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Wiki

• https://github.com/exoclime/THOR/wiki

https://github.com/exoclime/THOR/wiki


Compiling!
• https://github.com/exoclime/THOR/wiki/Installing-and-compiling

• Dependencies: nvidia-cuda-toolkit, HDF5, make, git, gcc, g++, 
(plotting: python 3, h5py, pyshtools)

• Since we’re running on Bern’s GPU machine (Hulk), we’ll bypass most 
of the steps (sorry)

• $ git clone https://github.com/exoclime/THOR.git 

Warning for Anaconda users: the make file for THOR will (try to) auto-detect the location 
of your hdf5 libraries. Unfortunately, Anaconda installs components of hdf5 which tend to 
interfere with the auto-detection process. Before compiling and running THOR, you may 

need to run conda deactivate (you can restart Anaconda with conda activate).

https://github.com/exoclime/THOR/wiki/Installing-and-compiling


Compiling!
• One manual step 

•$ cp Makefile.conf.template Makefile.conf 

• Edit the new file (Makefile.conf):

•$ make release -j8 

• When you run into compiler errors, first try:

•$ make clean (then recompile as above)

Parallel compile with 8 CPUs for speed 
(remove if you want compiler to print 

messages in order)
Compile optimized version

Connects physics 
modules

Compute capability of your GPU



Setting up your planet
• Let’s look at an input file (https://github.com/exoclime/

THOR/blob/master/ifile/earth_hstest.thr)

• Use nano or emacs (or vi/vim) on Hulk

# = comment

https://github.com/exoclime/THOR/blob/master/ifile/earth_hstest.thr
https://github.com/exoclime/THOR/blob/master/ifile/earth_hstest.thr
https://github.com/exoclime/THOR/blob/master/ifile/earth_hstest.thr


Running the model
• https://github.com/exoclime/THOR/wiki/Running-THOR

• Running locally (direct access to GPU)

• $ bin/esp ifile/myplanet.thr  

• Running with Slurm scheduler (cluster-style)

• $ sbatch myjobscript



Running the model
• Flags:

• $ bin/esp ifile/myplanet.thr -w  

• $ srun --gres=gpu:1 bin/esp ifile/myplanet.thr -w 

• Overwrite existing data!!

• $ bin/esp ifile/myplanet.thr -b 

• $ srun --gres=gpu:1 bin/esp ifile/myplanet.thr -b 

• “batch” mode: if no data exists, start from beginning; if data exists, start from last save file  
(see esp_log_write_<planet>.txt)

Local GPU

Hulk

Local GPU

Hulk



Output!

Simulation data at output time #

Log file (stdout)

Data about 
performance

Global quantities 
(energy, etc.)

Grid info and 
user settings 

Log of output filesNote that these data are instantaneous, but 
I plan to add averages over the output 

interval. Be mindful of the tradeoff 
between output cadence and data size!



Some knobs you can turn
Pressure at bottom of model

N = 2 + 10× 2
2glevelGrid points

} (I never mess with these)

Vertical levels

Model top (more on this later)

The “native” state of the 
model is 

NonHydrostatic, Deep

You can switch these off to experiment 
with hydrostatic and shallow 

approximations (warning: model usually 
does not perform as well)



Other things to be aware of

When running locally, when multiple GPUs are present

You can start from an output file by setting rest = false:

“ifile/esp_initial_planet.h5” must also be present



• Benchmarks (Newtonian cooling)

• Radiative transfer (double gray)

Forcing the atmosphere

• Benchmark refs: Held & Suarez 1994, Cooper & Showman 2005, 2006, Menou & 
Rauscher 2009, Merlis & Schneider 2010, Rauscher & Menou 2010, Heng et al. 2011, 
Mayne et al. 2014, Mendonça et al. 2016

• RT refs: Lacis & Oinas 1991, Frierson et al. 2006, Heng et al. 2011, Mendonça et al. 
2018



RT parameters (double gray)
• Incident stellar flux

• Internal heat flux (currently only with no surface)

S0 = σT 4

⋆
(R⋆/a)

2(1− α)

(yes, probably more options 
than necessary…)

If lowest layer temperature is greater 
than this, then it is ignored…



RT parameters (double gray)
• Angle “integration”

• Currently, for gray approx, we use diffusivity factor with 
given by Stefan-Boltzmann (flux, instead of intensity)

• Surface properties (RT)

dE(µ) = B(τ ′) exp

(

−τ ′

µ

)

dτ ′

µ
µ = cos θ

B(τ ′)

µ = 1/D 1 < D < 2
(bad naming choice, I 

know)



RT parameters (double gray)
• Optical depths

τsw = τsw,0

(

P

Pref

)nsw

unmixed mixed n = 1 (uniformly mixed absorber)
n > 1 (stronger in lower atmosphere)

τlw = flwτlw,0

(

P

Pref

)

+ (1− flw)τlw,0

(

P

Pref

)nlw

• Special tuning for Earth (you can generalize this, if you feel like it)

τlw,0 = τlw,eq + (τlw,pole − τlw,eq) sin
2 φ



Insolation

Coded for arbitrary rotation/orbit

Still testing, so please let me know if 
you use these parameters and what you 

learn! (esp. if you find mistakes)

This can be negative! (retrograde spin)

Ensures substellar longitude does not 
drift (overrides mean_motion) 



Making plots
• To copy output files to another computer (I like “rsync”):

• $ rsync -vr user@hulk.unibe.ch:<path_to_output> <local_path> 

• See https://github.com/exoclime/THOR/wiki/Python-plotting

• An additional dependency: pyshtools (https://pypi.org/project/
pyshtools/) 

• $ pip3 install pyshtools 

• Used only for calculating KE spectra—if you have trouble 
installing pyshtools, you can comment out the code that uses 
it…

https://github.com/exoclime/THOR/wiki/Python-plotting
https://pypi.org/project/pyshtools/
https://pypi.org/project/pyshtools/


Making plots

“mjolnir.py” is the main Python script
which import “hamarr.py”   

The MATLAB code is written by João 
and is pretty old, but it is there if you 
like MATLAB and want something to 
get started with

The Python code is written by me (based 
on João’s MATLAB code) and is 
changing all the time, so be sure to 
commit changes you make to it!

“custom_example.py” shows you how to 
customize some things

Note: please view these as a starting 
point. You will probably need to make 
changes and write your own scripts to 
plot new things. There may also be 
mistakes, so please don’t use without 
understanding what the scripts do



Making plots
You can run the Python code on the command line (you’ll need to update your PATH 
and PYTHONPATH first):

(Oops, looks like I need to update something…)

$ mjolnir -i <start> -l <end> -f <results folder> <plot type>

first and last output 
file numbers



Making plots
Plot types: vertical, horizontal, profile, others…

Vertical Horizontal Profile

I’m always adding to these…



Making plots
“regrid” is a special mjolnir argument

$ mjolnir -i <start> -l <end> -f <results folder> regrid

All contour plots require the lat-lon-pressure grid. Suggestion: run regrid on all 
simulation files overnight! Then plotting is much faster.

icosahedral/height latitude/longitude/pressure

Word of caution:
I use a 2-D flattened 
interpolation function 
from SciPy for the 
horizontal regridding. 
This produces artifacts 
at the edges (long =0, 
360) and poles. 
Probably acceptable for 
plots but could be 
improved on!



How do I stabilize the model??

• Get coffee

• Open input file and tweak, run, tweak, run, tweak, run…

• Make plots (lots and lots of plots)



Model stability
• Hyperdiffusion

• Divergence damping

• Time step

• Sponge layer (hot planets)

• Things to explore: boundary conditions, initial conditions, 
vertical diffusion, temperature sponge, other numerical 
tricks??

a.k.a., wrestling with the 
400 pound gorilla



Hyperdiffusion & divergence damping

Fv⃗h
= −∇

2
hρKhyp∇

2
hv⃗h −Kdiv∇

2
h∇(∇ · (ρv⃗))

Fρ = −∇
2
hKhyp∇

2
hρ

Fvr = −∇
2
hρKhyp∇

2
hvr

FP = −Rd∇
2
hρKhyp∇

2
hT

“hyperdiffusion”:
standard damping for GCMs

“divergence damping”:
unique to split time-stepping 

algorithm with “fast” and “slow” 
terms

Shamrock & Klemp 1992, Tomita & Satoh 2004, Mendonça et al. 2016

∇
2

h
= horizontal Laplace operator



Hyperdiffusion & divergence damping

Fv⃗h
= −∇
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Damping time scale:



The need for damping
Pentagons!

No damping
Divergence
damping



The need for damping

Thrastarson & Cho 2011

Jablonowski & Williamson 2011 
(in Numerical Techniques for Global 

Atmospheric Models)

Energy cascade (turbulence) brings energy to 
small scale. In a real atmosphere, this 
dissipates because of molecular viscosity, but 
GCMs usually don’t resolve this…

Not enough 
hyperdiffusion



How do I pick a time step?
• Trial & error (mostly)

• Guiding principles

• CFL number 

• Radiative time scale (Showman & Guillot 2002)

C =
u∆t

∆x
< 1

Try: sound speed and horizontal grid size

cs =
√

γRdT d =

√

2π

5

r0

2glevel

τrad ∼
CPP

4σgT 3

Usually shortest at top of model

(yes, we have acoustic waves in THOR)



How do I pick a time step?
• Time steps can be too small

• Partly, this is due to diffusion scaling, which can lead to 
overdamping:

• Partly, a mystery we are still trying to solve

• One hypothesis is that we begin to resolve faster waves 
but resolve them poorly (João disagrees…)

K = D
d4

∆t



Adjust boundaries (model top, especially)

• We solve the fluid equations on a height grid, rather than a pressure grid

• So we have to solve for pressure from density and potential temperature:

∂ρθ

∂t
+∇ · (ρθv⃗) = 0 P = Pref

(

Rd ρθ

Pref

)CP /CV

• The numerics at low pressure are fickle—sometimes you can get negative 
potential temperature or pressure (then the model crashes) 

• Pressures ~< 10-5 bar are usually where things get sketchy, so be mindful 
where you set the model top!

• But beware: making the top too low can produce weird results!

from Mendonça et al 2016



Sponge layer (for hot planets)

• Hot atmospheres tend to have strong vertically propagating 
(gravity) waves  

• The best way to conserve mass, energy, etc., is to apply the 
boundary conditions at top and bottom:

vr = 0

• (this is a reflective boundary)

• (so waves that should continue up and dissipate at pressure 
we can’t hope to model, instead bounce back and can 
constructively interfere) 



The result…
• Steep gradients (which are bad news for numerical solvers)



Sponge layer (for hot planets)
dv

dt
= −

v − ⟨v⟩

τ
damp velocities toward zonal mean

bins used to calculate zonal mean

height where sponge layer begins

strength of damping (1/time scale)

You can dissipate the sponge (strength 
decays exponentially). The sponge can 
also be removed manually after some 
time by stopping, editing the config file, 
and restarting, but this is not as smooth.I changed this to # of time steps (haven’t 

updated all the config files, sorry)



Dry convective adjustment

(sorry about the inconsistent 
usage of true/false vs 1/0)

Earth sim without conv_adj Earth sim with conv_adj

Manabe et al., 1965

(secret: this can help stabilize the numerics in some situations)



Advanced debugging

• You can compile in debug mode and run cuda-gdb to 
interact with the code directly as it runs (must have direct 
access to GPU):

• $ make -j8 debug 

• $ cuda-gdb bin/esp 

• Then you can set break points and such (very similar to 
standard gdb)



Advanced debugging
• Check out src/headers/debug.h (for serious coders)

Uncomment to turn on code 
“benchmarking” before compile

Give more info about where/why code crashed!

Options for comparing run to run 



Contribute to THOR

• Fork the repo

• Add some code/fix some bugs/improve the code

• Submit a pull request!



Test!

• Copy the directory below to your own THOR directory

• Each of the simulations will crash! Can you make them run 
for the entire num_steps? 

• (Clues are in the names of the output directories)

• (I won’t guarantee they are stable after num_steps…)


