other

fragments are drawn to the same screen position or in what order they are drawn.

The depth buffer is critical to the function of the windowing system presented in this

thesis because it can be used to composite the output of 3D applications in 3D using

only 2D buffers in the same way that it is used to composite 3D primitives in the

normal graphics pipeline (using the same hardware depth test no less), which allows a

3D windowing system to be built on top of windowing infrastructure designed to pass

only 2D buffers from applications to the windowing system, and allows applications

to use graphics API’s designed around the idea that applications control every aspect

of how their 3D content is drawn down to the coloring of the pixels.

5.1.3 Framebuffers

The termination of the graphics pipeline data-path is a frame buffer. The frame buffer

itself is not actually a buffer, but rather a collection of handles for different kinds of

buffers, like color buffers or depth buffers, to which actual buffers can be attached.

While applications typically render to the ‘default framebuffer’, which represents their

actual output to the windowing system (or, in the case of the windowing system, the

output to the display), it is also possible for applications to create off-screen frame

35

buffers called Frame Buffer Objects (FBOs) in order to perform multiple rendering

passes. This concept is used extensively in the implementation of the windowing

system presented here.

5.2 Human Perception of Three Dimensions

An important part of this thesis, and computer graphics in general, is exploiting the

way that humans perceive three dimensional space to give them the illusion of 3D

structure with 2D images. This may appear simple at a high level, since the human eye

can only sense two dimensional images, but the way that humans use these 2D images

to reconstruct the 3D structure of reality is extremely sophisticated and this makes

the process of generating a compelling illusion much more complicated. Humans rely

on a number of behaviors in the way the 3D structure of reality is projected to two

dimensions by their eyes, called ‘depth cues’, to inform their understanding of the 3D

structure of the scene they are observing.

There are many of these depth cues and, to the authors knowledge, no graphical

system is capable of presenting all of them consistently to the user, but it is important

for proper 3D perception that those cues which are present are consistent with one

another and consistent between different parts of the scene. Because the windowing

system presented in this thesis attempts to combine the output from different 3D

applications into a cohesive 3D scene while still allowing these applications to control

the projection of their 3D content to 2D, the synchronization of the parameters which

control these depth cues between the compositor and the client applications is an

important part of the work presented here. A brief overview of some of the relevant

depth cues in included here to ensure all readers are familiar with the mechanism

that enables them, as this is needed to understand the way the windowing system

presented here creates the illusion of a consistent 3D scene composed of multiple 3D

36

clients. The focus of this section is on depth cues which are handled by the windowing

system presented here, for a more comprehensive and in depth discussion of depth

cues in general, readers are directed to [28].

5.2.1 Motion Parallax and Stereopsis

A key property of three dimensional space that allows us to perceive its structure

from two dimensional images is that imaging the same 3D scene from different points

in space results in different 2D images. Should this not be immediately apparent

to the reader they are invited to hold their hand at arms length, move their head

around, and observe how the portion of the scene which is occluded by their hand

changes in response to the movement of their head. This effect, called parallax, forms

the base of two very important and closely related depth cues: motion parallax (the

change in projection based on the position and orientation of the users head), and

stereo parallax or stereopsis (the difference in the projection between the user’s eyes

due to their slightly different location in space). On the hardware side, achieving the

former requires that the system actively measure the position of the user’s head (called

head tracking), and achieving the latter requires that the system be able to display

a different image to each of the user’s eyes (making it a so called stereo display),

and these two capabilities together form the requirements set forth in Section 1.2.2)

for and immersive 3D display. On the software side, the position of the virtual

camera is controlled by the content of the view matrix (as explained in Section 5.1.1)).

Therefore, stereopsis requires that there be a separate view matrix for each eye (and

that the scene is projected separately for each of these matrices), and motion parallax

requires that these matrices change in response to changes in the user’s measured head

transform.

Maintaining consistency of stereopsis and motion parallax between the compositor

37

and all of its 3D client applications requires that all entities involved projecting 3D

geometry do so with the same view matrices for each eye, and so an important part

of the Wayland protocol extensions presented here is providing 3D clients with up to

date view matrices for each eye before each frame is drawn, and giving the clients a

mechanism for providing the compositor with different output for each of the user’s

eyes.

5.2.2 Relative Size

Relative size refers to the change in the size of the projection of an object as it’s

distance from the viewer changes, with objects appearing smaller to the viewer as

they recede further into the distance. This behavior is achieved with, and is the

primary purpose of, the projection matrix discussed in Section 5.1.1, which maps

the frustum of space visible from the camera position (called the view frustum) onto

the cubic region of space defined by the normalized device coordinates. Because

the portion of the view frustum that is closer to the camera position is narrower

than the portion which is further away, the process of mapping it into normalized

device coordinates compresses geometry in the view frustum more the further it is

from the camera position, making this geometry smaller the further it is from the

camera, creating the illusion of relative size. In order to maintain the consistency

in the relative size cue between all of the client applications and the compositor, it

is necessary that all parts of the windowing system doing 3D projection do so using

the same projection matrix, which is an important part of the display server protocol

extensions presented here.

38

5.2.3 Occlusion

Another important, and familiar, aspect of three dimensional space is that when

imaged onto a two dimensional plane, portions of the scene which are closer to the

camera can hide, or ‘occlude’, portions that are further away. This gives us a powerful

depth cue, because the occlusion of an object by another immediately tells us that the

second object is closer, and the portion of the object that is occluded gives us even

more detailed information about their spatial relation. As explained in Section 5.1.2,

this behavior is achieved in the graphics pipeline by maintaining a 2D buffer con-

taining the depth of each pixel, and only drawing a new pixel if it is closer than

the contents of the depth buffer. While this technique is both efficient and effective,

using it to composite 3D content from multiple clients requires that the compositor

have access to not only its own depth buffer, but also the depth buffers of all the 3D

clients, and so providing a mechanism that allows this is an important part of the

Wayland extensions presented here.

5.3 Open Source Windowing Systems

Though the basic concept of windowing systems pervades all graphical operating

systems, there are some architectural details of the windowing systems used in open

source operating systems which are relevant to the windowing system presented in

this thesis. This discussion will focus on X, which has been the predominant Linux

windowing system for almost two decades, and its replacement, Wayland, which forms

the foundation of the windowing system presented in this thesis.

39

5.3.1 Basic Architecture

Wayland, like X, operates on a client-server model, where the clients are the applica-

tions needing a graphical interface services (like the ability to create a window and

listen for input events), and the server is a program, called a display server, which

interfaces directly with the display and input devices and uses them to meet the in-

terface needs of the client applications. The clients connect to the server through a

Unix socket and the two communicate via a protocol called the ‘display server proto-

col‘. The names X and Wayland both technically refer to the display server protocol

itself, and in both cases the protocol is extensible, allowing the windowing system to

dynamically meet the needs of graphical systems as they change with technological

development. This has largely allowed X to withstand the test of time, although the

developers behind Wayland argue that the way X is currently used is so tangential to

its original design goals that its function has largely degraded to providing ‘really bad

IPC’ [37]. The effort to resolve these problems led to the development of Wayland,

which, as the Wayland architecture page states, is most easily understood through

comparison with X [10].

5.3.2 Wayland and X

As with the other topics in this section, a thorough discussion of the architectural

differences between Wayland and X is both outside the scope of this thesis and largely

irrelevant to the windowing system presented here, and interested readers are directed

to [10] and [37] for more information. However, there is one architectural feature of

X which makes it unsuitable for supporting the windowing system described here.

As illustrated in Figure 5.3, the high level operation of the two windowing systems

is largely the same, and the interface between the kernel and the display server are

recycled, allowing Wayland to reuse much of the infrastructure developed to support

40

Figure 5.3: High level architecture of the X and Wayland windowing systems. Note

that the X compositor is a separate entity from the display server, whereas the Way-

land compositor provides the functionality of the display server internally. Images

taken from [10]

X. The key difference that is relevant to this thesis, immediately visible in Figure 5.3,

is Wayland’s integration of the display server and the compositor.

In the X architecture, the compositor is a client, just like the applications, that

communicates with the display server over the display server protocol. When clients

send their output to the display server it is forwarded to the compositor, which

composites the output based on its internal scene-graph of how the windows are laid

out (which can, in the case of some compositors like Compiz, contain 3D window

transformations), and sends this composited output back to the display server, which

then draws it to the display. The key problem here is that the X server has its

own internal representation of how the windows are laid out (which is strictly two

dimensional), and when it receives input events from the kernel it determines which

41

window to deliver them to based on the location of the event and its own internal

layout of the windows, rather than letting the compositor control the input event

redirection. This means that if the compositor applies a 3D transformation to the

window, this is not reflected in the X server’s internal window layout and so input

events are not redirected to the appropriate client or transformed correctly into the

client’s window space, making it essentially impossible to interact with windowed X

applications in a meaningful way when they are embedded in a 3D space.

In the Wayland architecture, by contrast, the compositor and the display server

are the same entity and therefore by definition share an internal representation of how

the windows are laid out. This allows the compositor to give windows an arbitrary

embedding in a 3D space and still deliver input events to the applications driving

them in a meaningful way. It also means that input events do not necessarily need

to be delivered based on the embedding of the window surface itself, but can be

delivered based on the embedding of an arbitrary spatial data structure associated

with the surface, which is critical to the way the windowing system presented in this

thesis handles 3D applications, since the output is drawn on a 2D surface but the

interaction space the user perceives for the application is three dimensional.

5.3.3 Wayland Display Server Protocol

The Wayland display server protocol, detailed in [11], is an asynchronous, object

oriented protocol designed to allow applications needing a graphical interface to get

the resources they need to do so from the display server (referred to as the compositor).

The Wayland compositor advertises objects which can accept requests from clients

and generate events to which the clients can respond. These objects are either globally

defined or contained within a global object, and can have any type defined in the core

protocol specification or extensions to this protocol. When an object is created, all

42

clients are notified via a creation event, and when a client connects it receives such a

creation event for every global object which is already globally defined.

The protocol is defined in a set of Extensible Markup Language (XML) files from

which language bindings for a specific programming language can be generated dy-

namically, allowing clients and compositors to be written in any language and still

communicate with one another via the Wayland protocol. A program which generates

C language bindings from XML protocol definitions, called wayland-scanner, is pro-

vided by the Wayland developers. The protocol can be extended by simply defining

new object types, requests, and events in a separate XML file (or set of files), creat-

ing language bindings from these files, and then including these language bindings in

the compositor and the clients. Compositors can support extensions not supported

by a client without compromising the ability of these clients to communicate with

the compositor, which allows compositors to support broad classes of clients without

these clients needing to support, or even be aware of, the same set of extensions.

The system presented in this thesis defines a set of extensions to the Wayland

protocol which allow it to provide 3D windowing services to clients which support

these extensions, while simultaneously fully supporting clients which are designed to

interact with traditional, 2D Wayland compositors.

5.3.4 EGL

The Khronos Group EGL Native Platform Interface (EGL) [20] is an API specified by

Khronos Group (who also specify APIs like OpenGL and OpenVG) which ‘provides

mechanisms for creating rendering surfaces onto which client APIs like OpenGL ES

and OpenVG can draw, creates graphics contexts for client APIs, and synchronizes

drawing by client APIs as well as native platform rendering APIs‘ [20]. In the Wayland

architecture, EGL allows clients to create a drawing surface on the GPU (essentially a

43

region of GPU memory that can be filled with an image with a specific color format),

and allows the compositor to access the contents of this surface directly and use it for

hardware accelerated compositing without ever needing to take the contents of the

surface off of the GPU.

While the internal function of EGL has little impact on the design of the system

presented here (since EGL is mostly handled by the underlying subsystems on which

it it is built), it is important for the reader to understand at a basic level how EGL

fits into Wayland, since EGL’s inability to give the compositor direct access to the

client depth buffer strongly affects the way that client depth buffers and the depth

compositing process are handled by the system, as well as the performance of the

depth compositing process.

44

CHAPTER 6

Design: A Unified Windowing System

The core goal of this thesis is to demonstrate, both conceptually and practically, that

windowing systems are capable of solving the same problems for 3D user interfaces

that they currently solve for 2D user interfaces, that a single windowing system can

solve the same problems for 2D and 3D interfaces, and that a system which does

so can be built on top of an existing windowing system. To understand this further,

let’s examine abstractly the services that a windowing system provides and how these

map onto 3D interfaces.

6.1 Windowing System Services

In general, windowing systems provide a software platform for graphical applications

that gives these applications a means to use the hardware resources they need to

provide graphical interfaces without needing to interact with the hardware directly.

Because the windowing system handles the direct interactions with the hardware, it is

able to multiplex the use of hardware resources between many individual applications

which need the capabilities the hardware provides. Because providing these hardware

capabilities to applications abstractly is the core purpose of the windowing system,

it is important to understand what it is that these hardware capabilities represent.

45

6.1.1 Graphical Interface Hardware and The Graphical Interface Space

Consider the interface hardware needed to provide a traditional, two dimensional,

WIMP interface (and thereby needed to support a traditional windowing system).

There are three essential components: a display, a mouse, and a keyboard. The

display provides a two dimensional space in which two dimensional images can be

drawn, and the mouse allows limited symbolic input at any point in this two dimen-

sional space. Together these two devices create a two dimensional spatial interface,

two dimensional input and output in the same two dimensional space.

The extension of this concept to three dimensions requires the ability of the hard-

ware system to support three dimensional input and three dimensional output in the

same three dimensional space, creating a proper three dimensional spatial interface.

Immersive 3D displays provide the user with a compelling illusion of a three dimen-

sional space which the computer can fill with arbitrary 3D content, and 3D input

devices can be used to provide 3D input in this space, so existing, consumer grade

3D interface hardware can provide such a 3D interface space in the same way that a

mouse and traditional display provide a 2D interface space. If the choice of 3D input

device is restricted to hand held tracking devices with buttons, like the Razer Hydra

used in the implementation presented here, then the 3D input set it provides is very

closely analogous to the 2D input set provided by a traditional mouse: symbolic input

from a few buttons coupled with continuous spatial tracking throughout the interface

space.

The keyboard allows the user to give the computer complex symbolic input, but

there is no spatial information attached to this input, and it is up to the software

system to determine which region of the interface space, if any, that this input is

delivered to. The keyboard itself is not related to the number of dimensions (or any

other aspect) of the interface space, and this means that it can continue to serve its

46

purpose in a 3D interface without needing to undergo any changes to its hardware

design.

6.1.2 Interface Contexts Within the Graphical Interface Space

In a traditional windowing system, each application is given its own 2D interface

space, called a window, with the same basic properties as the top level interface space

provided by the hardware. An application can draw arbitrary content into its window,

and receive 2D input events at any points within its bounds, giving the application a

context in which it can create any 2D interface that it pleases.

6.1.2.1 Three Dimensional Interface Contexts

Like the interface space, the concept of a window as a rectangular region of a rectan-

gular 2D interface also has natural extensions to three dimensions. Each application

can be given a 3D region of the 3D interface space which it can fill with whatever

3D content it likes, and the system can deliver 3D input events at any location and

orientation within this region. The implementation of this behavior, especially on

top of windowing infrastructure designed for 2D interfaces, has many subtleties and

is the focus of the rest of this thesis.

However, unlike the extension of the interface space to 3D, which has a rela-

tively straightforward interpretation, the interpretation of what a 3D interface con-

text means is somewhat divergent, and requires a more in-depth analysis of what we

understand a window to be. There are at least three ways to interpret the concept of

a window, and each has a different extension to 3D space.

47

Figure 6.1: A screenshot of the sompositor implementation showing the different types

of interface contexts in 3D space. From left to right: a standard 2D window with 2D

content, a cuboid window with its 3D content (the colored cube) embedded directly

in the interface space, and a portal window, demonstrating how its 3D content is only

visible through the window surface, much like a physical window.

6.1.2.1.1 Cuboid Bounded

The first interpretation regards a window as a region on the 2D interface space, a

piece carved out of a whole. The extension of this interpretation to three dimensions

is conceptually simple, requiring only that each application be given a box-shaped

(cuboid) region of the space in which it can draw its 3D content. This type of 3D

window is referred to here from here on as a ‘cuboid’ window.

48

6.1.2.1.2 Portal-Like

The second interpretation of the window is as a connection between one two di-

mensional interface space (the windowing space) and another (the application space),

which more closely reflects the physical concept of a window that the window metaphor

is modeled after. The extension of this interpretation to three dimensions is perhaps

even more natural, since the physical concept of a window is itself three dimensional,

comprising of a 2D opening which connects two physically disjoint 3D spaces into a

single continuous 3D space. This requires that the clients be given the ability ability

to draw content in an essentially unbounded space, but that the contents of that

space can only be seen by the user through a bounded two dimensional opening, with

the surface behaving as a two dimensional portal between disjoint three dimensional

spaces. This type of 3D window is referred to here from here on as a ‘portal’ window.

6.1.2.1.3 Unbounded

The final interpretation is not really a separate interpretation, but rather an ex-

tension of the concept of a full screen window to the other two interpretations. In a

2D windowing system, when an application creates a full screen window it is given

the ability to draw whatever content it likes to every pixel on the screen, essentially

being given full control of the entire interface space. Applying this concept to the

other two interpretations yields interestingly convergent results. If the bounds of the

cuboid window are extended to infinity, allowing it to fill the entire interface space,

and if the portal through which the portal window is seen is stretched to cover the

entire compositor buffer, then the application which controls these windows is able

to draw content in any portion of the 3D interface space. This type of 3D window is

referred to from here on as an ‘unbounded’ 3D window.

49

6.1.2.1.4 Correct Interpretation

At this point the reader may be wondering which of these interpretations is correct,

and if so they are encouraged to keep in mind that nothing requires that there be

only one correct interpretation. Different 3D applications can have very diverse needs,

and different types of 3D windows may meet these needs differently, so it could be

advantageous to support all three. As discussed in Section 6.2.4, the ability of the

compositor to handle all of these window types requires only minor extensions to the

same core functionality, so it is possible to simply allow clients to choose which type

of 3D window they wish to create.

6.1.2.2 Two Dimensional Interface Contexts

It is also worth noting here that because embedding a 2D surface within the 3D space

is trivial (especially with the functionality provided by modern graphics APIs), it is

possible for a 3D interface space to provide 2D interface contexts by simply embedding

a rectangular plane in the 3D interface space and constructing a 2D interface context

on the surface of this plane. Three dimensional input events can be projected onto

the plane and their 2D projection can be delivered to applications as 2D input events,

allowing unmodified 2D applications to use the interface space without even needing

to know that it is three dimensional. Additionally, each 2D window can be given its

own plane in the 3D space which can be moved, rotated, and resized independently,

allowing 2D and 3D windows to be managed together in the same 3D interface space.

6.2 Three Dimensional Windows With Two Dimensional Buffers

There is a significant amount of infrastructure in place to support existing windowing

systems, including established display server protocols and mechanisms for perform-

50

ing efficient off-screen window compositing on the GPU. Additionally, modern 3D

graphics APIs like OpenGL are rich and flexible, giving application a great deal of

freedom in how they use the GPU to draw their 3D content into a 2D image. All

of this infrastructure, being designed to support 2D windowing systems, is designed

around the idea that applications pass 2D images to the compositor, and applica-

tions which have 3D content produce a 2D image of this 3D content before doing so.

While this may initially appear to be incompatible with a system which provides 3D

windowing capabilities, this section is intended to illustrate that with careful design

of the system allows it to take full advantage of the benefits that this infrastructure

provides.

The key feature of such a design is, unsurprisingly, that it allows 3D applications

to draw 2D images of their 3D content and pass these images to the windowing

system, just as is done in traditional windowing systems. This design is derived from

the observation that in the computer graphics pipeline, three dimensional geometric

primitives (like triangles and lines) are projected to two dimensions independently

and composited with one another in two dimensions to produce a 2D image of a

consistent 3D space (see Section 5.1 and Section 5.2 for more information about this

process and its effect on our perception of the 3D space). The design presented here

essentially seeks to coordinate this process of projection and compositing between the

windowing system compositor and 3D client applications so that 3D geometry from

the 3D clients can be correctly composited with the output from other 3D applications

as well as geometry drawn directly by the compositor (for example surfaces for 2D

clients). This creates an image of a consistent 3D scene containing geometry from

multiple 3D applications without the windowing system ever needing to handle this

geometry directly.

Achieving this coordination in practice is not terribly complicated, but there are

several mechanisms which need to be in place for it to achieve correct, consistent

51

results. These mechanisms are discussed here abstractly, and their implementation is

discussed concretely in Section 7.

6.2.1 Synchronized View And Projection Matrices

As explained in Section 5.1.1, the view and projection matrices represent two of the

transformations commonly applied to 3D geometry before it is projected onto two

dimensions. The view matrix controls the apparent position of the camera, and the

projection matrix controls the reduction in the apparent size of objects as they move

further from the viewpoint. These transforms can be thought of as representing

properties of the virtual camera (its position and optical system, respectively), and

so they are applied uniformly to all geometry in the scene, reflecting the idea that

the camera (and the human eye) images the scene uniformly.

These transforms create two of the primary depth cues that give users the per-

ception of the virtual space (discussed in detail in Section 5.2.1), and their uniform

application to all geometry in the scene is critically necessary to the ability to com-

posite the geometric primitives which compose the scene in two dimensions. Because

of this, it is necessary to ensure that the view and projection transforms applied in

the compositor and the 3D clients is the same for each frame.

6.2.1.1 Buffer Size and the Projection Matrix

In order for every 3D client to use the same projection matrices as the compositor,

they must also draw into a buffer which is the same size, which incurs significant

overhead when the 3D window only covers a small portion of the screen (for example

when it is far away from the virtual camera). The compositor could hypothetically

allocate a 2D buffer for each client which is just large enough to cover the projection

of its 3D window onto the screen, but this would mean that the compositor would

52

have to update the buffer size, projection matrix, and view matrix for each viewpoint

for each client every frame, rather than only needing to update the view matrix

for each viewpoint globally every frame, which significantly complicates the display

server protocol extensions needed. In order to reduce the overhead, it is also possible

to simply fill the stencil buffer (in both the compositor and the client) with the

projection of the 3D window so that the various fragment shaders only run for pixels

which lie within this projection (discussed in more detail in Section 6.2.4), which is

the approach taken in the implementation here.

It is also hypothetically possible for the 3D clients to project their 3D geometry

onto the faces of the cuboid that bounds their 3D window, or is otherwise somehow

aligned with the 3D window rather than the projection plane, but this introduces

texture filtering problems (as well as suffering from the multiple projection matrix

problem), so it was decided against.

6.2.2 Stereo Images

Another important mechanism that informs human perception of 3D space is our

ability to resolve depth from the difference in the images produced by our two eyes

(see Section 5.2.1 for more details). This requires that the scene be rendered from

two viewpoints (one corresponding to the position of each eye), and that these two

images be sent to the correct eye. This requires that the compositor send the clients

a different view and projection matrix for each viewpoint, and that the client send a

separate image back to the compositor for each of these viewpoints.

This could be accomplished with separate buffers for each eye, but in the imple-

mentation presented here, the client creates a double-wide buffer and simply writes

the two images side by side in the buffer, using parameters provided by the compos-

itor. This is discussed in more detail in Section 7.1.1.3.

53

6.2.3 Depth Buffers

In order for the presentation of the 3D interface to appear consistent to the user,

the occlusion order of the geometry in the space must be preserved across geometry

drawn by different 3D clients and by the compositor.

One approach is to send all of the geometry to the compositor and have it draw

all of the content into a 2D image (which is the approach taken by 3DWM), but

this would either require that a full featured 3D graphics API be presented over the

display server protocol (which would incur significant performance penalties), or it

would seriously limit the flexibility clients have in producing a 2D image of their 3D

scene.

The other approach, and the one taken by the system presented here, is to have

the clients send their depth buffers to the compositor and composite the geometry in

2D in the same way that it is done in the traditional 3D graphics pipeline (see Sec-

tion 5.1.2 for more information about the depth buffer and its function). This allows

clients to use the graphics pipeline in any manner that they choose, and even to use

completely different rendering techniques like GPU accelerated ray tracing, provided

that they fill the depth buffer correctly. It also means that no new mechanism must

be introduced for passing geometry to the compositor or controlling how it is drawn,

which keeps the display server protocol extensions simple. The result of the per-pixel

depth compositing is shown in Figure 7.3.

6.2.4 Clipping

An important property of traditional windows is that applications can draw only

within the bounds of their window. This comes naturally with 2D windowing systems,

where the application’s window consists of the entire drawable area of its window

54

buffer. However, in the system presented here, 3D clients draw into a buffer which

is the same dimensions as the buffer which the compositor draws into, allowing an

uncontrolled client to draw into any portion of the 3D interface space.The result of

this clipping process for cuboid windows is shown in Figure 7.4.

To solve this problem, the compositor presented here is designed to simply ignore

pixels in the buffer produced by 3D clients if they lie outside the bounds of its 3D

window. The exact procedure which ensures this varies depending on which type of

3D window is being clipped, and is discussed in more detail in Section 7.3.3.1.

6.3 Design Decision Summary

On a high level, the design decisions made here are intended to allow the implemen-

tation of a 3D windowing system on top of graphics and windowing infrastructure

designed to support 2D windowing systems, in order to minimize the portion of the

windowing infrastructure needing to be modified and to allow unmodified 2D appli-

cations to operate alongside their 3D counterparts. These decisions are also intended

to maintain the simplicity of the design, which in some cases, like the choice of full

screen buffers, results in some overhead (in this case memory use) in order to avoid

complex synchronization problems.

55

CHAPTER 7

Implementation

This section describes the implementation of the design discussed in Section 6 built on

top of the Wayland display server protocol. This implementation, called ‘Motorcar’, is

free and open source and available on GitHub [29]. It is intended both to demonstrate

concretely that such a design is practical to implement, as well as to serve as a

functional 3D windowing system and provide a modular core that can form the basis

of further research into the concept of 3D windowing systems.

7.1 Wayland Protocol Extensions

The design outlined in Section 6 requires several pieces of functionality not provided

by the core Wayland protocol (like synchronization of the view and projection matrices

between the compositor and the clients) and functionality that is not supported by

the subsystems on which Wayland is built (like the ability for the compositor to

access client depth buffers), so an implementation on top of Wayland requires several

extensions to the Wayland protocol to provide 3D windowing services to clients (see

Section 5.3.3 for a brief introduction to the Wayland protocol).

These protocol extensions form the basis of the 3D windowing mechanism, and are

not exclusive to the compositor framework or client applications presented here. Any

Wayland compositor or client could hypothetically support these extensions, allowing

the basic 3D windowing mechanism to be extended to a variety of applications and

integrated with client applications and tool kits as needed. The extensions are de-

56

signed to be simple and flexible, so that any shortcomings of the compositor and client

frameworks presented here do no limit the adoption of the 3D windowing techniques

which they implement.

7.1.1 Interfaces

The protocol extensions used by Motorcar define several interfaces which the com-

positor uses to advertise and provide 3D windowing services to clients. Each of these

interfaces is designed to provide one or more of the elements of the architecture

outlined in Section 6, which is designed to require minimal extensions of existing

windowing systems, so the interfaces outlined here are relatively simple.

7.1.1.1 Motorcar Shell

The first interface, ‘motorcar shell’ represents a compositor shell that supports 3D

windowing of the style discussed in this thesis, and it has a single request, ‘get motorcar surface’,

which takes an existing Wayland surface (wl surface) as an argument and returns a

new Motorcar surface which is associated with the argument Wayland surface within

the compositor. The compositor creates a single instance of this interface at startup,

and clients can then use this instance to create a Motorcar surface object from the

Wayland surfaces which they have already created.

7.1.1.2 Motorcar Surface

The interface ‘motorcar surface’ represents a 3D window of the kind discussed in this

thesis. It allows the client to request the type of 3D window desired (for example a

cuboid or portal window) and declares events which allow the compositor to inform

the client of the 3D window’s bounds and transform in space and to deliver 3D input

events to the client. Because the instantiation of this interface takes a Wayland surface

57

as an argument, it allows the compositor to identify which surfaces are being used

as Motorcar surfaces and composite them appropriately. When a Motorcar surface

is created the compositor calculates the buffer size needed to hold the images (and

depth buffers) for all of the viewpoints and resizes the surface to these dimensions.

7.1.1.3 Motorcar Viewpoint

Perhaps the most important of the interfaces defined in the Motorcar extensions,

‘motorcar viewpoint’ represents a virtual camera in the 3D interface space managed

by the compositor (usually corresponding to one of the user’s eyes), and provides the

mechanisms needed to ensure that the client’s 3D content is projected in a manner

which allows it to be properly composited with 3D content from other clients and the

compositor. This interface has no requests, only events which allow the compositor

to inform clients of the parameters for the viewpoint which it represents.

The compositor creates a global instance of this interface for each viewpoint from

which it is drawing the scene, allowing the client to produce correct output for each

of these viewpoints. The protocol imposes no limit on the number of viewpoints or

how the images produced by clients for each viewpoint are laid out within the surface,

and allows viewpoints to be added or removed at runtime if necessary, leaving these

things up to the compositor implementation. The example compositor presented here

supports only a single user and a single stereoscopic display, and does not support

hotplugging displays, so it will never instantiate any viewpoints other than the two it

creates at startup (one for each of the user’s eyes), but this limitation is not reflected

in the protocol itself. The Motorcar viewpoint interface defines three events.

The first two events, ‘view matrix’ and ‘projection matrix’, allow the compositor

to update the view and projection matrices used by the client, and are sent once

when the client connects, and again every time one of the matrices changes. These

58

matrices are updated by separate events because while the view matrix changes every

time the user’s head moves, the projection matrix changes only when the user’s head

moves relative to the display surface, which never happens when using an HMD

(since it is strapped to their head) so the projection matrices for HMD viewpoints

never change at runtime. Some other types of immersive displays, like CAVEs, would

require that the projection matrix change every time the user’s head moves, and while

this is compatible with the protocol, it is not supported by the example compositor

presented here.

The third event, called ‘view port’, informs the client of where in the surface

buffer to draw the output for the viewpoint generating the event. This allows clients

to send the output of multiple viewpoints to the compositor using a single surface,

which eliminates the need to synchronize updating multiple surfaces. The view port

events actually defines two viewports for each viewpoint, one for the color image and

one for the depth buffer, which is needed to correctly composite the 3D content from

different clients (see Section 6.2.3 for details). It may seem unusual that the color and

depth buffers be given different view ports in the same image, since they represent

information about the same set of pixels, but this is tragically unavoidable for reasons

that are discussed in the following section.

7.1.1.3.1 EGL and the Depth View Port

The use of a second view port in the color buffer to transfer the contents of the

depth buffer from the clients to the compositor is a significant workaround resulting

from the inability of Wayland EGL to make client depth buffers accessible to the

compositor. Wayland EGL allows clients to create OpenGL contexts in which the

color buffer attached to the default framebuffer can be used by the compositor as

a texture without ever needing to copy the memory which backs the color buffer,

59

making it very desirable for clients which are drawing their window on the GPU (as

any 3D application would certainly be doing). However, Wayland EGL does not give

the compositor the same kind of access to the depth buffer attached to the default

framebuffer in the client’s context, which presents a significant hurdle.

This is overcome by doubling the size of the color buffer attached to the client’s

default framebuffer, drawing into a framebuffer object whose color and depth buffers

are backed by textures, and then texturing both the color buffer and the depth buffer

from the framebuffer object into the color buffer attached to the default framebuffer.

The compositor can then extract the original depth and color buffers from the client

color buffer and write them back into the depth and color buffers of a new framebuffer,

which it can then composite with the 3D scene based on the contents of the depth

buffer. This introduces a significant amount of rendering overhead and is the only

part of this design that cannot currently be implemented cleanly on top of Wayland.

Solving this problem efficiently, by giving the compositor direct access to the depth

buffer attached to the client’s default framebuffer, is probably possible but would

likely require modification of the implementation of Wayland EGL within Mesa. This

is considered by the author to be the single most pressing area of future work on this

system.

The process of encoding the depth buffer contents in the color buffer is further

complicated by the differences between the format of the depth buffer and color buffer.

The example compositor uses a color format that allocates eight bits for for each of

four color channels (red, green, blue, and alpha, which is used here for transparency)

and a 16 bit integer depth format. In order to transfer the depth information without

loss of precision the system presented here samples the depth buffer on the client

side as a 32 bit float, then uses a technique taken from [27] to pack this float into a

four-vector which is then written into the color buffer and unpacked back into the 32

bit float on the compositor side (using the reverse technique from [27]) and written

60

Figure 7.1: A high level conceptual illustration of the depth compositing process.

Clients draw their depth and color images into the same, double-height color buffer,

which the compositor then draws back into normal sized depth and color buffers, and

then composites with other 3D clients using the traditional depth test. Lighter color

in the depth images indicates that those pixels are further away.

back into the depth buffer.

7.1.2 Current Protocol Limitations

In its current state the Motorcar protocol extensions has very basic support for 3D

input events. The only implemented input events are essentially the 3D equivalent

of mouse events, such as button events attached to a six degree of freedom (6DOF)

transform, or changes in this 6DOF transform. These kinds of events form a good

extension of mouse events to 3D, and map well onto the input device used in this im-

plementation (the Razer Hydra 6DOF handset), but they certainly do not encompass

61

all possible 3D input. Other broad classes of input events include skeleton tracking

and gesture events, and these types of events could certainly be delivered over addi-

tional Wayland protocol extensions. However, an abstraction layer for these types of

events would require the development and integration of substantial systems which

are well outside the scope of this thesis, so they are excluded from this version of the

Motorcar protocol extensions.

7.2 Client Operation

This section describes the operation of 3D clients using the Motorcar protocol ex-

tensions, and most of this is firmly grounded in the way that the sample 3D clients

provided by Motorcar operate. The operation of 2D clients is not discussed in de-

tail here because it is identical to standard Wayland client operation, which is a key

feature of this system because it allows unmodified 2D clients to window into the

3D interface space without even being aware of its three dimensional nature. The

example Motorcar client code is derived from the weston-simple-egl client [10] dis-

tributed with Weston (the Wayland reference compositor), but adapted from C to

C++ and repackaged as an interface which can be implemented by individual clients

with minimal effort.

When the client connects to the compositor it receives creation events for all of the

global objects instantiated by the compositor, including the Motorcar shell and all of

the Motorcar viewpoints. The client can use the Motorcar shell to create a Motorcar

surface from any Wayland surfaces it has created, which tells the compositor to handle

that surface as a Motorcar surface (since these are composited differently than normal

surfaces) and allows the compositor to send 3D input events to that client, which the

client can listen for if it chooses.

The client binds each viewpoint and creates a data structure to represent it inter-

62

nally, which it then attaches to the event listener for that viewpoint. The compositor

responds to the binding process by sending the client the current state of the view-

point (the viewpoint’s view and projection matrices and its view port) to the client,

which the client then stores in the data structure associated with that viewpoint.

Every time the client gets the frame callback indicating that a new frame needs to

be drawn, the client iterates over all of the viewpoints and draws it’s scene however it

likes with the view and projection matrices from that view point into the viewpoint’s

color view port, then copies the depth buffer for that viewpoint into the viewpoint’s

depth view port. Once this has been done for each of the viewpoints the client calls

eglSwapBuffers, which swaps the surfaces front and back buffers and informs the

compositor that surface is ready to be updated.

7.3 Compositor Operation

This section describes the operation of the Motorcar compositor implemented for this

thesis. There are other ways that a Motorcar protocol compliant compositor could

function, but enumerating all of these designs is an intractably large task and likely

would not be useful anyway, so instead this section focuses on the concrete aspects

of the design that was implemented and is known to work. The operation of the

compositor is complex, and an exhaustive discussion of this software that implements

it would be inappropriately long, so the discussion here is limited to the components

of the compositor which are relevant to the mechanism by which is provides 3D

windowing services to clients. Users seeking a more comprehensive understanding

of the structure of this software are directed to the documentation in the GitHub

repository [29].

63

7.3.1 The Motorcar Compositor Framework

This thesis presents a modular C++ framework for Motorcar compositors designed to

be extremely flexible in the way that 3D windowing services are provided to clients.

The main function of a compositor built with this framework essentially just initializes

components which implement interfaces defined in the framework and attaches them

to one another over these interfaces. This allows components which do not meet the

needs of a particular compositor to be replaced by ones that do without needing to

rebuild the compositor from scratch, and it allows new components to be defined and

attached in natural ways. Examples of modules which would likely be replaced are

device specific classes (which implement device interfaces for things like 3D pointing

devices or head mounted displays on top of device specific API’s) and the window

manager (which controls how input events are directed to clients and how surfaces

are laid out in 3D when they are mapped).

7.3.1.1 The QtWayland Motorcar Compositor

The Motorcar compositor implemented for this thesis uses several core components

built on top of the QtWayland Compositor API. QtWayland is a module in the Qt

toolkit which provides a Wayland back-end for graphical Qt applications, as well as

providing a simple framework for building Wayland compositors on top of Qt. All of

the QtWayland dependent functionality in this compositor is isolated within a small

set of classes which hide the QtWayland functionality behind interfaces defined in

the Motorcar framework, which could hypothetically allow it to be separated and

allow Motorcar compositors to be built without a Qt dependency, though this is not

necessarily desirable.

QtWayland abstracts almost all of the interaction with the Wayland protocol it-

self (with the exception of interactions with the Motorcar protocol extensions) behind

64

a set of C++ classes which form the QtWayland Compositor interface, and most of

these classes interact with the Motorcar compositor framework through thin wrap-

per classes which exist primarily to isolate the Qt dependency. QtWayland handles

almost all of the behavior needed to correctly interact with 2D clients, allowing the

Motorcar compositor framework to focus on embedding the 2D clients’ surfaces in the

3D space and correctly sending these surfaces input events in their local coordinate

system. Additionally, Qt provides a platform independent OpenGL context, which

allows QtWayland compositors to run within other Wayland Compositors, within an

X environment, or even directly on top of the user interface hardware abstractions in

the Linux kernel.

7.3.1.2 The Compositor Scene Graph

The compositor maintains an internal scene graph which contains all spatial elements

in the 3D interface space. This includes surfaces (for both 2D and 3D windows),

viewpoints, displays, input devices, models of the user skeleton, and any graphical in-

terface elements drawn by the compositor (for example window decorations or docks).

All scene graph classes inherit from a root class called SceneGraphNode, which pro-

vides spatial relationship primitives as well as defining a doubly linked tree structure

between nodes (which forms the actual graph of the scene) and provides mechanisms

for traversing this tree.

All scene graph nodes have a single parent and a list of children, and these are

made accessible so that other parts of the compositor can manipulate the scene graph

as they see fit, and these two members form the core of the functionality that the

SceneGraphNode class provides. The scene graph is rooted in an instance of a special

scene graph class called Scene (which is unique in being allowed to have a null parent),

and this forms the primary interface between scene graph classes (which can always

65

access the scene root by traversing up the scene graph) and classes like the window

manager, motorcar shell, and display server modules (which typically are constructed

with a pointer to the scene on which they operate).

Figure 7.2: The inheritance graph for the classes composing the scene graph. Note

the division between virtual nodes (which can be children of any other node) and

physical nodes (which can only be children of other physical nodes) to reflect the

impossibility of a physical object being attached to a virtual one.

7.3.1.2.1 Traversing the Scene Graph

The scene graph is designed to be traversed several times per frame, and the

SceneGraphNode class provides virtual methods which allow implementing classes to

respond to each of these traversals appropriately without needing to implement the

traversal logic themselves. The first traversal, invoked immediately prior to sending

the current viewpoints to the clients and requesting new data from them, is intended

to allow implementing classes to do per-frame work prior to rendering (for exam-

ple animation updates or event generation by devices) and is handled by overriding

SceneGraphNode::handleFrameBegin(). The second traversal, invoked once per dis-

66

play per frame, is intended to allow implementing classes to render their content

to the display and is what drives surface classes to perform the compositing opera-

tions discussed in Section 7.3.3. This traversal can be handled directly by overriding

SceneGraphNode::handleFrameDraw(), but most classes that respond to this traver-

sal should inherit Drawable and override Drawable::draw() instead. The third and

final traversal, invoked every frame after drawing is completed and handled by over-

riding SceneGraphNode::handleFrameEnd(), is intended to allow any implementing

classes to clean up any resources which were created during the first traversal that

will not be needed in the next frame.

7.3.2 Frame Timing and Latency

This design requires that the compositor send new view matrices to its 3D clients

every frame, wait for them to draw new images, and then composite these images

and send them to the display before the next frame starts, so getting the timing

correct is a little bit tricky and there are several possible approaches with merit.

The approach taken in this implementation is to draw the scene graph (the han-

dleFrameDraw traversal) with the current data at the beginning of the frame, clean

up the frame (the handleFrameEnd traversal), update the scene graph state (the

handleFrameBegin traversal), then send the new matrices to the clients followed by

the frame callbacks that tell them to draw a new frame, then wait until the next

vSync event (indicating the display is done drawing) to swap the compositor buffers

and restart the process. This approach favors using old client output over dropping

frames in the compositor because it gives clients only the time remaining in the frame

after compositing completes to update their content before the compositor simply uses

the output it already has in memory. This ensures that no single client can reduce the

compositor frame rate, but it also means that 3D clients can get out of sync with the

67

compositor, which would break the illusion of a unified 3D interface space (because

out-of-sync clients would be drawn from a viewpoint that has since changed). Addi-

tionally, this means that the time it takes a movement of the user’s head to affect the

image drawn appropriately (referred to as ‘motion-to-photon latency’) would include

an entire extra frame’s worth of time, which is undesirable in certain applications.

An alternative approach would be to update the scene graph, send the new matri-

ces and frame callbacks to the 3D clients, wait until all of the 3D clients have finished

drawing, and only then draw the scene and clean up. This approach would minimize

the motion-to-photon latency but, because it requires that the compositor wait for

the clients to finish drawing, it could allow a single slow client to cause the compositor

to drop frames. This approach may be more suitable for applications like immersive

virtual reality video games, where only a single latency-sensitive application needs

compositing, and it is probably not the most general purpose solution. As discussed

in Section 8.4, this timing mode could potentially be toggled from the client based on

its application profile, though such functionality is not yet implemented in the system

presented here.

7.3.3 Three Dimensional Compositing

The core functionality of a Motorcar compositor is its ability to combine interfaces

from 2D and 3D applications in a unified 3D interface space. The compositing portion

of this requires that the compositor be able to draw 2D windows on planes embedded

in the 3D space and be able to composite the output from 3D applications with these

planes as well as with the output of other 3D applications. The first requirement

is fairly straightforward (especially with the use of QtWayland), essentially boiling

down to projecting and texturing quads with OpenGL, so we do not bother to discuss

it in detail here. The second requirement is met with a fairly complex mechanism

68

that forms one of the core contributions of this thesis, and this mechanism is the

focus of the rest of this section.

When clients create a Motorcar surface, the scene graph node representing the

surface (of class WaylandSurfaceNode) is replaced by a new node with an inherit-

ing type (class DepthCompositedSurfaceNode) that defines the correct compositing

behavior for Motorcar surfaces. The DepthCompositedSurfaceNode class performs

the compositing operations needed to make the contents of its surface appear three

dimensional to the user.

7.3.3.1 Clipping and Depth Compositing

The clipping process varies slightly depending on the type of window being clipped,

but for the most part the process is identical. The term ‘near clipping surface’ is

used here to describe the surface which everything in the window must be in front

of, the term ‘far clipping surface’ is used to describe the surface which everything in

the window must be drawn in front of, and ‘full clipping surface’ is used to describe

the union of these two. For a cuboid window the near clipping surface is the three

faces of the cuboid facing toward the viewpoint (the first three faces where the dot

product of the face normal and the view vector is less than or equal to zero) and the

far clipping surface is the other three faces of the cuboid. For portal type windows

the near clipping surface is the window opening and the far clipping surface doesn’t

exist. The depth compositing and clipping process uses a scratch framebuffer with

the same dimensions as the compositor buffer and the process described here operates

once per viewpoint.

This scratch framebuffer is first cleared (zeroing the red, green, blue, and alpha

values), and the full clipping surface of of the window is written into the stencil

buffer (such that only pixels within the projection of the clipping surface can be

69

Figure 7.3: This image shows the behavior of cuboid and portal windows with depth

compositing enabled and disabled. Note that the sample client uses the light blue

color as its background, and that those pixels have the maximum possible depth value

drawn to) with the color and depth buffers disabled. This prevents the client from

drawing any fragments which can not possibly be valid because they are outside the

projection of its window bounds, and substantially reduces the overhead of copying

pixels because pixels disabled by the stencil buffer will simply be ignored (this step is

also done in the client for efficiency). The next step is to draw the client buffer into

the color and depth buffers of the scratch framebuffer using the late depth test (the

depth image is extracted from the client color buffer, due to the problem described in

Section 7.1.1.3.1). This draws only those pixels which are closer than the far clipping

surface, since those which are further away will fail the depth test. This draw is also

where the stencil buffer drops all fragments outside the projection of the window.

70

Figure 7.4: A screenshot of the motorcar compositor showing the content of the

cuboid window (the colored cube) being clipped against the near clipping surface.

Notice how the fragments are completely dropped and other appear to be simply

non-existent.

Next, the full clipping surface is drawn into the stencil and depth buffer with front

back face culling enabled (effectivly drawing the far clipping surface) and the depth

test reversed (so that fragments with greater depth pass the depth test). This zeroes

the stencil buffer for any fragments from the client image which are closer than the

near clipping surface, preventing them from being drawn in the compositing process.

71

For cuboid windows this process is repeated with the standard depth test and front

face culling enabled, achieving the same effect for the far clipping surface. Finally,

the contents of the scratch framebuffer (both depth and color) are drawn into the

compositor framebuffer using the late depth test, resulting in correct per-pixel depth

compositing of only the fragments inside the window bounds.

This process ensures both that any fragments in the client buffer which lie outside

the window bounds are discarded and that any fragments inside the window bounds

are composited properly.

7.4 Test Hardware Configuration

This compositor was developed using an Oculus Rift DK1 virtual reality headset and

a Sixense Razer Hydra six degree of freedom magnetic tracking handset system. The

Rift provides only head orientation tracking, which does not allow proper motion

parallax to be simulated (see Section 5.2.1 for details. Fortunately, the Hydra system

comes with two handsets, which allows one to be used to track the head’s position

(by attaching it to the back of the Rift headset), while the other is used as an input

device. This setup can be seen in Figure 7.5.

The Oculus Rift requires a image space barrel distortion of the rendered stereo

image to correct for a pincushion distortion introduced by the optics in the headset.

This is performed as a final step immediately before the compositor sends the final

image to the display. Clients need not even be aware of this step, which is yet another

advantage of using the windowing approach described here.

72

Figure 7.5: A test subject wearing the hardware system on which this implementation

was developed. Notice that one Hydra handset is held in her right hand and being

used for 3D input, while the other is attached to the Rift headset and used for tracking

the position of her head.

73

Figure 7.6: An image showing the stereo rendering of the windowing space with the

Oculus Rift distortion applied. This is the final image which is sent to the Rift display.

74

CHAPTER 8

Future Work

The thesis presents an architecture for unified 2D and 3D windowing systems, and

the implementation, Motorcar, is meant to serve both as a proof of concept that this

architecture is feasible to implement on top of existing windowing systems and as the

basis for an open source implementation of this architecture. As such, the potential

for future work based off of this thesis represents a significant portion of the value

that it adds to the field.

8.1 Input Events

The system presented here supports a single type of 3D input event which is strongly

analogous to traditional mouse events, only three dimensional. These events map

well onto the hardware on which this system was developed (since the Razer Hydra

is strongly analogous to the three dimensional equivalent of a traditional mouse), but

this class of input events by no means captures all classes of 3D input. Other broad

classes of 3D input, some of which are discussed here, could also be handled by the

windowing system and delivered to applications abstractly.

8.1.1 Skeleton Tracking

Many consumer grade 3D input devices are designed to track the user’s body directly

and use this information for input. The APIs which provide the tracking information

are typically device specific, though systems which abstract this information from

75

device specific APIs are actively under development. A good example of one such

system is Shapansky’s Jester [33], which not only provides a device agnostic abstrac-

tion, but also provides a framework for using multiple skeleton tracking devices to

drive a unified skeleton model.

Integration of such a system into Motorcar would allow it to provide client appli-

cations with abstract skeleton input and provide devices an abstract input interface

which could be driven off a variety of device specific APIs. This would require that

an additional set of protocol extensions be developed to communicate skeleton data

to 3D clients, but the author sees no reason why this would not be possible.

Furthermore, Wayland supports touch input natively, so the skeleton data could be

used to generate touch events for 2D windows (whenever the user’s fingers intersect

the window in 3D space), allowing users to interact directly with 2D applications

embedded in the space around them without these applications needing to support

the extensions which communicate skeleton data directly.

8.1.2 Gestures

Having the windowing system handle skeleton input internally would also allow it to

recognize gestures (specific sequences of body movement) and use them to control the

windowing system or to deliver them to client applications as input events directly.

This would require several new systems to function in the most general sense.

The first, and perhaps most important, requirement is some way of representing

gestures in an abstract and general way so that they can be communicated between

systems involved in the gesture input data flow. Such a representation would need

to able to represent a broad class of useful gestures (both as a general gesture that

could happen and as a specific gesture event that has happened) in a variety of formal

language (so gestures could be communicated between systems written in different

76

languages) including the Wayland display server protocol. A set of protocol extensions

would need to be created to communicate gestures represented in this form between

the compositor and client applications.

The second is a gesture recognizer which can operate on the unified skeleton model

to recognize any gesture described in this representation. Because the recognizer can

recognize any gesture described in the abstract representation, it could recognize ges-

tures on behalf of many different entities, provided these entities had some channel

of requesting that the recognizer listen for their gestures. This means that the win-

dowing system could register gestures for recognition which it could use to control

windows, applications could register domain specific gestures for recognition through

the windowing systems, and users could configure special gestures which they like to

be used for a variety of input purposes.

The third is some kind of training mechanism which would allow users or de-

velopers to input a set of movements and then use these movements to generate a

description of a gesture in the abstract representation without needing to define the

representation explicitly. This could be accomplished by multiple disjoint systems, or

it could be integrated into the recognizer, or both.

8.2 User Interface Toolkits

In traditional windowing systems, applications rarely interact directly with the win-

dowing system itself. Rather, interactions with the windowing system is handled by

a piece of middle-ware called a user interface (UI) toolkit. These toolkits abstract

higher level interface concepts, like buttons and menus, on top of the windowing sys-

tem, and applications are built with this higher level components. These toolkits

are complex, and the design of such a system is a significant software engineering

challenge.

77

The development of such a toolkit on top of a 3D windowing system like the

one presented here would allow applications to leverage the capabilities they provide

without needing to create their own interface abstractions on top of the windowing

systems. There is at least one relatively mature toolkit for building applications with

3D user interfaces, called Vrui [21], but it is designed to run on top of X11. Porting

Vrui to run on top of a 3D windowing system may be possible, and would make a large

body of 3D user interface research compatible with these systems, but it is unclear

whether this is even possible at this time.

8.3 EGL Depth Buffer Extensions

Motorcar takes a significant performance hit because it needs to copy the client depth

buffer in and out of the color buffer in order to make it accessible to the compositor,

which adds two rendering passes to the compositing process for 3D client applications.

EGL support extensions of the interfaces, and it may be possible to modify the open

source EGL implementation in Mesa to natively support making the client depth

buffer directly accessible to the compositor internally, eliminating the need for the

extra rendering passes. It is not certain that this is possible, but it is likely. This is

likely the next thing the author will pursue on this project.

8.4 Immersive Vitrual Reality Mode

Many of the applications which currently use the hardware that the windowing system

presented here is designed to abstract are immersive virtual reality (VR) experiences.

These applications are very resource intensive, extremely latency sensitive, and typi-

cally are designed to take complete control of the hardware.

The depth compositing process presented here introduces significant rendering

78

overhead, and is only necessary if multiple applications wish to use the 3D user inter-

face hardware simultaneously (which is not the case with VR applications). Therefore

it could be useful to allow client applications to enable a special compositing mode

which ignores outputs from all other applications (and stops asking them to update),

ignores the client depth buffer, and blit the client color buffer directly into the com-

positor buffer. This would essentially disable the compositing process, minimizing

the computational overhead introduced by the compositor (and other clients), and

minimizing the latency added by the compositing process.

It may also be useful to allow clients in this mode to request that the compositor

update the view and projection matrices at any point in time, allowing VR applica-

tions to use the most recent head transform possible.

8.5 Feasibility in Other Windowing Systems

It is clear that the basic architecture outlined in Section 6 can be implemented on

top of Wayland, since Motorcar demonstrates this by nature of its existence, and it is

argued in Section 5.3.2 that it is not feasible to implement this design on top of X11.

However, it remains unclear whether or not it would be feasible to implement this

architecture on top of the windowing systems used by proprietary operating systems

like Microsoft Windows and Apple’s OSX. If it was possible to support the same

basic style of 3D windowing mechanism in these windowing systems, then it could

be possible for UI toolkits like the ones discussed above to provide a cross platform

abstraction for applications with 3D user interfaces, allowing for the development

of a rich software ecosystem for computers that support 3D user interfaces. It is

not immediately clear whether or not the necessary modifications to these windowing

systems could be made by developers outside of the corporations that maintain them,

so this point may be moot, but it would certainly be worth further investigation.

79

CHAPTER 9

Conclusion

The hardware needed to provide high quality 3D user interfaces is finally becoming

available to consumers, and the diversity of this hardware is growing rapidly. Cur-

rently, applications must integrate with each piece of hardware individually, and there

is no widely adopted mechanism to allow multiple applications to share this hard-

ware in a meaningful way. This limits support for hardware and creates a fragmented

software ecosystem facing serious barriers to maturing properly.

This thesis proposes that these problems facing 3D user interfaces can be solved

in the same way that they were solved for 2D user interfaces: by providing a system

level 3D interface abstraction through the windowing system. It presents a viable

architecture for 3D windowing systems which integrates well with existing windowing

infrastructure, and demonstrates this with an implementation of this architecture,

called Motorcar, built on top of an existing windowing system, Wayland.

The systems and concepts presented here are intended to form a basis for further

research into the field and to provide a functioning open source implementation which

other components can be developed around and integrated with. This represents

but one of many steps in the long process of bringing functional, modular, general

purpose 3D user interfaces to every day computer users, but it is also an important

one. Hopefully, with further work, our interactions with computers will one day be

freed from their two dimensional constraints and brought into the three dimensional

space in which we interact with everything else.

80

BIBLIOGRAPHY

[1] D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev. 3D User Interfaces:

Theory and Practice. Addison Wesley Longman Publishing Co., Inc., Red-

wood City, CA, USA, 2004.

[2] Compiz. What is compiz? Retrieved December 8th, 2013 from http://www.

compiz.org/.

[3] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-screen projection-

based virtual reality: The design and implementation of the CAVE. In

Proceedings of the 20th Annual Conference on Computer Graphics and In-

teractive Techniques, SIGGRAPH ’93, pages 135–142, New York, NY, USA,

1993. ACM.

[4] S. DiVerdi. Towards Anywhere Augmentation. PhD thesis, University of Cali-

fornia, Santa Barbara, Sept. 2007.

[5] S. DiVerdi, D. Nurmi, and T. Höllerer. Arwin-a desktop augmented reality win-

dow manager. In Proceedings of the 2nd IEEE/ACM International Sympo-

sium on Mixed and Augmented Reality, ISMAR ’03, pages 298–, Washington,

DC, USA, 2003. IEEE Computer Society.

[6] N. Elmqvist. 3dwm: A Platform for Research and Development of Three-

Dimensional User Interfaces, year = 2003.

[7] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard. Real-time 3D visual

slam with a hand-held RGB-D camera. In Proc. of the RGB-D Workshop

81

http://www.compiz.org/
http://www.compiz.org/

on 3D Perception in Robotics at the European Robotics Forum, Vasteras,

Sweden, volume 2011, 2011.

[8] S. Feiner, B. MacIntyre, M. Haupt, and E. Solomon. Windows on the world: 2D

windows for 3D augmented reality. In Proceedings of the 6th annual ACM

symposium on User interface software and technology, UIST ’93, pages 145–

155, New York, NY, USA, 1993. ACM.

[9] S. K. Feiner and C. Beshers. Worlds within worlds: Metaphors for exploring

n-dimensional virtual worlds. In Proceedings of the 3rd annual ACM SIG-

GRAPH symposium on User interface software and technology, pages 76–83.

ACM, 1990.

[10] FreeDesktopOrganization. Wayland. Retrieved May 14th, 2014 from http:

//wayland.freedesktop.org/.

[11] FreeDesktopOrganization. Wayland protocol and model of operation. Re-

trieved May 17th, 2014 from http://wayland.freedesktop.org/docs/

html/chap-Protocol.html.

[12] L. Gallo, G. De Pietro, and I. Marra. 3D interaction with volumetric medical

data: Experiencing the Wiimote. In Proceedings of the 1st International

Conference on Ambient Media and Systems, Ambi-Sys ’08, pages 14:1–14:6,

ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer Sci-

ences, Social-Informatics and Telecommunications Engineering).

[13] L. Gallo, A. P. Placitelli, and M. Ciampi. Controller-free exploration of medical

image data: Experiencing the Kinect. In Computer-Based Medical Systems

(CBMS), 2011 24th International Symposium on, pages 1–6. IEEE, 2011.

[14] F. Giesen. A trip through the graphics pipeline 2011: Index. Re-

82

http://wayland.freedesktop.org/
http://wayland.freedesktop.org/
http://wayland.freedesktop.org/docs/html/chap-Protocol.html
http://wayland.freedesktop.org/docs/html/chap-Protocol.html

trieved May 14th, 2014 from https://fgiesen.wordpress.com/2011/07/

09/a-trip-through-the-graphics-pipeline-2011-index/, July 2011.

[15] J. Groff. An intro to modern OpenGL. Chapter 1: The graphics pipeline.

Retrieved May 14th, 2014 from http://duriansoftware.com/joe/

An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.

html, Apr. 2010.

[16] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using

depth cameras for dense 3D modeling of indoor environments. In O. Khatib,

V. Kumar, and G. Sukhatme, editors, Experimental Robotics, volume 79 of

Springer Tracts in Advanced Robotics, pages 477–491. Springer Berlin Hei-

delberg, 2014.

[17] C.-H. Huang and C.-L. Wu. Image information processing system for hemispheri-

cal screen with dual 1080p high-resolution projectors. Journal of Information

Science & Engineering, 26(1), 2010.

[18] ImInVR. Middlevr. Retrieved May 14th, 2014 from http://www.imin-vr.com/

middlevr/.

[19] iPiSoft. Depth sensors comparison. Retrieved May 14th, 2014 from http://

wiki.ipisoft.com/Depth_Sensors_Comparison, May 2013.

[20] KhronosGroup. EGL native platform interface. Retrieved May 17th, 2014 from

https://www.khronos.org/egl.

[21] O. Kreylos. Vrui VR toolkit. Retrieved May 14th, 2014 from http://idav.

ucdavis.edu/~okreylos/ResDev/Vrui/, May 2014.

[22] W. Krüger, C.-A. Bohn, B. Fröhlich, H. Schüth, W. Strauss, and G. Wesche. The

83

https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html
http://www.imin-vr.com/middlevr/
http://www.imin-vr.com/middlevr/
http://wiki.ipisoft.com/Depth_Sensors_Comparison
http://wiki.ipisoft.com/Depth_Sensors_Comparison
https://www.khronos.org/egl
http://idav.ucdavis.edu/~okreylos/ResDev/Vrui/
http://idav.ucdavis.edu/~okreylos/ResDev/Vrui/

responsive workbench: A virtual work environment. Computer, 28(7):42–48,

1995.

[23] G. Leach. Lecture: Graphics pipeline and animation. Retrieved

May 14th, 2014 from http://goanna.cs.rmit.edu.au/~gl/teaching/

Interactive3D/2013/lecture2.html.

[24] J. Lee. Hacking the nintendo wii remote. Pervasive Computing, IEEE, 7(3):39–

45, July 2008.

[25] L. Li. Time-of-flight camera–an introduction. 2014.

[26] OculusVR. Next-gen virtual reality. Retrieved May 14th, 2014 from http:

//www.oculusvr.com/rift/.

[27] A. Pranckeviius. Encoding floats to RGBA - the final? http://aras-

p.info/blog/2009/07/30/encoding-floats-to-rgba-the-final/, 2009.

[28] S. Reichelt, R. Häussler, G. Fütterer, and N. Leister. Depth cues in human visual

perception and their realization in 3D displays. In SPIE Defense, Security,

and Sensing, pages 76900B–76900B. International Society for Optics and

Photonics, 2010.

[29] F. Reiling. Motorcar. https://github.com/evil0sheep/motorcar/, 2014.

[30] È. Renaud-Houde. Finding an object’s screen coordinates. Re-

trieved May 14th, 2014 from https://forum.libcinder.org/topic/

finding-an-object-s-screen-coordinates, 2011.

[31] G. Robertson, M. van Dantzich, D. Robbins, M. Czerwinski, K. Hinckley, K. Ris-

den, D. Thiel, and V. Gorokhovsky. The task gallery: A 3D window manager.

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’00, pages 494–501, New York, NY, USA, 2000. ACM.

84

http://goanna.cs.rmit.edu.au/~gl/teaching/Interactive3D/2013/lecture2.html
http://goanna.cs.rmit.edu.au/~gl/teaching/Interactive3D/2013/lecture2.html
http://www.oculusvr.com/rift/
http://www.oculusvr.com/rift/
https://github.com/evil0sheep/motorcar/
https://forum.libcinder.org/topic/finding-an-object-s-screen-coordinates
https://forum.libcinder.org/topic/finding-an-object-s-screen-coordinates

[32] G. G. Robertson, S. K. Card, and J. D. Mackinlay. Information visualization

using 3D interactive animation. Communications of the ACM, 36(4):57–71,

1993.

[33] K. Schapansky. Jester: A device abstraction and data fusion API for skeletal

tracking sensors. Master’s thesis, California Polytechnic State University,

2014.

[34] R. Skerjanc and S. Pastoor. New generation of 3D desktop computer interfaces.

volume 3012, pages 439–447, 1997.

[35] SoftKinetic. Depthsense cameras. Retrieved May 14th, 2014 from http://www.

softkinetic.com/en-us/products/depthsensecameras.aspx.

[36] Sony. Introducing Project Morpheus. Retrieved May 14th,

2014 from http://blog.us.playstation.com/2014/03/18/

introducing-project-morpheus/.

[37] D. Stone. The real story behind Wayland and X. Presented at linux.conf.au, Re-

trieved May 14th, 2014 from http://mirror.linux.org.au/linux.conf.

au/2013/ogv/The_real_story_behind_Wayland_and_X.ogv, Jan. 2013.

[38] I. E. Sutherland. A head-mounted three dimensional display. In Proceedings of

the December 9-11, 1968, Fall Joint Computer Conference, Part I, AFIPS

’68 (Fall, part I), pages 757–764, New York, NY, USA, 1968. ACM.

[39] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and A. T.

Helser. Vrpn: a device-independent, network-transparent vr peripheral sys-

tem. In Proceedings of the ACM symposium on Virtual reality software and

technology, pages 55–61. ACM, 2001.

85

http://www.softkinetic.com/en-us/products/depthsensecameras.aspx
http://www.softkinetic.com/en-us/products/depthsensecameras.aspx
http://blog.us.playstation.com/2014/03/18/introducing-project-morpheus/
http://blog.us.playstation.com/2014/03/18/introducing-project-morpheus/
http://mirror.linux.org.au/linux.conf.au/2013/ogv/The_real_story_behind_Wayland_and_X.ogv
http://mirror.linux.org.au/linux.conf.au/2013/ogv/The_real_story_behind_Wayland_and_X.ogv

[40] A. Topol. Immersion of Xwindow applications into a 3D workbench. In CHI ’00

Extended Abstracts on Human Factors in Computing Systems, CHI EA ’00,

pages 355–356, New York, NY, USA, 2000. ACM.

[41] TruePlayerGear. Reality’s about to get a reality check. Retrieved May 14th,

2014 from http://www.trueplayergear.com/.

[42] WikimediaCommons. Wiimote, 2010.

[43] WikimediaCommons. Playstation Move controller, 2011.

[44] WikimediaCommons. Razer Hydra motion controller, 2011.

[45] WikimediaCommons. Screenshot of KDE, 2013.

86

http://www.trueplayergear.com/

	List of Figures
	Introduction
	Two Dimensional User Interfaces
	Three Dimensional User Interfaces
	Three Dimensional Input Devices
	Immersive Three Dimensional Displays

	Motivation
	Obstacles Facing the Adoption of Three Dimensional Interfaces
	Device Abstraction
	Multiple Application Support

	Insights from Two Dimensional User Interfaces
	Windowing Systems

	Proposed Solution: A Three Dimensional Windowing System
	Advantages of This Approach
	Hardware Abstraction and Multiple Application Support
	Compatibility With Existing Graphics and Windowing Infrastructure

	Contribution
	Related Works
	Two Dimensional Windows in Three Dimensional Environments
	In Production Software

	Three Dimensional Windows
	The Three Dimensional Workspace Manager (3DWM)

	Technical Background
	Computer Graphics
	The Vertex Transformation
	A Simple Example: Transformations

	Rasterization and The Depth Test
	Framebuffers

	Human Perception of Three Dimensions
	Motion Parallax and Stereopsis
	Relative Size
	Occlusion

	Open Source Windowing Systems
	Basic Architecture
	Wayland and X
	Wayland Display Server Protocol
	EGL

	Design: A Unified Windowing System
	Windowing System Services
	Graphical Interface Hardware and The Graphical Interface Space
	Interface Contexts Within the Graphical Interface Space
	Three Dimensional Interface Contexts
	Cuboid Bounded
	Portal-Like
	Unbounded
	Correct Interpretation

	Two Dimensional Interface Contexts

	Three Dimensional Windows With Two Dimensional Buffers
	Synchronized View And Projection Matrices
	Buffer Size and the Projection Matrix

	Stereo Images
	Depth Buffers
	Clipping

	Design Decision Summary

	Implementation
	Wayland Protocol Extensions
	Interfaces
	Motorcar Shell
	Motorcar Surface
	Motorcar Viewpoint
	EGL and the Depth View Port

	Current Protocol Limitations

	Client Operation
	Compositor Operation
	The Motorcar Compositor Framework
	The QtWayland Motorcar Compositor
	The Compositor Scene Graph
	Traversing the Scene Graph

	Frame Timing and Latency
	Three Dimensional Compositing
	Clipping and Depth Compositing

	Test Hardware Configuration

	Future Work
	Input Events
	Skeleton Tracking
	Gestures

	User Interface Toolkits
	EGL Depth Buffer Extensions
	Immersive Vitrual Reality Mode
	Feasibility in Other Windowing Systems

	Conclusion
	Bibliography

