Permalink
7793e2a Dec 20, 2016
@syllog1sm @honnibal
209 lines (179 sloc) 7.48 KB
import plac
import collections
import random
import pathlib
import cytoolz
import numpy
from keras.models import Sequential, model_from_json
from keras.layers import LSTM, Dense, Embedding, Dropout, Bidirectional
from keras.layers import TimeDistributed
from keras.optimizers import Adam
import cPickle as pickle
import spacy
class SentimentAnalyser(object):
@classmethod
def load(cls, path, nlp, max_length=100):
with (path / 'config.json').open() as file_:
model = model_from_json(file_.read())
with (path / 'model').open('rb') as file_:
lstm_weights = pickle.load(file_)
embeddings = get_embeddings(nlp.vocab)
model.set_weights([embeddings] + lstm_weights)
return cls(model, max_length=max_length)
def __init__(self, model, max_length=100):
self._model = model
self.max_length = max_length
def __call__(self, doc):
X = get_features([doc], self.max_length)
y = self._model.predict(X)
self.set_sentiment(doc, y)
def pipe(self, docs, batch_size=1000, n_threads=2):
for minibatch in cytoolz.partition_all(batch_size, docs):
minibatch = list(minibatch)
sentences = []
for doc in minibatch:
sentences.extend(doc.sents)
Xs = get_features(sentences, self.max_length)
ys = self._model.predict(Xs)
for sent, label in zip(sentences, ys):
sent.doc.sentiment += label - 0.5
for doc in minibatch:
yield doc
def set_sentiment(self, doc, y):
doc.sentiment = float(y[0])
# Sentiment has a native slot for a single float.
# For arbitrary data storage, there's:
# doc.user_data['my_data'] = y
def get_labelled_sentences(docs, doc_labels):
labels = []
sentences = []
for doc, y in zip(docs, doc_labels):
for sent in doc.sents:
sentences.append(sent)
labels.append(y)
return sentences, numpy.asarray(labels, dtype='int32')
def get_features(docs, max_length):
docs = list(docs)
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
for i, doc in enumerate(docs):
j = 0
for token in doc:
if token.has_vector and not token.is_punct and not token.is_space:
Xs[i, j] = token.rank + 1
j += 1
if j >= max_length:
break
return Xs
def train(train_texts, train_labels, dev_texts, dev_labels,
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
by_sentence=True):
print("Loading spaCy")
nlp = spacy.load('en', entity=False)
embeddings = get_embeddings(nlp.vocab)
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
print("Parsing texts...")
train_docs = list(nlp.pipe(train_texts, batch_size=5000, n_threads=3))
dev_docs = list(nlp.pipe(dev_texts, batch_size=5000, n_threads=3))
if by_sentence:
train_docs, train_labels = get_labelled_sentences(train_docs, train_labels)
dev_docs, dev_labels = get_labelled_sentences(dev_docs, dev_labels)
train_X = get_features(train_docs, lstm_shape['max_length'])
dev_X = get_features(dev_docs, lstm_shape['max_length'])
model.fit(train_X, train_labels, validation_data=(dev_X, dev_labels),
nb_epoch=nb_epoch, batch_size=batch_size)
return model
def compile_lstm(embeddings, shape, settings):
model = Sequential()
model.add(
Embedding(
embeddings.shape[0],
embeddings.shape[1],
input_length=shape['max_length'],
trainable=False,
weights=[embeddings],
mask_zero=True
)
)
model.add(TimeDistributed(Dense(shape['nr_hidden'], bias=False)))
model.add(Bidirectional(LSTM(shape['nr_hidden'], dropout_U=settings['dropout'],
dropout_W=settings['dropout'])))
model.add(Dense(shape['nr_class'], activation='sigmoid'))
model.compile(optimizer=Adam(lr=settings['lr']), loss='binary_crossentropy',
metrics=['accuracy'])
return model
def get_embeddings(vocab):
max_rank = max(lex.rank+1 for lex in vocab if lex.has_vector)
vectors = numpy.ndarray((max_rank+1, vocab.vectors_length), dtype='float32')
for lex in vocab:
if lex.has_vector:
vectors[lex.rank + 1] = lex.vector
return vectors
def evaluate(model_dir, texts, labels, max_length=100):
def create_pipeline(nlp):
'''
This could be a lambda, but named functions are easier to read in Python.
'''
return [nlp.tagger, nlp.parser, SentimentAnalyser.load(model_dir, nlp,
max_length=max_length)]
nlp = spacy.load('en')
nlp.pipeline = create_pipeline(nlp)
correct = 0
i = 0
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
i += 1
return float(correct) / i
def read_data(data_dir, limit=0):
examples = []
for subdir, label in (('pos', 1), ('neg', 0)):
for filename in (data_dir / subdir).iterdir():
with filename.open() as file_:
text = file_.read()
examples.append((text, label))
random.shuffle(examples)
if limit >= 1:
examples = examples[:limit]
return zip(*examples) # Unzips into two lists
@plac.annotations(
train_dir=("Location of training file or directory"),
dev_dir=("Location of development file or directory"),
model_dir=("Location of output model directory",),
is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
nr_hidden=("Number of hidden units", "option", "H", int),
max_length=("Maximum sentence length", "option", "L", int),
dropout=("Dropout", "option", "d", float),
learn_rate=("Learn rate", "option", "e", float),
nb_epoch=("Number of training epochs", "option", "i", int),
batch_size=("Size of minibatches for training LSTM", "option", "b", int),
nr_examples=("Limit to N examples", "option", "n", int)
)
def main(model_dir, train_dir, dev_dir,
is_runtime=False,
nr_hidden=64, max_length=100, # Shape
dropout=0.5, learn_rate=0.001, # General NN config
nb_epoch=5, batch_size=100, nr_examples=-1): # Training params
model_dir = pathlib.Path(model_dir)
train_dir = pathlib.Path(train_dir)
dev_dir = pathlib.Path(dev_dir)
if is_runtime:
dev_texts, dev_labels = read_data(dev_dir)
acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
print(acc)
else:
print("Read data")
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
train_labels = numpy.asarray(train_labels, dtype='int32')
dev_labels = numpy.asarray(dev_labels, dtype='int32')
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
{'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 1},
{'dropout': dropout, 'lr': learn_rate},
{},
nb_epoch=nb_epoch, batch_size=batch_size)
weights = lstm.get_weights()
with (model_dir / 'model').open('wb') as file_:
pickle.dump(weights[1:], file_)
with (model_dir / 'config.json').open('wb') as file_:
file_.write(lstm.to_json())
if __name__ == '__main__':
plac.call(main)