
Introduction to Python

Goals:
Learn basic Python operations

Understand differences in data structures

Get familiarized with conditional statements and loops

Learn to create custom functions and import python modules

Main Reference:Main Reference: McKinney, Wes. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly

Media. Kindle Edition

Indentation
Python code is structured by indentation (tabs or spaces) instead of braces which is what other languages normally use. In

addition, a colon (:) is used to define the start of an indented code block.

Everything is an Object
Everything in Python is considered an object.

A string, a list, a function and even a number is an object.

For example, you can define a variable to reference a string and then access the methods available for the string object.

If you press the tab key after the variable name and period, you will see the methods available for it.

Variables
In Python, when you define/create a variable, you are basically creating a reference to an object (i.e string,list,etc). If you want

to define/create a new variable from the original variable, you will be creating another reference to the original object rather

than copying the contents of the first variable to the second one.

Therefore, if you update the original variable (a), the new variable (b) will automatically reference the updated object.

A variable can have a short name (like x and y) or a more descriptive name (age, dog, owner). Rules for Python variables:

A variable name must start with a letter or the underscore character

A variable name cannot start with a number

A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)

Variable names are case-sensitive (age, Age and AGE are three different variables)

for x in list(range(5)):
 print("One number per loop..")
 print(x)
 if x > 2:
 print("The number is greater than 2")
 print("----------------------------")

a = "pedro"

a.capitalize()

a = [1,2,3]
b = a
b

a.append(4)
b

! Contents

Goals:

Indentation

Everything is an Object

Variables

Data Types

Combining variables and operations

Binary Operators and Comparisons

The Respective Print statement

Control Flows

If,elif,else statements

Loops

For

While

Data structures

Lists

Dictionaries

Tuples

Slicing

Functions

Modules

Reference:https://www.w3schools.com/python/python_variables.asp

Data Types
As any other object, you can get information about its type via the built-in function type().

Combining variables and operations

Binary Operators and Comparisons

The Respective Print statement

dog_name = 'Pedro'
age = 3
is_vaccinated = True
birth_year = 2015

is_vaccinated

dog_name

type(age)

type(dog_name)

type(is_vaccinated)

x = 4
y = 10

x-y

x*y

y/x

y**x

x>y

x==y

y>=x

2+4

5*6

5>3

print("Hello Helk!")

https://docs.python.org/3/library/functions.html%23type

Control Flows
References:

https://docs.python.org/3/tutorial/controlflow.html

https://docs.python.org/3/reference/compound_stmts.html#the-if-statement

If,elif,else statements
The if statement is used for conditional execution

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true; then that

suite is executed.

If all expressions are false, the suite of the else clause, if present, is executed.

An if statement can be optionally followed by one or more elif blocks and a catch-all else block if all of the conditions

are False :

Loops

For
The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable object.

While
A while loop allows you to execute a block of code until a condition evaluates to false or the loop is ended with a break

command.

Data structures

print("x = " + str(x))
print("y = " + str(y))

if x==y:
 print('yes')
else:
 print('no')

if x==y:
 print('They are equal')
elif x > y:
 print("It is grater than")
else:
 print("None of the conditionals were true")

my_dog_list=['Pedro',3,True,2015]

for i in range(0,10):
 print(i*10)

i = 1
while i <= 5:
 print(i ** 2)
 i += 1

i = 1
while i > 0:
 if i > 5:
 break
 print(i ** 2)
 i += 1

Print to PDF

References:

https://docs.python.org/3/tutorial/datastructures.html

https://python.swaroopch.com/data_structures.html

Lists
Lists are data structures that allow you to define an ordered collection of items.

Lists are constructed with square brackets, separating items with commas: [a, b, c].

Lists are mutable objects which means that you can modify the values contained in them.

The elements of a list can be of different types (string, integer, etc)

The list data type has some more methods an you can find them here.

One in particular is the list.append() which allows you to add an item to the end of the list. Equivalent to

a[len(a):] = [x].

You can modify the list values too:

Dictionaries
Dictionaries are sometimes found in other languages as “associative memories” or “associative arrays”.

Dictionaries are indexed by keys, which can be any immutable type; strings and numbers can always be keys.

It is best to think of a dictionary as a set of key: value pairs, with the requirement that the keys are unique (within one

dictionary).

A pair of braces creates an empty dictionary: {}.

Remember that key-value pairs in a dictionary are not ordered in any manner. If you want a particular order, then you

will have to sort them yourself before using it.

Tuples
A tuple consists of a number of values separated by commas

my_dog_list=['Pedro',3,True,2015]

my_dog_list[0]

my_dog_list[2:4]

print("My dog's name is " + str(my_dog_list[0]) + " and he is " + str(my_dog_list[1]) + " years
old.")

my_dog_list.append("tennis balls")

my_dog_list

my_dog_list[1] = 4
my_dog_list

my_dog_dict={'name':'Pedro','age':3,'is_vaccinated':True,'birth_year':2015}

my_dog_dict

my_dog_dict['age']

my_dog_dict.keys()

my_dog_dict.values()

https://docs.python.org/3/tutorial/datastructures.html%23more-on-lists

On output tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly; they may be

input with or without surrounding parentheses, although often parentheses are necessary anyway (if the tuple is part

of a larger expression).

Tuples are immutable, and usually contain a heterogeneous sequence of elements that are accessed via unpacking or

indexing.

Lists are mutable, and their elements are usually homogeneous and are accessed by iterating over the list.

Slicing
You can select sections of most sequence types by using slice notation, which in its basic form consists of start:stop passed to

the indexing operator []

Functions
Functions allow you to organize and reuse code blocks. If you repeat the same code across several conditions, you could make

that code block a function and re-use it. Functions are declared with the defdef keyword and returned from with the returnreturn

keyword:

Modules
References:

https://docs.python.org/3/tutorial/modules.html#modules

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are

lost.

Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare the input

for the interpreter and running it with that file as input instead.

Let’s say we define two functions:

You can save the code above in a file named math.py. I created the file for you already in the current folder.

All you have to do is import the math_ops.pymath_ops.py file

my_dog_tuple=('Pedro',3,True,2015)

my_dog_tuple

my_dog_tuple[1]

seq = [7 , 2 , 3 , 7 , 5 , 6 , 0 , 1]
seq [1 : 5]

def square(n):
 return n ** 2

print("Square root of 2 is " + str(square(2)))

number_list = [1,2,3,4,5]

for number in number_list:
 sn = square(number)
 print("Square root of " + str(number) + " is " + str(sn))

def square(n):
 return n ** 2

def cube(n):
 return n ** 3

By Roberto Rodriguez @Cyb3rWard0g

© Copyright 2020.

You can get a list of the current installed modules too

Let’s import the datetimedatetime module.

Explore the datetimedatetime available methods. You can do that by typing the module name, a period after that and pressing

the tabtab key or by using the the built-in functionn dir()dir() as shown below:

You can also import a module with a custom name

import math_ops

for number in number_list:
 sn = square(number)
 cn = cube(number)
 print("Square root of " + str(number) + " is " + str(sn))
 print("Cube root of " + str(number) + " is " + str(cn))
 print("-------------------------")

help('modules')

import datetime

dir(datetime)

import datetime as dt

dir(dt)

['MAXYEAR',
 'MINYEAR',
 '__builtins__',
 '__cached__',
 '__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 'date',
 'datetime',
 'datetime_CAPI',
 'sys',
 'time',
 'timedelta',
 'timezone',
 'tzinfo']

