WANNACRY MALWARE REVERSE ENGEERING

NFSU
&

— "'\

o &
%3{;{3 3‘&

BY EMMANUEL WILLIAM FRIMPONG
DATE: 12/7/2023

This analysis was done from the entry point of the exe file downwards to the end of the graph flow. The
analysis was carried out in the IDA pro program.

e GetModuleFileNameA
Retrieves the fully qualified path for the file that contains the specified module.

The statement "Retrieves the fully qualified path for the file that contains the specified module" refers to
the function of retrieving the complete file path of a specific module (like a DLL or an EXE file) in a
system.

Parameters
nSize — 208h — the size of the buffer to receive the module
IpFilename - The full path of the module to be retrieved

hModule — handle to the module that is to be retrieved

- == =g ==
mov ecx, 81h

xor eax, eax

lea edi, [ebp+var_208]

rep stosd

stosw

stosb

lea eax, [ebp+Filename]

push 208h ; nSize

xor ebx, ebx

push eax ; lpFilename
push ebx ; hModule
call ds:GetModuleFileNameA

push offset DisplayName

call sub_401225

pop ecx

call ds:_p__ argc

cmp dword ptr [eax], 2

inz short loc 48208E

Explanation: The statement "Retrieves the fully qualified path for the file that contains the specified
module," refers to the function that retrieves the complete file path of a specific module (like a DLL or an
EXE file) in a system.

e CopyFileA
Copies an existing file to a new file
Parameters
IpNewFileName - The name of the new file.

IpExistingFileName - The name of an existing file.

bFaillfExists - f this parameter is TRUE and the new file specified by IpNewFileName already exists, the
function fails. If this parameter is FALSE and the new file already exists, the function overwrites the
existing file and succeeds.

|JL SNOrt 10C_svyZvoc I
|1
il i =
mov esi, offset FileName ; "tasksche.exe"
push ebx ; bFailIfExists
lea eax, [ebp+Filename]
push esi ; lpNewFileName
push ; lpExistingFileName
call
push ; lpFileName
call FileAttributesA
cmp eax, FFFh
jz short loc_40208E

"I
call sub 4@1FSD

Explanation: This function seems to be copying an old file and renaming it into “tasksche.exe”.

e GetFileAttributesA

Retrieves file system attributes for a specified file or directory.

Attributes of the File

* 1.Name. Every file carries a name by which the file is recognized in the file system. ...

* |dentifier. Along with the name, Each File has its own extension which identifies the
type of the file. ...

e Type...

* Location. ...
» Size....

* Protection. ...

¢ Time and Date.
Parameters
IpFileName - The name of the file or directory.

Explanation: This function gets the metadata of the “tasksche.exe” which has been copied.

e SetCurrentDirectoryA

Changes the current directory for the current process

Parameter

IpPathName
path.

Explanation:

- The path to the new current directory. This parameter may specify a relative path or a full

lea eax, [ebptFilename]
push eax - lpﬂathName

call ds:SetCurrentDirectoryA

This function copies the exe file “tasksche.exe,” to the current process’s directory.

Moving into this function

push
call
mov

push
call

sub_4@10FD

[esp+6F4h+Str], offset Str ;
ebx ; hModule
sub_401pAB

¢ FindReasourceA

Determines the location of a resource with the specified type and name in the specified module.

Parameters

hModule - A handle to the module whose portable executable file or an accompanying MUI file contains
the resource. If this parameter is NULL, the function searches the module used to create the current

process.

MUI — A language that allows a program to run multiple languages.

IpName - The name of the resource.

sub_4@1DAB proc near

Src= dword ptr -12Ch
Strl= byte ptr -128h
hModule= dword ptr 8
Str= dword ptr @cCh

push ebp

mov ebp, esp

sub esp, 12Ch

push esi

push edi

push offset Type ; "XIA"
push 86Ah ; lpName

push [ebp+hModule] ; hModule
call ds:FindResourceA

Explanation: This function finds the resource of a process, presumably the current process.
e LoadResource

Retrieves a handle that can be used to obtain a pointer to the first byte of the specified resource in
memory.

Parameters

hModule - A handle to the module whose executable file contains the resource. If hModule is NULL, the
system loads the resource from the module that was used to create the current process.

hResInfo - A handle to the resource to be loaded.

Ll e 5=
push dsi ;3 hResInfo
push [ebp+hModule] ; hModule
call ds:LoadResource
test eax, eax
jz short loc_401E@7
%
[] 1

Explanation: As said of this function, it retrieves the handle to the first byte of the current process’s
memory.

e LockResource
Retrieves a pointer to the specified resource in memory.
Parameters

hResData - A handle to the resource to be accessed.

ol e =

push eax ; hResData
call ds:LockResource

mov edi, eax

test edi, edi

jz short loc_401E07

|

e SizeofResource
Retrieves the size, in bytes, of the specified resource.
Parameters
hModule - A handle to the module whose executable file contains the resource.

hResInfo - A handle to the resource.

ol e =

push [ebp+Str] 3 SEtr

push esi ; hResInfe
push [ebp+hModule] ; hModule
call ds:SizecdffResource

push eax 3 ihk
push edi ; hFile
call sub_487S5AD

mov esi, eax

add esp, @Ch

test esi, esi

jnz short loc_401E@GE
1 1

Entering into this function

push ebx
push LV I
Hor eax, eax
pop eCcx
lea edi, [ebpt+stri]
rep stosd
lea eax, [ebpt+src]
push eax
pUSh B::::::::h
push esi
call sub_4@875C4
Mo ebx, [ebp+Src]
add esp, BCh
Xor edi, edi
test ebx, ebx
jle short loc_4@1E8F
v ¥
Entering into the subfunction
_ Y
| e =
Ul eax, 2888ah
p short loc_4@75FD| |loc_4@75F@:
mow ecx, [ecx+4]
push eax 5 5rc
push [esp+atarg 4] ; int
calll sub_4@6C48
e ReadFile
Reads the file
= ']
Ll s =] FE
lea eax, [ebp+lpBuffer]
push 8 ; lpOverlapped loc_aes
push eax 5 lpNumberOfBytesRead Mo
push edi ; nNumberOfBytesToRead| |mov
push [ebp+lpBuffer] ; lpBuffer lea
push dword ptr [esi+4] ; hFile cmp
call ds:ReadFile jbe
test eax, eax
jnz short loc_4@5DB9
Y Y
e SetFilePointer

Moves the file pointer of the specified file.

Parameters

hFile - A handle to the file.

IDistanceToMove - The low order 32-bits of a signed value that specifies the number of bytes to move
the file pointer.

Y Yy
eax+2Ch]
loc_485D43: ; lpDistanceToMoveHigh
ebp+lDistanceToMove] | |push edk
push [ebp+lDistanceToMove] ; 1DistanceToMove
loc_485D047

[l e 5=

mov ecx, [ebp+lDistanc
loc_4@85047: ; hFile| |add [eax+1Ch], ecx
push dword ptr [eax+4] jmp short loc_4@85D86
call ds:SetFilePointer
jmp short leoc_4@85D86

e SystemTimeToFileTime
Converts a system time to file time format.
Parameters

IpSystemTime - A pointer to a SYSTEMTIME structure that contains the system time to be converted from
UTC to file time format.

IpFileTime - A pointer to a FILETIME structure to receive the converted system time.

R Cuay e sz)

shr ecx, 5

push eax ; lpFileTime

lea eax, [ebp+SystemTime]

and ecx, 3Fh

push eax 5 1pSystemTime
mow [ebpt+SystemTime.wMinute], cx
call ds:SystemTimeToFileTime

mow eax, [ebptFileTime.dwLowDateTime]
Mo edx, [ebp+FileTime.dwHighDateTime]
leave

retn

sub_4B6B23 endp

Explanation: The SystemTimeToFileTime function converts the time of the local machine to the format of
the time of the file presumably, the “tasksche.exe”. This is to make sure that the correct time set for
some execution or scheduling of some process would be initiated at the right time as expected.

e LocalFileTimeToFiletime
Converts a local file time to a file time based on the Coordinated Universal Time (UTC).
Parameters

IpLocalFileTime - A pointer to a FILETIME structure that specifies the local file time to be converted into a
UTC-based file time.

IpFileTime - A pointer to a FILETIME structure to receive the converted UTC-based file time. This
parameter cannot be the same as the IpLocalFileTime parameter.

[JU[J eLx

lea eax, [ebp+FileTime]

push eax ; 1pFileTime

lea eax, [ebp+LocalFileTime]

push eax ; lplocalFileTime
mov [ebptLocalFileTime.dwHighDateTime], edx
call ds:LocalFileTimeToFileTime

mov eax, [ebp+FileTime.dwLowDateTime]
mov ecx, [ebp+FileTime.dwHighDateTime]
cmp [ebptvar C], &

mov ebx, dword ptr [ebp+5tri]

mov [esi+18Ch], eax

mov [esi+114h], eax

mov [esi+11Ch], eax

- L R -1] ——

e CreateFileA
Creates or opens a file or /O device.
Parameters
IpFileName - The name of the file or device to be created or opened.

dwDesiredAccess - The requested access to the file or device, which can be summarized as read, write,
both or 0 to indicate neither).

The value EEEEEEEEED) (or EEEEEEEEE]) in hexadecimal) is a combination of several access rights:

. (Ox80000000): Allows the caller to read the object.
. (0Ox40000000): Allows the caller to write to the object.
. (0Ox20000000): Allows the caller to execute the object.

dwShareMode - The requested sharing mode of the file or device, which can be read, write, both, delete,
all of these, or none. If this parameter is zero and CreateFile succeeds, the file or device cannot be
shared and cannot be opened again until the handle to the file or device is closed.

Value Meaning

0 Prevents other processes from opening a file or device if they request delete,
0x00000000 read, or write access.

IpSecurityAttributes - A pointer to a SECURITY_ATTRIBUTES structure that contains two separate but
related data members. If this parameter is NULL, the handle returned by CreateFile cannot be inherited
by any child processes the application may create and the file or device associated with the returned
handle gets a default security descriptor.

dwCreationDisposition - An action to take on a file or device that exists or does not exist.

Value

CREATE_ALWAYS
2

Meaning

Creates a new file, always.

If the specified file exists and is writable, the function truncates the file, the
function succeeds, and last-error code is set to ERROR_ALREADY_EXISTS (183).

If the specified file does not exist and is a valid path, a new file is created, the

function succeeds, and the last-error code is set to zero.

For more information, see the Remarks section of this topic.

dwFlagsAndAttributes - The file or device attributes and flags, FILE_ ATTRIBUTE_NORMAL being the most
common default value for files.

loc_4@87312:

HOr eax, eax

push eax 5 hTemplateFile

push [ebp+dwFlagsAndattributes] ; dwFlagsAndAttributes
push 2 ; dwCreationDisposition
push eax ; lpsecurityAttributes
push eax 5 dwShareMode

lea eax, [ebptFileName]

push 4paaa082h ; dwDesiredAccess

push eax ; lpFileName

call ds:CreateFiled

mow £
imp :

Explanation: This function gives the “tasksche.exe” writing permissions. Also, the exe prevents other
processes from opening a file or a device if those processes would request a read, write or delete access
based on the ShareMode configuration hijacking the machine.

e C(CloseHandle

Closes an open object handle.

Y
] =]
push [ebp+hFile] 3 hObject
call ds:CloseHandle

e CreateDirectoryA
Creates a new directory.
Parameters

IpSecurityAttributes - A pointer to a SECURITY_ATTRIBUTES structure. The IpSecurityDescriptor member
of the structure specifies a security descriptor for the new directory. If IpSecurityAttributes is NULL, the
directory gets a default security descriptor.

2 ; lpSecurityattributes
ebx ; lpPathName
call ds:CreateDirectorys

+J+v

Encryption keys being passed to this function

push 1 5 inE

push eax ; Buffer

mov [ebp+Source], offset al3amd4vw2dhxygx ; "13
mov [ebp+var_8], offset al2t9ydpgwuez9n ;

mov [ebp+var_4], offset allSp7ummngojlp ; "115

call subJ401006

nAn arwv

Explanation: From the above image, it looks like the encryption keys are being passed from a file to the
function to execute a particular function.

o fopen
h | Y
FEE FEE
push offset aRb ;5 "rb”
jmp short lec_4@1816 loc_4@1@11:
push offset Mode 5 "wb”
]
Yy
pusﬁ offset Str2 ; "c.wnry”
call ds:fopen
mov edi, eax

Explanation: The fopen function is used to create a file. From the assembly, it looks like the “c.wnry” is a
configuration file that is being created with this function.

e fread and fwrite

|jz short leoc_4@1847 I

¥ ¥
(s =] (s =]
call ds:fread
jmp short leoc_48184D loc_4@1047:

call ds:fwrite
]
Yy
& -2T= L

Explanation: This is the function used to write the encryption keys to the configuration file “c.wnry”.

fclose
‘ v ‘ v ¥

il s =]

xor eax, eax

jmp short loc_4@1@61) (loc_4@81857: 5 Stream
push edi
call ds:fclose
pop ecx
mow eax, esi

]

&= &

Explanation: The file is then closed after successful addition of the keys.

e Icacls with attrib +h to grant access to directories and subdirectories and addition of hidden
attribute to hide files.

push ebx ;3 lpExitCode

push ebx ; dwMilliseconds

push offset CommandLine ; "attrib +h

call sub_401064

push ebx ; 1lpExitCode

push ebx ; dwMilliseconds

push offset alcaclsGrantEve ; "icacls . /grant Everyone:F /T /C
call sub_401064

Explanation: In the above image, it suggests that the configuration file which is created in the current
process directory is now being hidden.

e CreateProcess

Creates a new process and its primary thread. The new process runs in the security context of the calling
process.

Parameters
IpApplicationName - The name of the module to be executed.

IpProcessAttributes - A pointer to a SECURITY_ATTRIBUTES structure that determines whether the
returned handle to the new process object can be inherited by child processes. If IpProcessAttributes is
NULL, the handle cannot be inherited.

IpThreadAttributes - A pointer to a SECURITY_ATTRIBUTES structure that determines whether the
returned handle to the new thread object can be inherited by child processes. If IpThreadAttributes is
NULL, the handle cannot be inherited.

binheritHandles - If this parameter is TRUE, each inheritable handle in the calling process is inherited by
the new process. If the parameter is FALSE, the handles are not inherited.

dwCreationFlags - The flags that control the priority class and the creation of the process.

CREATE_NO_WINDOW The process is a console application that is being run without a console window. Therefore,
0x08000000 the console handle for the application is not set.
This flag is ignored if the application is not a console application, or if it is used with either
CREATE_NEW_CONSOLE or DETACHED_PROCESS.

IpEnvironment - A pointer to the environment block for the new process. If this parameter is NULL, the
new process uses the environment of the calling process.

IpCurrentDirectory - The full path to the current directory for the process. The string can also specify a
UNC path. If this parameter is NULL, the new process will have the same current drive and directory as
the calling process.

IpStartupinfo - A pointer to a STARTUPINFO or STARTUPINFOEX structure.

IpProcessinformation - A pointer to a PROCESS_INFORMATION structure that receives identification
information about the new process.

PUP UL

mov [ebp+startupInfo.wshowWindow], si
push eax 3 lpProcessInformaticn
lea eax, [ebp+StartupInfo]

push eax 3 lpstartupInfo

push esi 3 lpCurrentDirectory
push esi ; lpEnvironment

push S080008h ; dwCreationFlags
push esi ; bInheritHandles
push esi 3 lpThreadAttributes
push esi 3 lpProcessAttributes
mov [ebp+startupInfo.dwFlags], edi

push [ebp+lpCommandLine] ; lpCommandLine
push esi ; lpApplicationName
call ds:CreateProcessA

test eax, eax

jz short loc_481@F7

Explanation: This explains that the commandline command “attrib +h” and other threads are executed
to hide files and folders.

e WaitForSingleObject

push [ebp+dwMilliseconds] ; dwMillisecends

push [ebp+ProcessInformation.hProcess] ; hHandle
call ds:WaitForsingleObject

test eax, eax

jz short leoc_4@180D2

Explanation: This function is to make sure that only one thread is accessing a particular resource at a
time in a situation where multiple threads are sharing the same resources.

e TerminateProcess
Terminates the specified process and all of its threads.
Parameters

The function is a Windows API function that is used to cause a process to exit. It takes two
parameters: a handle to the process to be terminated and an exit code. The exit code is a 32-bit unsigned

integer that is used by the operating system to determine why the process terminated ' .

The value (or in hexadecimal) is often used as the exit code when a process is
terminated abnormally, such as when it is killed by another process or when the system is shutting down. This
value is defined as in the Windows API and indicates that the process is still active * .

hProcess — the handle to the process to terminate.

|-

push @FFFFFFFFh 3 UExitCode

push [ebp+ProcessInformation.hProcess] ; hProcess
call ds:TerminateProcess

Explanation: This function kills the specified process that is indicated in the “hProcess”.

e GetExitCodeProcess
Retrieves the termination status of the specified process.
Parameters
hProcess - A handle to the process.

IpExitCode - A pointer to a variable to receive the process termination status.

bl e 5

push [ebp+lpExitCode] ; lpExitCode
push [ebp+ProcessInformation.hProcess] ; hProcess
call ds:EetExit[ndePrnce55

Explanation: This function would then retrieve the exit status to determine whether a process was
successfully terminated or not.

e C(CloseHandle

Lol e 5 L
loc 4818E3: ; hObject

push [ebp+ProcessInformation. hProcess]

Mo esi, ds:CloseHandle

call esi ; CloseHandle

push [ebp+ProcessInformaticon.hThread] ; hObject
call esi ; CloseHandle

Mo eax, edi

jmp short loc_4816F9

Explanation: This function closes the process in which the “tasksche.exe” has been injected into.

e Now calling libraries

push offset ModuleName ; "kernel32.d11"
call ds:LoadLibrarya
mow edi, eax
cmp edi, ebx
jz loc_4a817D8
_ Y
FIFE
push esi
Mo esi, ds:GetProcAddress
push offset ProcName ; "CreateFileW”
push edi 3 hModule
call esi ; GetProchddress
push offset alWritefile ; "WriteFile"
push edi 3 hModule
mow dword_48F878, eax
call esi ; GetProchddress
push offset aReadfile ; "ReadFile™
push edi ; hModule
maw dword_48F87C, eax
call esi ; GetProchddress
push offset aMovefilew ; “"MowveFileW"
push edi ; hModule
Mo dword_48F388, eax
call esi ; GetProcAddress
push offset aMovefileeww ; "MoveFileEwW"
push edi 3 hMedule
mowv dword_48F884, eax
call esi ; GetProchddress
pusn OTTSEeT aueleTeTlLew ; LeleTerllew
push edi ; hModule
mov dword_48F888, eax
call esi ; GetProcAddress
push offset aClosehandle ; "CloseHandle”
push edi ; hModule
mov dword_48F88C, eax
call esi ; GetProcAddress
- AsmmAd AnCoTO s

Explanation: These indicates some libraries which have been used by the “tasksche.exe” file.

e |InitializeCriticalSection

The function is a Windows API function that initializes a critical section object. A
critical section object is a synchronization object that allows one thread at a time to access a resource or

section of code. It is used to prevent multiple threads from accessing shared resources simultaneously, which
can lead to data inconsistency or corruption ' .
Parameters

IpCriticalSection

The parameter is a pointer to the critical section object to be initialized. The process is
responsible for allocating the memory used by a critical section object, which it can do by declaring a
variable of type ‘ Before using a critical section, some thread of the process must initialize
the object ' .

lea eax, [esi+leh]

push eax ; lpcﬂiticalﬂectiun
mov dword ptr [esi], offset off 4881EC
call ds:InitializeCriticalSection

Mo eax, esi

“and” bitwise comparison to make sure “Microsoft Enhanced RSA and AES Cryptography at eax register.

Yy
Ll et 5]
loc_4B1833:
mow eax, edi
push eFaaaeaeah
neg eax
shh eax, eax
push 18h
I
push eax
push 8
push esi
call dword 48F394
test eax, eax
jnz short loc_48185C
) ' 7
il sl = [l i =
inc edi
loc_48185C: cmp edi, 2
push 1 jl short loc 481833
pop eax
jmp short loc_481859
sub_48152C endp

— T 1

Explanation: This bitwise operation verifies that the encryption keys that are passed to the configuration
file is the correct keys.

e CreateFileA
Creates or opens a file or I/O device.
Parameters
IpFileName - The name of the file or device to be created or opened.

dwDesiredAccess - The requested access to the file or device, which can be summarized as read, write,
both or 0 to indicate neither).

The value (REEEEEEE) (or BEEEEEEEE)) in hexadecimal) is a combination of several access rights:

. (Ox80000000): Allows the caller to read the object.
. (0Ox40000000): Allows the caller to write to the object.
N (0Ox20000000): Allows the caller to execute the object.

dwShareMode - The requested sharing mode of the file or device, which can be read, write, both, delete,
all of these, or none. If this parameter is zero and CreateFile succeeds, the file or device cannot be
shared and cannot be opened again until the handle to the file or device is closed.

FILE_SHARE_READ Enables subsequent open operations on a file or device to request read access.
0x00000001 Otherwise, other processes cannot open the file or device if they request read
access.

If this flag is not specified, but the file or device has been opened for read
access, the function fails.

IpSecurityAttributes - A pointer to a SECURITY_ATTRIBUTES structure that contains two separate but
related data members. If this parameter is NULL, the handle returned by CreateFile cannot be inherited
by any child processes the application may create and the file or device associated with the returned
handle gets a default security descriptor.

- L m—m s -
Xor esl, esi
mov [ebp+NumberOfBytesRead], esi

dwCreationDisposition - An action to take on a file or device that exists or does not exist.

OPEN_EXISTING Opens a file or device, only if it exists.
3 If the specified file or device does not exist, the function fails and the last-error
code is set to ERROR_FILE_NOT_FOUND (2).

For more information about devices, see the Remarks section.

dwFlagsAndAttributes - The file or device attributes and flags, FILE_ ATTRIBUTE_NORMAL being the most
common default value for files.

mov [ebptms_exc.registration.TryLevel], esi
push esi ; hTemplateFile

push esi ; dwFlagsAndattributes
push 3 ; dwCreaticnDisposition
push esi ; lpSecurityattributes
push 1 ; dwshareMode

push sepeaeach ; dwDesiredAccess

push [ebp+lpFileName] ; lpFileName

call ds:CreateFileA

mov lebo+hFilel. eax

Explanation: In this, it seems the “tasksche.exe” is being executed and then a read permission is now
allowed. However, this read permission is not granted to any other spawned processes or child
processes. This explains why the prompt would be displayed on the infected machine but the user
cannot see the other processes that are going on.

e GetFileSize and GlobalAlloc

push esi ; 1pFileSizeHigh
push eax ; hFile
call ds:GetFilesSize
mov edi, eax
mov [ebp+var_24], edi
Cl'l'lp Edi* B::::::::h
jz short loc_481948
MFE]
cmp edi, l19eeeh
ja short loc_481940

push edi ; dwBytes
push esi ; uFlags
call ds:Globalalloc

moy ebx, eax

Moy [ebp+hMem], ebx

cmp ebx, esi

jz short loc 481948

CryptReleaseContext

The CryptReleaseContext function releases the handle of a cryptographic service provider (CSP) and a key container. At
each call to this function, the reference count on the CSP is reduced by one. When the reference count reaches zero, the
context is fully released and it can no longer be used by any function in the application.

An application calls this function after finishing the use of the CSP. After this function is called, the released CSP handle is
no longer valid. This function does not destroy key containers or key pairs.

Parameters
[in] hProv
Handle of a cryptographic service provider (CSP) created by a call to CryptAcquireContext.
[in] dwFlags

Reserved for future use and must be zero. If dwFlags is not set to zero, this function returns FALSE but the CSP is

released.

push 8 ; dwFlags
push eax ; hProv
call ds:CryptReleaseContext
and dword ptr [esit+4], @

Explanation: This function alerts that there should be a link to the cryptographic service provider who
would perform encryption of the infected device. It seems the encryption is being performed at least
three times based on the encryption keys that have been recovered.

Multiple GlobalAlloc API called

i || =)
loc_48145D:
mov ebx, 1leap8Bh
push ebx 3 dwBytes
push edi ; uFlags
mov edi, ds:GlobalAlloc
call edi ; GlobalAlloc
test eax, eax
mowv [esi+4C8h], eax
jz short loc_4@1435
Y
push ebx 5 dwBytes
push a ; uFlags
call edi ; Globalalloc
test eax, eax
Mo [esi+4CCh], eax
jnz short loc_481489

Entering into function that uses “t.wnry” as a parameter.

- - ’ -— -

push eax ; int
push offset aTwnry ; "t.jinry”
mov [ebp+var_4], ebx

call sub_40144A6

cmn sav . shv

Explanation: The above is another file that is being used by the executable.

There’s a call to a function that uses a memory address containing “WANACRY” as a parameter.

8 3 Size
offset aWanacry ; "WANACRY!™
eax, [ebp+Bufl]

eax 3 Bufl
memcmp

Functions to enter critical section and leave critical section.

lea edi, |esit+l@éh)]
push edi ; lpCriticalSection
call ds:EnterCriticalsection
lea eax, [ebpt+size]
push eax
push [ebp+src]
push @
push 1
push @
push dword ptr [esi+3]
call dword_48F84A4
test eax, eax
push edi 5 lpCriticalSection
jnz short loc_481A1D
_ Y
M
call ds:LeaveCriticalsection
_ Y
FEIE
loc_4@81A19: loc_4@81A1D:
xor eax, eax call ds:LeaveCriticalSection
jmp short loc_4@1A3F| (push [ebp+5ize] ; Size
el L e L v T

Coming out of the function.

Multiple exception-handling functions to handle exceptions in creating a process

cmp [esi+4], bl
jnz short loc_483AA5

¥ i v
P
push offset off_sBFs78
lea ecx, [ebp+pExceptionObject] loc_483AA5:
call ds: ? *@exception@po ABQBDEZ ; exception::excepticn(char const * const &) mov eax, [ebpt+arg_8]
lea eax, [ebp+pExceptionObject] cmp eax, ebhx
push offset pThrowInfo ; pThrowInfo jz loc_483BBA
push eax ; pExceptionObject ™7
call _CxxThrowException
mov ecx, [esi+3CCh]
wor edx, edx
Aiw arv
[l *”.“—":"""“""' I
Yy
[ebptarg_C], 1
jnz short loc_483828| |loc_4@3BBA:
T push offset off_46F574
lea ecx, [ebptpExceptionObject]
call ds:??@exception@BQAE@ABOBD@Z ; exception::exception(char const * const &)
lea eax, [ebp+pExceptionObject]
push offset pThrowInfo ; pThrowInfo
push eax ; pExceptionObject
call _CxxThrowException

sub_483A77 endp

e Importation of kernel32.dll library

loc_4@228C:
push offset ModuleName

call ds:GetModuleHandleA
test eax, eax
jz loc_4@243D

"kernel32.dl1”

Using it to get systeminfo

push offset aGetnativesyste ;
push eax

call [ebp+arg_14]

add esp, @cCh

test eax, eax

jz loc_48243D

"GetNativeSystemInfo”

VirtualProtect

Changes the protection on a region of committed pages in the virtual address space of the calling
process.

L]

=

loc_4@82785:

lea ecx, [ebp+flOldProtect]

push ecx 5 1pflOoldProtect

push edx ; TlNewProtect
482719| |push ebx 5 dwsize

push dword ptr [eax] ; lpAddress

call ds:VirtualProtect

neg eax

shh eax, eax

neg eax

vy

Next is calling a function that indicates the start of a task.

Ll (] =

push offset Stringl ; "TaskStart”
push eax ; int

call sub 482924

pop BCx

cmp eax, ebx

Then it deletes the critical selection.

sub 48181B proc near

mov dword ptr [ecx], offset off_4881EC
add ecx, 1@h

push eCx ; lpCriticalSection
call ds:DeleteCriticalSection

retn

sub_48181B endp

c.wnry

e —— » -

call sub 4875C4

lea eax, [ebp+5trl]

push offset Str2 ;l"C-Wﬂ’F"

push eax ; Strl

call stromp

add esp, 14h

TaskStart

push offset Stringl ; "TaskStart’
push eax ; int

call sub 482924

Explanation: The remaining images show that the kernel32.dll library is being used to obtain the system
information and then there is a deletion of something after the task has started.

CONCLUSION

This executable is a dropper that has another executable embedded in it. When it infects a machine, it
hijacks the machine by injecting a process in the current process and preventing read, write, and delete
permissions to any process that would require them. It then creates an executable “tasksche.exe” within
the directory of the current process. It then creates some configuration files i.e. “c.wnry” and “t.wnry”
files. “c.wnry” contains assumed to be keys for encryption or decryption. Presumably, the “t.wnry”
configuration file would contain URLs to the cryptography service provider.

When it executes the tasksche.exe a connection is made to cryptographic service providers to encrypt the
data on the machine. It then allows read access but not write and delete access. This read access could
display some information to the user. This might be to intimidate the user and provide directions on how
to resolve the infection. Since time was called in the instructions, it could be that time was used as a
measurement to achieve an aim that is not determined yet.

LIMITATION
Some difficulties were encountered in the analysis. Some of these difficulties were:

1. FLIRT’s inability to identify all functions.
2. Limited analysis since it was solely reverse engineering.

The second limitation prevented access to files and exe which is created by the exe. Thus, “c.wnry” which
presumably contains the keys, “t.wnry” which is assumed to contain some URLs and the tasksche.exe
were not analyzed to see what they do and contain.

