
Using THOR
-adventures in general circulation modeling-

Russell Deitrick (with João Mendonça, Urs Schroffenegger, & Simon Grimm)

Wiki

• https://github.com/exoclime/THOR/wiki

https://github.com/exoclime/THOR/wiki

Compiling!
• https://github.com/exoclime/THOR/wiki/Installing-and-compiling

• Dependencies: nvidia-cuda-toolkit, HDF5, make, git, gcc, g++,
(plotting: python 3, h5py, pyshtools)

• Since we’re running on Bern’s GPU machine (Hulk), we’ll bypass most
of the steps (sorry)

• $ git clone https://github.com/exoclime/THOR.git

Warning for Anaconda users: the make file for THOR will (try to) auto-detect the location
of your hdf5 libraries. Unfortunately, Anaconda installs components of hdf5 which tend to
interfere with the auto-detection process. Before compiling and running THOR, you may

need to run conda deactivate (you can restart Anaconda with conda activate).

https://github.com/exoclime/THOR/wiki/Installing-and-compiling

Compiling!
• One manual step

•$ cp Makefile.conf.template Makefile.conf

• Edit the new file (Makefile.conf):

•$ make release -j8

• When you run into compiler errors, first try:

•$ make clean (then recompile as above)

Parallel compile with 8 CPUs for speed
(remove if you want compiler to print

messages in order)
Compile optimized version

Connects physics
modules

Compute capability of your GPU

Setting up your planet
• Let’s look at an input file (https://github.com/exoclime/

THOR/blob/master/ifile/earth_hstest.thr)

• Use nano or emacs (or vi/vim) on Hulk

= comment

https://github.com/exoclime/THOR/blob/master/ifile/earth_hstest.thr
https://github.com/exoclime/THOR/blob/master/ifile/earth_hstest.thr
https://github.com/exoclime/THOR/blob/master/ifile/earth_hstest.thr

Running the model
• https://github.com/exoclime/THOR/wiki/Running-THOR

• Running locally (direct access to GPU)

• $ bin/esp ifile/myplanet.thr

• Running with Slurm scheduler (cluster-style)

• $ sbatch myjobscript

Running the model
• Flags:

• $ bin/esp ifile/myplanet.thr -w

• $ srun --gres=gpu:1 bin/esp ifile/myplanet.thr -w

• Overwrite existing data!!

• $ bin/esp ifile/myplanet.thr -b

• $ srun --gres=gpu:1 bin/esp ifile/myplanet.thr -b

• “batch” mode: if no data exists, start from beginning; if data exists, start from last save file  
(see esp_log_write_<planet>.txt)

Local GPU

Hulk

Local GPU

Hulk

Output!

Simulation data at output time #

Log file (stdout)

Data about
performance

Global quantities
(energy, etc.)

Grid info and
user settings

Log of output filesNote that these data are instantaneous, but
I plan to add averages over the output

interval. Be mindful of the tradeoff
between output cadence and data size!

Some knobs you can turn
Pressure at bottom of model

N = 2 + 10× 2
2glevelGrid points

} (I never mess with these)

Vertical levels

Model top (more on this later)

The “native” state of the
model is

NonHydrostatic, Deep

You can switch these off to experiment
with hydrostatic and shallow

approximations (warning: model usually
does not perform as well)

Other things to be aware of

When running locally, when multiple GPUs are present

You can start from an output file by setting rest = false:

“ifile/esp_initial_planet.h5” must also be present

• Benchmarks (Newtonian cooling)

• Radiative transfer (double gray)

Forcing the atmosphere

• Benchmark refs: Held & Suarez 1994, Cooper & Showman 2005, 2006, Menou &
Rauscher 2009, Merlis & Schneider 2010, Rauscher & Menou 2010, Heng et al. 2011,
Mayne et al. 2014, Mendonça et al. 2016

• RT refs: Lacis & Oinas 1991, Frierson et al. 2006, Heng et al. 2011, Mendonça et al.
2018

RT parameters (double gray)
• Incident stellar flux

• Internal heat flux (currently only with no surface)

S0 = σT 4

⋆
(R⋆/a)

2(1− α)

(yes, probably more options
than necessary…)

If lowest layer temperature is greater
than this, then it is ignored…

RT parameters (double gray)
• Angle “integration”

• Currently, for gray approx, we use diffusivity factor with
given by Stefan-Boltzmann (flux, instead of intensity)

• Surface properties (RT)

dE(µ) = B(τ ′) exp

(

−τ ′

µ

)

dτ ′

µ
µ = cos θ

B(τ ′)

µ = 1/D 1 < D < 2
(bad naming choice, I

know)

RT parameters (double gray)
• Optical depths

τsw = τsw,0

(

P

Pref

)nsw

unmixed mixed n = 1 (uniformly mixed absorber)
n > 1 (stronger in lower atmosphere)

τlw = flwτlw,0

(

P

Pref

)

+ (1− flw)τlw,0

(

P

Pref

)nlw

• Special tuning for Earth (you can generalize this, if you feel like it)

τlw,0 = τlw,eq + (τlw,pole − τlw,eq) sin
2 φ

Insolation

Coded for arbitrary rotation/orbit

Still testing, so please let me know if
you use these parameters and what you

learn! (esp. if you find mistakes)

This can be negative! (retrograde spin)

Ensures substellar longitude does not
drift (overrides mean_motion)

Making plots
• To copy output files to another computer (I like “rsync”):

• $ rsync -vr user@hulk.unibe.ch:<path_to_output> <local_path>

• See https://github.com/exoclime/THOR/wiki/Python-plotting

• An additional dependency: pyshtools (https://pypi.org/project/
pyshtools/)

• $ pip3 install pyshtools

• Used only for calculating KE spectra—if you have trouble
installing pyshtools, you can comment out the code that uses
it…

https://github.com/exoclime/THOR/wiki/Python-plotting
https://pypi.org/project/pyshtools/
https://pypi.org/project/pyshtools/

Making plots

“mjolnir.py” is the main Python script
which import “hamarr.py”

The MATLAB code is written by João
and is pretty old, but it is there if you
like MATLAB and want something to
get started with

The Python code is written by me (based
on João’s MATLAB code) and is
changing all the time, so be sure to
commit changes you make to it!

“custom_example.py” shows you how to
customize some things

Note: please view these as a starting
point. You will probably need to make
changes and write your own scripts to
plot new things. There may also be
mistakes, so please don’t use without
understanding what the scripts do

Making plots
You can run the Python code on the command line (you’ll need to update your PATH
and PYTHONPATH first):

(Oops, looks like I need to update something…)

$ mjolnir -i <start> -l <end> -f <results folder> <plot type>

first and last output
file numbers

Making plots
Plot types: vertical, horizontal, profile, others…

Vertical Horizontal Profile

I’m always adding to these…

Making plots
“regrid” is a special mjolnir argument

$ mjolnir -i <start> -l <end> -f <results folder> regrid

All contour plots require the lat-lon-pressure grid. Suggestion: run regrid on all
simulation files overnight! Then plotting is much faster.

icosahedral/height latitude/longitude/pressure

Word of caution:
I use a 2-D flattened
interpolation function
from SciPy for the
horizontal regridding.
This produces artifacts
at the edges (long =0,
360) and poles.
Probably acceptable for
plots but could be
improved on!

How do I stabilize the model??

• Get coffee

• Open input file and tweak, run, tweak, run, tweak, run…

• Make plots (lots and lots of plots)

Model stability
• Hyperdiffusion

• Divergence damping

• Time step

• Sponge layer (hot planets)

• Things to explore: boundary conditions, initial conditions,
vertical diffusion, temperature sponge, other numerical
tricks??

a.k.a., wrestling with the
400 pound gorilla

Hyperdiffusion & divergence damping

Fv⃗h
= −∇

2
hρKhyp∇

2
hv⃗h −Kdiv∇

2
h∇(∇ · (ρv⃗))

Fρ = −∇
2
hKhyp∇

2
hρ

Fvr = −∇
2
hρKhyp∇

2
hvr

FP = −Rd∇
2
hρKhyp∇

2
hT

“hyperdiffusion”:
standard damping for GCMs

“divergence damping”:
unique to split time-stepping

algorithm with “fast” and “slow”
terms

Shamrock & Klemp 1992, Tomita & Satoh 2004, Mendonça et al. 2016

∇
2

h
= horizontal Laplace operator

Hyperdiffusion & divergence damping

Fv⃗h
= −∇

2
hρKhyp∇

2
hv⃗h −Kdiv∇

2
h∇(∇ · (ρv⃗))

Fρ = −∇
2
hKhyp∇

2
hρ

Fvr = −∇
2
hρKhyp∇

2
hvr

FP = −Rd∇
2
hρKhyp∇

2
hT

d =

√

2π

5

r0

2glevel

K = D
d4

∆t

} D

τd =
d4

25K
=

∆t

25D

Damping time scale:

The need for damping
Pentagons!

No damping
Divergence
damping

The need for damping

Thrastarson & Cho 2011

Jablonowski & Williamson 2011
(in Numerical Techniques for Global

Atmospheric Models)

Energy cascade (turbulence) brings energy to
small scale. In a real atmosphere, this
dissipates because of molecular viscosity, but
GCMs usually don’t resolve this…

Not enough
hyperdiffusion

How do I pick a time step?
• Trial & error (mostly)

• Guiding principles

• CFL number

• Radiative time scale (Showman & Guillot 2002)

C =
u∆t

∆x
< 1

Try: sound speed and horizontal grid size

cs =
√

γRdT d =

√

2π

5

r0

2glevel

τrad ∼
CPP

4σgT 3

Usually shortest at top of model

(yes, we have acoustic waves in THOR)

How do I pick a time step?
• Time steps can be too small

• Partly, this is due to diffusion scaling, which can lead to
overdamping:

• Partly, a mystery we are still trying to solve

• One hypothesis is that we begin to resolve faster waves
but resolve them poorly (João disagrees…)

K = D
d4

∆t

Adjust boundaries (model top, especially)

• We solve the fluid equations on a height grid, rather than a pressure grid

• So we have to solve for pressure from density and potential temperature:

∂ρθ

∂t
+∇ · (ρθv⃗) = 0 P = Pref

(

Rd ρθ

Pref

)CP /CV

• The numerics at low pressure are fickle—sometimes you can get negative
potential temperature or pressure (then the model crashes)

• Pressures ~< 10-5 bar are usually where things get sketchy, so be mindful
where you set the model top!

• But beware: making the top too low can produce weird results!

from Mendonça et al 2016

Sponge layer (for hot planets)

• Hot atmospheres tend to have strong vertically propagating
(gravity) waves

• The best way to conserve mass, energy, etc., is to apply the
boundary conditions at top and bottom:

vr = 0

• (this is a reflective boundary)

• (so waves that should continue up and dissipate at pressure
we can’t hope to model, instead bounce back and can
constructively interfere)

The result…
• Steep gradients (which are bad news for numerical solvers)

Sponge layer (for hot planets)
dv

dt
= −

v − ⟨v⟩

τ
damp velocities toward zonal mean

bins used to calculate zonal mean

height where sponge layer begins

strength of damping (1/time scale)

You can dissipate the sponge (strength
decays exponentially). The sponge can
also be removed manually after some
time by stopping, editing the config file,
and restarting, but this is not as smooth.I changed this to # of time steps (haven’t

updated all the config files, sorry)

Dry convective adjustment

(sorry about the inconsistent
usage of true/false vs 1/0)

Earth sim without conv_adj Earth sim with conv_adj

Manabe et al., 1965

(secret: this can help stabilize the numerics in some situations)

Advanced debugging

• You can compile in debug mode and run cuda-gdb to
interact with the code directly as it runs (must have direct
access to GPU):

• $ make -j8 debug

• $ cuda-gdb bin/esp

• Then you can set break points and such (very similar to
standard gdb)

Advanced debugging
• Check out src/headers/debug.h (for serious coders)

Uncomment to turn on code
“benchmarking” before compile

Give more info about where/why code crashed!

Options for comparing run to run

Contribute to THOR

• Fork the repo

• Add some code/fix some bugs/improve the code

• Submit a pull request!

Test!

• Copy the directory below to your own THOR directory

• Each of the simulations will crash! Can you make them run
for the entire num_steps?

• (Clues are in the names of the output directories)

• (I won’t guarantee they are stable after num_steps…)

