i= Contents

Introduction to Python

Goals:
Indentation
Everything is an Object

Goals: Variables

Data Types

® | earn basic Python operations . . .
Y P Combining variables and operations

e Understand differences in data structures . .
. i . Binary Operators and Comparisons
® Get familiarized with conditional statements and loops

. . The R tive Print stat t
® | earn to create custom functions and import python modules ~fierespective Trint statement

Control Flows
Main Reference: McKinney, Wes. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly Ifelifelse statements

Media. Kindle Edition Loops

For

hile

<

Indentation

Data structures

Python code is structured by indentation (tabs or spaces) instead of braces which is what other languages normally use. In Lists
addition, a colon (:) is used to define the start of an indented code block. Dictionaries
Tuples
for x in list(range(5)): .
print("One number per loop..") Slicing
print(x) Functions
if x > 2:
print("The number is greater than 2") Modules
print("-——————— ")

Everything is an Object

e Everythingin Python is considered an object.

e Astring, alist, a function and even a number is an object.

e For example, you can define a variable to reference a string and then access the methods available for the string object.
e |fyou press the tab key after the variable name and period, you will see the methods available for it.

a = "pedro"

a.capitalize()

Variables

In Python, when you define/create a variable, you are basically creating a reference to an object (i.e string,list,etc). If you want
to define/create a new variable from the original variable, you will be creating another reference to the original object rather
than copying the contents of the first variable to the second one.

[1,2,3]
a

)
nmon

Therefore, if you update the original variable (a), the new variable (b) will automatically reference the updated object.

a.append(4)
b

A variable can have a short name (like x and y) or a more descriptive name (age, dog, owner). Rules for Python variables:

® Avariable name must start with a letter or the underscore character

® Avariable name cannot start with a number

e Avariable name can only contain alpha-numeric characters and underscores (A-z,0-9,and _)
e Variable names are case-sensitive (age, Age and AGE are three different variables)

Reference:https://www.w3schools.com/python/python_variables.asp

dog_name = 'Pedro’
age = 3
is_vaccinated = True
birth_year = 2015

is_vaccinated

dog_name

Data Types

As any other object, you can get information about its type via the built-in function type().
type(age)

type(dog_name)

type(is_vaccinated)

Combining variables and operations

y/x

yHEEX

x>y

x==y

y>=X

Binary Operators and Comparisons

2+4

5>3

The Respective Print statement

print("Hello Helk!")

https://docs.python.org/3/library/functions.html%23type

Control Flows

References:

e https://docs.python.org/3/tutorial/controlflow.html
e https://docs.python.org/3/reference/compound_stmts.html#the-if-statement

If,elif,else statements

® Theif statement is used for conditional execution

® |t selects exactly one of the suites by evaluating the expressions one by one until one is found to be true; then that
suite is executed.

e [f all expressions are false, the suite of the else clause, if present, is executed.

print("x = " + str(x))
print("y = " + str(y))
if x==y:

print('yes')
else:

print('no')

e Anif statement can be optionally followed by one or more elif blocks and a catch-all else block if all of the conditions

are False:
if x==y:

print('They are equal')
elif x > y:

print ("It is grater than")
else:

print("None of the conditionals were true")

Loops

For

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable object.

my_dog_list=['Pedro',3,True,2015]

for i in range(0,10):
print(i*10)

While

A while loop allows you to execute a block of code until a condition evaluates to false or the loop is ended with a break

command.

i=1

while i <= 5:
print(i ** 2)
i+=1

i=1

while i > 0:
if i > 5:

break

print(i ** 2)
i+=1

Data structures

References:

® https://docs.python.org/3/tutorial/datastructures.html
® https://python.swaroopch.com/data_structures.html

Lists

® |ists are data structures that allow you to define an ordered collection of items.
e Lists are constructed with square brackets, separating items with commas: [a, b, c].
® |ists are mutable objects which means that you can modify the values contained in them.

e The elements of a list can be of different types (string, integer, etc)

my_dog_list=['Pedro',3,True,2015]
my_dog_list[0]
my_dog_list[2:4]

print("My dog's name is " + str(my_dog_list[0]) + " and he is " + str(my_dog list[l]) + " years
old.")

e The list data type has some more methods an you can find them here.
® Oneinparticularisthe 1ist.append () which allows you to add an item to the end of the list. Equivalent to

a[len(a):] = [x].

my dog_list.append("tennis balls")
my_dog_list

e You can modify the list values too:

my_dog_list[1l] = 4
my_dog_list

Dictionaries

e Dictionaries are sometimes found in other languages as “associative memories” or “associative arrays”.

e Dictionaries are indexed by keys, which can be any immutable type; strings and numbers can always be keys.

® |tis best to think of a dictionary as a set of key: value pairs, with the requirement that the keys are unique (within one
dictionary).

® A pair of braces creates an empty dictionary: {}.

e Remember that key-value pairs in a dictionary are not ordered in any manner. If you want a particular order, then you
will have to sort them yourself before using it.

my_dog_dict={'name':'Pedro', 'age':3,'is_vaccinated':True, 'birth year':2015}
my_dog_dict

my dog_dict['age']

my_dog_dict.keys()

my_dog_dict.values()

Tuples

® Atuple consists of a number of values separated by commas

https://docs.python.org/3/tutorial/datastructures.html%23more-on-lists

e Onoutput tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly; they may be
input with or without surrounding parentheses, although often parentheses are necessary anyway (if the tuple is part
of alarger expression).

I my_dog_tuple=('Pedro',3,True,2015)
I my_dog_tuple
e Tuples are immutable, and usually contain a heterogeneous sequence of elements that are accessed via unpacking or
indexing.

® Lists are mutable, and their elements are usually homogeneous and are accessed by iterating over the list.

my dog_tuple[l]

You can select sections of most sequence types by using slice notation, which in its basic form consists of start:stop passed to

the indexing operator []

seq 7

=1 2,3,7,5,6,0,1]
seq [1 :]

’
5

Functions

Functions allow you to organize and reuse code blocks. If you repeat the same code across several conditions, you could make
that code block a function and re-use it. Functions are declared with the def keyword and returned from with the return
keyword:

def square(n):
return n ** 2

print("Square root of 2 is " + str(square(2)))
number list = [1,2,3,4,5]

for number in number list:
sn = square(number)
print("Square root of " + str(number) + " is " + str(sn))

Modules

References:

® https://docs.python.org/3/tutorial/modules.html#modules

e |fyou quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are
lost.
e Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare the input
for the interpreter and running it with that file as input instead.
® |et's say we define two functions:
def square(n):
return n ** 2
def cube(n):

return n ** 3

® You can save the code above in a file named math.py. | created the file for you already in the current folder.
e All you have to do is import the math_ops.py file

import math_ops

for number in number_ list:
sn = square(number)
cn = cube(number)
print("Square root of " + str(number) + " is " + str(sn))
print("Cube root of " + str(number) + " is " + str(cn))
print("-——————m ")

® You can get alist of the current installed modules too

help('modules')

e |et'simport the datetime module.

import datetime

e Explore the datetime available methods. You can do that by typing the module name, a period after that and pressing
the tab key or by using the the built-in functionn dir() as shown below:

dir(datetime)

e You can also import a module with a custom name

import datetime as dt

dir(dt)

['MAXYEAR',
'MINYEAR',

__builtins__ ',

_ _cached ',

_doc__ ',
'__file ',

_ loader_ ',
'__name__ ',
'__package_ ',
'__spec_ ',
'date’,
'datetime’,
'datetime_CAPI',
'sys',

'time',
'timedelta’',
'timezone',
'tzinfo']

By Roberto Rodriguez @Cyb3rWardOg
© Copyright 2020.

