Very high quality image quantization in Rust
Switch branches/tags
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
examples
src
.gitignore
Cargo.toml
LICENSE
README.md

README.md

Exoquant 0.1.0

Exoquant is a very high quality image quantization library written in Rust featuring code for basic color quantization, K-Means palette optimization and remapping and dithering with Floyd-Steinberg and ordered ditherers.

This version of the library is a much improved rewrite of a C library of the same name written back in 2004.

Usage

Add exoquant as a dependency to your Cargo.toml:

[dependencies]
exoquant = "0.2.0"

Basic API:

For simple use cases, there is a convenience function that simply takes true color image data + a few options as input and returns the palette and indexed image data as output:

use exoquant::*;
let image = testdata::test_image();

let (palette, indexed_data) = convert_to_indexed(&image.pixels, image.width, 256,
  &optimizer::KMeans, &ditherer::FloydSteinberg::new());

Low-Level API:

The low-level API gives you full control over the quantization workflow. It allows for use-cases like:

  • only create a palette and do the remapping in your own custom code
  • remap images to an existing palette or one created with a different library
  • generating a single palette for multiple input images (or, say, frames of a GIF)
  • implement your own custom ditherer (also usable with the basic API)

Using the low-level API to quantize an image looks like this:

use exoquant::*;
use exoquant::optimizer::Optimizer;

let image = testdata::test_image();

let histogram = image.pixels.iter().cloned().collect();

let colorspace = SimpleColorSpace::default();
let optimizer = optimizer::KMeans;
let mut quantizer = Quantizer::new(&histogram, &colorspace);
while quantizer.num_colors() < 256 {
  quantizer.step();
  // very optional optimization, !very slow!
  // you probably only want to do this every N steps, if at all.
  if quantizer.num_colors() % 64 == 0 {
    quantizer = quantizer.optimize(&optimizer, 4);
  }
}

let palette = quantizer.colors(&colorspace);
// this optimization is more useful than the above and a lot less slow
let palette = optimizer.optimize_palette(&colorspace, &palette, &histogram, 16);

let ditherer = ditherer::FloydSteinberg::new();
let remapper = Remapper::new(&palette, &colorspace, &ditherer);
let indexed_data = remapper.remap(&image.pixels, image.width);

API Documentation

Click here for a online version of the API Documenation