
 

 

WANNACRY MALWARE REVERSE ENGEERING 
 
 
 
 

 

 
 
 
BY EMMANUEL WILLIAM FRIMPONG 
DATE: 12/7/2023 



This analysis was done from the entry point of the exe file downwards to the end of the graph flow. The 

analysis was carried out in the IDA pro program. 

• GetModuleFileNameA 

Retrieves the fully qualified path for the file that contains the specified module. 

The statement "Retrieves the fully qualified path for the file that contains the specified module" refers to 

the function of retrieving the complete file path of a specific module (like a DLL or an EXE file) in a 

system. 

Parameters 

nSize – 208h – the size of the buffer to receive the module 

lpFilename - The full path of the module to be retrieved 

hModule – handle to the module that is to be retrieved 

 
 
 
 

 

 
Explanation: The statement "Retrieves the fully qualified path for the file that contains the specified 

module," refers to the function that retrieves the complete file path of a specific module (like a DLL or an 

EXE file) in a system. 

 

 
• CopyFileA 

Copies an existing file to a new file 

Parameters 

lpNewFileName - The name of the new file. 

lpExistingFileName - The name of an existing file. 



bFailIfExists - f this parameter is TRUE and the new file specified by lpNewFileName already exists, the 

function fails. If this parameter is FALSE and the new file already exists, the function overwrites the 

existing file and succeeds. 
 

 

 

 
Explanation: This function seems to be copying an old file and renaming it into “tasksche.exe”. 

 

 
• GetFileAttributesA 

Retrieves file system attributes for a specified file or directory. 

 

 
Parameters 

lpFileName - The name of the file or directory. 

Explanation: This function gets the metadata of the “tasksche.exe” which has been copied. 



• SetCurrentDirectoryA 

Changes the current directory for the current process 

Parameter 

lpPathName - The path to the new current directory. This parameter may specify a relative path or a full 

path. 
 

 

Explanation: This function copies the exe file “tasksche.exe,” to the current process’s directory. 
 

 
Moving into this function 

 

 

 
• FindReasourceA 

Determines the location of a resource with the specified type and name in the specified module. 

Parameters 

hModule - A handle to the module whose portable executable file or an accompanying MUI file contains 

the resource. If this parameter is NULL, the function searches the module used to create the current 

process. 

MUI – A language that allows a program to run multiple languages. 

lpName - The name of the resource. 



 
 

 

Explanation: This function finds the resource of a process, presumably the current process. 

• LoadResource 

Retrieves a handle that can be used to obtain a pointer to the first byte of the specified resource in 

memory. 

Parameters 

hModule - A handle to the module whose executable file contains the resource. If hModule is NULL, the 

system loads the resource from the module that was used to create the current process. 

hResInfo - A handle to the resource to be loaded. 
 

 

Explanation: As said of this function, it retrieves the handle to the first byte of the current process’s 

memory. 



• LockResource 

Retrieves a pointer to the specified resource in memory. 

Parameters 

hResData - A handle to the resource to be accessed. 
 

 

• SizeofResource 

Retrieves the size, in bytes, of the specified resource. 

Parameters 

hModule - A handle to the module whose executable file contains the resource. 

hResInfo - A handle to the resource. 

 
 



Entering into this function 
 

Entering into the subfunction 
 

 

 
• ReadFile 

Reads the file 
 

 

 
• SetFilePointer 

Moves the file pointer of the specified file. 

Parameters 

hFile - A handle to the file. 



lDistanceToMove - The low order 32-bits of a signed value that specifies the number of bytes to move 

the file pointer. 
 

 

 

 
• SystemTimeToFileTime 

Converts a system time to file time format. 

Parameters 

lpSystemTime - A pointer to a SYSTEMTIME structure that contains the system time to be converted from 

UTC to file time format. 

lpFileTime - A pointer to a FILETIME structure to receive the converted system time. 
 

 

Explanation: The SystemTimeToFileTime function converts the time of the local machine to the format of 

the time of the file presumably, the “tasksche.exe”. This is to make sure that the correct time set for 

some execution or scheduling of some process would be initiated at the right time as expected. 



• LocalFileTimeToFiletime 

Converts a local file time to a file time based on the Coordinated Universal Time (UTC). 

Parameters 

lpLocalFileTime - A pointer to a FILETIME structure that specifies the local file time to be converted into a 

UTC-based file time. 

lpFileTime - A pointer to a FILETIME structure to receive the converted UTC-based file time. This 

parameter cannot be the same as the lpLocalFileTime parameter. 
 

 

 
• CreateFileA 

Creates or opens a file or I/O device. 

Parameters 

lpFileName - The name of the file or device to be created or opened. 

dwDesiredAccess - The requested access to the file or device, which can be summarized as read, write, 

both or 0 to indicate neither). 
 

 
dwShareMode - The requested sharing mode of the file or device, which can be read, write, both, delete, 

all of these, or none. If this parameter is zero and CreateFile succeeds, the file or device cannot be 

shared and cannot be opened again until the handle to the file or device is closed. 
 



lpSecurityAttributes - A pointer to a SECURITY_ATTRIBUTES structure that contains two separate but 

related data members. If this parameter is NULL, the handle returned by CreateFile cannot be inherited 

by any child processes the application may create and the file or device associated with the returned 

handle gets a default security descriptor. 

dwCreationDisposition - An action to take on a file or device that exists or does not exist. 
 

dwFlagsAndAttributes - The file or device attributes and flags, FILE_ATTRIBUTE_NORMAL being the most 

common default value for files. 
 

Explanation: This function gives the “tasksche.exe” writing permissions. Also, the exe prevents other 

processes from opening a file or a device if those processes would request a read, write or delete access 

based on the ShareMode configuration hijacking the machine. 

• CloseHandle 

Closes an open object handle. 
 



• CreateDirectoryA 

Creates a new directory. 

Parameters 

lpSecurityAttributes - A pointer to a SECURITY_ATTRIBUTES structure. The lpSecurityDescriptor member 

of the structure specifies a security descriptor for the new directory. If lpSecurityAttributes is NULL, the 

directory gets a default security descriptor. 
 

 

 
Encryption keys being passed to this function 

 

Explanation: From the above image, it looks like the encryption keys are being passed from a file to the 

function to execute a particular function. 

• fopen 
 

Explanation: The fopen function is used to create a file. From the assembly, it looks like the “c.wnry” is a 

configuration file that is being created with this function. 



• fread and fwrite 
 

Explanation: This is the function used to write the encryption keys to the configuration file “c.wnry”. 

fclose 
 

Explanation: The file is then closed after successful addition of the keys. 
 

 
• Icacls with attrib +h to grant access to directories and subdirectories and addition of hidden 

attribute to hide files. 
 

Explanation: In the above image, it suggests that the configuration file which is created in the current 

process directory is now being hidden. 



• CreateProcess 

Creates a new process and its primary thread. The new process runs in the security context of the calling 

process. 

Parameters 

lpApplicationName - The name of the module to be executed. 

lpProcessAttributes - A pointer to a SECURITY_ATTRIBUTES structure that determines whether the 

returned handle to the new process object can be inherited by child processes. If lpProcessAttributes is 

NULL, the handle cannot be inherited. 

lpThreadAttributes - A pointer to a SECURITY_ATTRIBUTES structure that determines whether the 

returned handle to the new thread object can be inherited by child processes. If lpThreadAttributes is 

NULL, the handle cannot be inherited. 

bInheritHandles - If this parameter is TRUE, each inheritable handle in the calling process is inherited by 

the new process. If the parameter is FALSE, the handles are not inherited. 

dwCreationFlags - The flags that control the priority class and the creation of the process. 
 

lpEnvironment - A pointer to the environment block for the new process. If this parameter is NULL, the 

new process uses the environment of the calling process. 

lpCurrentDirectory - The full path to the current directory for the process. The string can also specify a 

UNC path. If this parameter is NULL, the new process will have the same current drive and directory as 

the calling process. 

lpStartupInfo - A pointer to a STARTUPINFO or STARTUPINFOEX structure. 

lpProcessInformation - A pointer to a PROCESS_INFORMATION structure that receives identification 

information about the new process. 
 



Explanation: This explains that the commandline command “attrib +h” and other threads are executed 

to hide files and folders. 

 

 
• WaitForSingleObject 

 

Explanation: This function is to make sure that only one thread is accessing a particular resource at a 

time in a situation where multiple threads are sharing the same resources. 

• TerminateProcess 

Terminates the specified process and all of its threads. 

Parameters 
 

 

hProcess – the handle to the process to terminate. 
 

 

Explanation: This function kills the specified process that is indicated in the “hProcess”. 
 

 
• GetExitCodeProcess 

Retrieves the termination status of the specified process. 

Parameters 

hProcess - A handle to the process. 

lpExitCode - A pointer to a variable to receive the process termination status. 



 
 

Explanation: This function would then retrieve the exit status to determine whether a process was 

successfully terminated or not. 

 

 
• CloseHandle 

 

Explanation: This function closes the process in which the “tasksche.exe” has been injected into. 



• Now calling libraries 
 

 

 

Explanation: These indicates some libraries which have been used by the “tasksche.exe” file. 
 

 
• InitializeCriticalSection 

 

Parameters 

lpCriticalSection 



 
 
 
 

 

 

“and” bitwise comparison to make sure “Microsoft Enhanced RSA and AES Cryptography at eax register. 
 

Explanation: This bitwise operation verifies that the encryption keys that are passed to the configuration 

file is the correct keys. 



• CreateFileA 

Creates or opens a file or I/O device. 

Parameters 

lpFileName - The name of the file or device to be created or opened. 

dwDesiredAccess - The requested access to the file or device, which can be summarized as read, write, 

both or 0 to indicate neither). 
 

 
dwShareMode - The requested sharing mode of the file or device, which can be read, write, both, delete, 

all of these, or none. If this parameter is zero and CreateFile succeeds, the file or device cannot be 

shared and cannot be opened again until the handle to the file or device is closed. 
 

 

 
lpSecurityAttributes - A pointer to a SECURITY_ATTRIBUTES structure that contains two separate but 

related data members. If this parameter is NULL, the handle returned by CreateFile cannot be inherited 

by any child processes the application may create and the file or device associated with the returned 

handle gets a default security descriptor. 
 

 

dwCreationDisposition - An action to take on a file or device that exists or does not exist. 
 



dwFlagsAndAttributes - The file or device attributes and flags, FILE_ATTRIBUTE_NORMAL being the most 

common default value for files. 
 

 

Explanation: In this, it seems the “tasksche.exe” is being executed and then a read permission is now 

allowed. However, this read permission is not granted to any other spawned processes or child 

processes. This explains why the prompt would be displayed on the infected machine but the user 

cannot see the other processes that are going on. 

• GetFileSize and GlobalAlloc 
 



CryptReleaseContext 
 

 
Parameters 

 

 

Explanation: This function alerts that there should be a link to the cryptographic service provider who 

would perform encryption of the infected device. It seems the encryption is being performed at least 

three times based on the encryption keys that have been recovered. 

 

 
Multiple GlobalAlloc API called 

 



 
Entering into function that uses “t.wnry” as a parameter. 

 

Explanation: The above is another file that is being used by the executable. 
 

 
There’s a call to a function that uses a memory address containing “WANACRY” as a parameter. 

 

 

 
Functions to enter critical section and leave critical section. 

 

Coming out of the function. 

Multiple exception-handling functions to handle exceptions in creating a process 



 
 

 

 

• Importation of kernel32.dll library 
 

 
 

Using it to get systeminfo 
 



VirtualProtect 

Changes the protection on a region of committed pages in the virtual address space of the calling 

process. 
 

 

 
Next is calling a function that indicates the start of a task. 

 

 

 
Then it deletes the critical selection. 

 

 



c.wnry 
 

 

 
TaskStart 

 

 

 

 
Explanation: The remaining images show that the kernel32.dll library is being used to obtain the system 

information and then there is a deletion of something after the task has started. 



CONCLUSION 

This executable is a dropper that has another executable embedded in it. When it infects a machine, it 

hijacks the machine by injecting a process in the current process and preventing read, write, and delete 

permissions to any process that would require them. It then creates an executable “tasksche.exe” within 

the directory of the current process. It then creates some configuration files i.e. “c.wnry” and “t.wnry” 

files. “c.wnry” contains assumed to be keys for encryption or decryption. Presumably, the “t.wnry” 

configuration file would contain URLs to the cryptography service provider. 

When it executes the tasksche.exe a connection is made to cryptographic service providers to encrypt the 

data on the machine. It then allows read access but not write and delete access. This read access could 

display some information to the user. This might be to intimidate the user and provide directions on how 

to resolve the infection. Since time was called in the instructions, it could be that time was used as a 

measurement to achieve an aim that is not determined yet. 

 

 
LIMITATION 

Some difficulties were encountered in the analysis. Some of these difficulties were: 

1. FLIRT’s inability to identify all functions. 

2. Limited analysis since it was solely reverse engineering. 

The second limitation prevented access to files and exe which is created by the exe. Thus, “c.wnry” which 

presumably contains the keys, “t.wnry” which is assumed to contain some URLs and the tasksche.exe 

were not analyzed to see what they do and contain. 


