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Abstract

Conversational speech turns are often
long, motivating the use of a segmenta-
tion model to pre-process the input into
shorter units. We instead propose a
transition-based model that processes en-
tire turns, jointly performing dependency
parsing and disfluency detection. Segment
boundaries can then be recovered from the
syntactic structure if they are required.

We compare the system against a pipeline
approach, where the input is segmented
with a CRF model before parsing. We find
that the joint model achieves a 0.3% im-
provement in disfluency detection, a 0.6%
improvement in segmentation, and a 2.0%
improvement in parse accuracy, setting a
new state-of-the-art of 87.9% UAS.

1 Introduction

Previous speech understanding systems have re-
quired that the input be pre-segmented into
sentence-like units. However, sentence boundaries
are not always clear in the speech input, which
lacks case distinctions and punctuation, and is not
reliably segmented by pauses. For example, the
following turn from the Switchboard conversa-
tional speech transcripts is segmented into three
utterances, at the slashes:

(1) uh and really we were really forced into keeping a
budget because i ’m i ’m paid once a month which sort
of sort of forces some uh uh restrictions /
and you need to make sure all your bills are paid /
uh about yourself

An annotator could reasonably omit the first
boundary, analysing the first two units as a sin-
gle conjoined sentence. We suspect this arbitrari-

ness in sentence boundary location might be prob-
lematic for syntactic parsing, since the bound-
aries could accidentally constrain the syntactic
analyses in ways that are inconsistent with the
parser’s expectations. This motivated us to ex-
plore approaches where the syntactic parser itself
is responsible for identifying the locations of sen-
tence boundaries. Our approach here is to asso-
ciate entire discourse turns with a single syntac-
tic structure that consists of a sequence of sen-
tences. While the length of these turns makes con-
ventional O(n3) parsing algorithms impractical,
incremental transition-based parsers now achieve
high accuracy, while running in time linear in the
length of the input string. Our parsing model is
based on the system described by Honnibal and
Johnson (2014), who showed that a joint model of
disfluency detection and parsing produced state-
of-the-art accuracy on both tasks, when gold-
standard segment boundaries are available.

We tried two ways of parsing unsegmented in-
puts. Our first approach introduces a new transi-
tion, Break, to explicitly predict segment bound-
aries during parsing. The second approach leaves
the segmentation implicit until parsing is com-
plete, at which point the boundaries can be read-
off from the predicted parse.

We find that both ways of parsing unsegmented
input result in superior accuracy to a pipeline ap-
proach, where the input is pre-segmented by a CRF

model. The joint models prove advantageous at
all three evaluations: segmentation, disfluency de-
tection and parsing. The improvement is particu-
larly substantial for parsing, where the pipeline ap-
proach results in 85.9% UAS, while the best joint
model achieves 87.9%, a new state-of-the-art. Our
model is also highly efficient, processing approxi-
mately 900 words per second.



A flight to um︸︷︷︸
FP

Boston︸ ︷︷ ︸
RM

I mean︸ ︷︷ ︸
IM

Denver︸ ︷︷ ︸
RP

Tuesday

Figure 1: A sentence with disfluencies annotated in
the style of Shriberg (1994) and the Switchboard cor-
pus. FP=Filled Pause, RM=Reparandum, IM=Interregnum,
RP=Repair.

Disfluency type Example Freq.
Speech-repair to Boston uh Denver 32,310
Filled pauses um, uh 20,502
Edit terms I mean 3,447
Discourse well, you know 21,412
Segment Conjunctions and, and so 25,624

Table 1: Frequencies of different disfluency types in Sec-
tions 2 and 3 of the Switchboard MRG files.

2 Spoken Language Understanding

A verbatim, unpunctuated speech transcript has
very different linguistic characteristics from well-
edited written text, even in the absence of speech-
recognition errors. Speech transcripts pose two
challenges for natural language understanding
technologies in particular. The segmentation
problem arises because the speech stream is con-
tinuous, and pauses are less syntactically infor-
mative than careful punctuation (Gregory et al.,
2004). The disfluency problem arises due to lan-
guage performance problems — speakers um and
uh, edit their utterances on the fly, and frequently
insert parentheticals.

Well-edited written text can be segmented into
sentences easily, using punctuation and capitalisa-
tion. Sentence boundary detection systems typi-
cally achieve accuracies above 99% on clean text
input, while state-of-the-art speech segmentation
systems achieve only 96-97% accuracy (i.e. a
3-times higher error-rate). Segmentation is typi-
cally a pre-process for parsing, limiting segmenta-
tion systems to ngram-based features, and acous-
tic cues — which have proven difficult to utilise
(Liu et al., 2005). These local features cannot ac-
curately identify segment boundaries, if segments
are identified with tensed clauses, since they can
contain multiple long-range dependencies.

As well as being continuous, unscripted speech
is frequently disfluent. Figure 1 shows part
of a disfluent utterance, annotated according to
Shriberg (1994). Speech repairs are particularly
problematic for syntactic parsers, because of the
complicated dependency structures that can arise
between the reparandum, repair and the fluent sen-
tence (Johnson and Charniak, 2004).

Length Segmented Unsegmented
1-2 26,140 10,225
2-5 15,727 6,914
5-10 23,283 6,885
10-20 19,738 8,934
20-50 6,406 9,765
50-100 161 2,106
100-200 0 257
200-422 0 20
Total 91,455 45,106

Table 2: Input lengths in the Switchboard training corpus,
with and without gold-standard segmentation. For instance,
with utterances pre-segmented, there are 161 sentences with
between 51 and 100 tokens; in the unsegmented corpus, there
are 2,106 sentences with lengths in that range.

2.1 The Switchboard Corpus
The Switchboard portion of the Penn Treebank
(Marcus et al., 1993) contains 1,126 transcripts of
telephone calls between strangers on an assigned
topic. Every file has been annotated for speech-
repairs and other disfluencies (filled pauses, par-
entheticals, discourse markers, etc); these anno-
tations are provided in the DPS files. Syntactic
brackets (MRG files) are available for 619,236 of
the 1,482,845 words in the training sections of the
corpus (2 and 3). All of the transcripts have also
been annotated for various speech metadata, in-
cluding utterance segmentation, speech repairs per
Shriberg (1994), and non-repair disfluencies, such
as filled pauses. Table 1 shows the frequency of
these disfluencies in the training corpus.

Table 2 shows how segmentation affects the
length of training inputs. Without any utterance
segmentation, the inputs consist of whole turns,
using the gold-standard diarisation in the MRG

files. Segmentation doubles the number of seg-
ments (and so halves their length, on average); i.e.,
on average each turn contains one sentence-medial
segment boundary.

We follow previous work on spoken language
understanding by lower-casing the text and remov-
ing punctuation and partial words (words tagged
XX and words ending in ‘-’). However, we de-
part from Honnibal and Johnson (2014) in not re-
moving one-token sentences, not removing filled
pauses as a pre-process, and not re-tokenising the
common parentheticals you know and i mean. We
avoid these extra pre-processing steps in favour of
extended disfluency processing, by subtyping the
Edit transition with different disfluency labels, as
described in Section 3.3.



(σ, i|β,A,L) ` (σ|i, β,A,L) S
(σ|i|j, β,A,L) ` (σ|i, β,A(j) = i,L(j) = `) R`

(σ|i, j|β,A,L) ` (σ, j|β,A(i) = j,L(i) = `) L`

(σ|i, β,A,L) ` (σ|x1|...|xn, β,A(γ) = γ,L(γ) = `) E`

Where
x1...xn are the former left children of i
γ is i and its rightward subtree

Figure 2: Transition system for the parser, with σ denoting
the stack, β denoting the buffer, A denoting a vector of head
indices, and L a vector of arc labels. The transitions are the
arc-hybrid Shift, Right and Left, and the Honnibal and John-
son (2014) Edit. The R, L and E transitions are parameterised
by label, `.

3 Joint Disfluency Detection and Parsing

Our model is based on the Honnibal and John-
son (2014) joint incremental disfluency detection
and parsing system. This section provides a brief
description of the model, and highlights our de-
partures from it. Our novel contributions are de-
scribed from Section 4 onwards.

3.1 Transition-based Dependency Parsing
We follow recent work on speech parsing in us-
ing an incremental, transition-based dependency
parser (Rasooli and Tetreault, 2013; Honnibal and
Johnson, 2014). A transition-based parser (Nivre,
2003) consists of a configuration, and a set of ac-
tions (or ‘transition system’). Actions are chosen
from the transition-system and applied to the state,
until a terminal configuration is reached.

A configuration c = (σ, β,A,L), where σ and
β are disjoint sets of word indices termed the stack
and buffer respectively, A is a vector of head in-
dices, and L is a vector of dependency labels. A
dependency arc from a head h to a dependent d
with label ` is represented A(d) = h, L(d) = `.
A word d is marked disfluent by setting its head to
itself, i.e. A(d) = d. Labels are used to distin-
guish the different types of disfluencies, e.g. filled
pauses, speech repairs, etc. A vertical bar is used
to denote concatenation to the stack or buffer, e.g.
σ|i indicates a stack with the topmost element i
and remaining elements σ.

3.2 Arc-Hybrid Transition System
We depart from Honnibal and Johnson (2014)
in using the arc-hybrid system (Kuhlmann et al.,
2011), instead of the arc-eager system (Nivre,
2003). The two transition systems achieve com-
parable accuracy (Goldberg and Nivre, 2013), but
we find the arc hybrid system slightly simpler.

The arc-hybrid system, shown in Figure 2, de-
fines the Left-Arc in the same way as the Nivre
(2003) arc-eager system, but the Right-Arc creates
an arc between the top two words of the stack, fol-
lowing the arc-standard definition.

Unlike the arc-eager system, arcs are only cre-
ated when a word is popped. This means that
there are never arcs to words on the stack. The
stack, buffer, and the words that have been as-
signed heads are three disjoint sets.

The arc-hybrid system maintains the simplicity
advantages of arc-standard, which have motivated
Huang and Sagae (2010) and others to continue
working with it; but allows training oracles to be
defined easily, due to the arc decomposable prop-
erty that Goldberg and Nivre (2013) show it shares
with the arc-eager system.

3.3 The Edit Transition
We employ the Edit transition defined by Honnibal
and Johnson (2014), to handle speech repairs. The
Edit transition marks the word i on top of the stack
σ|i as disfluent, along with its rightward descen-
dents — i.e., all words in the sequence i...j − 1,
where j is the leftmost edge of the word at the start
of the buffer. It then restores the words both pre-
ceding and formerly governed by i to the stack.

Honnibal and Johnson (2014) only apply the
Edit transition to speech-repair disfluencies. They
pre-process the input to remove uh and um tokens,
and merge the common parenthetical you know
into a single token. We instead extend the Edit
transition to the other disfluency types described
in Table 1, with the exception of segment conjunc-
tions, which are simply conjunctions that occur at
the beginning of a segment.

3.4 Training and Decoding
We follow Honnibal and Johnson (2014) in em-
ploying beam-search decoding, and use their train-
ing strategy: the Sun et al. (2009) latent-variable
variant of the Collins (2002) structured percep-
tron, with weight updates calculated with the
Huang et al. (2012) maximum violation strategy.
We also employ the path-length normalisation
technique that Honnibal and Johnson (2014) rec-
ommend, to deal with the variable-length transi-
tion histories the Edit transition may introduce:
when calculating the figure-of-merit for the beam,
we use the mean transition score, instead of the
total transition score.



I never wear heels they tire me out ROOT

I saw her wear heels ROOT

Figure 3: Two parse states, showing a segmentation de-
cision to be made using Strategy 1, implicit segmentation.
Words remaining on the stack are circled, and current arcs
are drawn with solid lines. The arrow indicates the start of
the buffer. In the top state, the correct move is a Left-Arc as
there is no dependency between wear and tired. In the lower
state, the Right-Arc is correct. The dependencies that would
be added by these moves are shown with dashed lines.

4 Joint Segmentation and Parsing

We now describe two ways of encoding utterance
segmentation decisions into the parser’s transition
system. In the first strategy, the segmentation is
determined from the parse structure; in the sec-
ond strategy, a distinct transition, Break, is added
to the transition system to insert segment bound-
aries. The two strategies are evaluated in Section
6. We find that despite being quite different, the
two strategies achieve similar performance.

4.1 Strategy 1: Implicit segmentation
The first strategy we present uses the Left-Arc to
attach each segment-governor to the ROOT sym-
bol, which we place at the end of the input. This
way of encoding the segmentation decisions has
the governors accumulate on the stack, with the fi-
nal decision to place segment boundaries between
them only made when the buffer is exhausted. Be-
cause the arc-hybrid system is used, rather than the
arc-eager system, the governor of a word is not de-
termined when it is pushed onto the stack — only
when it is popped. Thus, even when the buffer is
exhausted, the parser may decide to create a de-
pendency between two words, instead of using the
Left-Arc to attach them to the ROOT symbol.

Figure 3 shows two similar parse states, where
this decision arises. In the first state, the correct
decision is Left-Arc, because a segment bound-
ary should be inserted between wear and tires. In
the second state, the correct decision is Right-Arc,
because wear is an argument of saw. Such deci-
sions may be difficult, so delaying them until the
potential left and right heads can be compared in
the same state may be advantageous.

I never wear heels they tire me out ROOT

Figure 4: A parse state illustrating segmentation using
Strategy 2, the Break transition. The governor of the pre-
vious segment, wear, is the only word on the stack (circled),
and the first word of the next segment, they, is at the start of
the buffer (indicated by an arrow). After the Break transition
is applied, wear is popped from the stack, and the dashed arc
is added from the ROOT symbol.

4.2 Strategy 2: Explicit Break transition
The second strategy we present uses a specific
Break transition. The design of the transition was
inspired by the work of Zhang et al. (2013), who
describe a joint transition-based model of depen-
dency parsing and punctuation prediction. The
task of predicting sentence-final punctuation, and
our task of utterance segmentation, are closely re-
lated, so we experimented with their approach.

Zhang et al. (2013) train their model to insert
sentence-final punctuation when the stack is fully
connected and the first word of a new sentence is
at the start of the buffer. Our Break transition oper-
ates in a similar fashion. The transition is applied
when there is exactly one word on the stack, and
the word at the start of the buffer has no leftward
children. The word on the stack is arced to the
ROOT symbol, and the stack is popped:

(i, j|β|n,A,D) ` (∅, j|β|n,A(i) = n,L(i) = R)
Where {x, ..., j : A(x) = j} = ∅

The transition is designed to be applied early, in-
stead of late: it should be applied when the first
word of the new segment is at the start of the
buffer. This is guaranteed by the pre-condition,
which prevents it from being applied if the word
at the start of the buffer has any leftward children.

Figure 4 shows a state at which the transition
should be applied. The governor of the previous
segment is the only word remaining on the stack,
and the word at the start of the buffer has no chil-
dren, as it is the start of a new segment. In the re-
sulting state (shown below), the governor has been
popped from the stack (it is no longer circled), and
it has been arced to the ROOT symbol.



4.3 Training Oracle
We follow Honnibal and Johnson (2014) in train-
ing our model using the latent-variable struc-
tured perceptron algorithm (Sun et al., 2009). As
each training example is received, we search for
the highest-scoring transition sequence, and the
highest-scoring gold transition sequence. The
search for the best gold-standard sequence re-
quires a training oracle, which maps a parse-state
and a gold-standard derivation to a set of gold-
standard actions. An action is considered gold-
standard if it is a step towards the best possible
continuation, i.e. the transition sequence that will
yield the highest-scoring analysis reachable from
the current configuration.

Goldberg and Nivre (2013) give a training ora-
cle for the arc-hybrid system. The oracle amounts
to the following rules, where β0 refers to the first
word of the buffer, σ0 refers to the top word of
the stack, and σ1 refers to the second word on
the stack. We denote the vector of gold-standard
head indices G, with G(d) = h asserting that
an arc from h to d is in the gold-standard. The
arc-hybrid training oracle consists of the following
rules, which determine which actions (abbreviated
S, R and L here) are gold-standard:

1. If the stack is empty, S is the only gold action;

2. If G(β0) = σ0, S is a gold action;

3. If there are any other arcs between β0 and the
stack, S is not a gold-standard action;

4. If G(σ0) = σ1, R is a gold action;

5. If G(σ0) = β0, L is a gold action;

6. If there are any other arcs between σ0 and the
buffer, neither L nor R are gold actions.

The Honnibal and Johnson (2014) Edit transition
adds the following rules to the oracle above. Re-
call that G(d) = d asserts that a word d is disfluent
in the gold-standard:

1. If G(σ0) = σ0, E is a gold action;

2. If G(σ0) 6= σ0, E is not a gold action;

3. If G(β0) = β0, both L and S are gold actions;

4. If G(σ1) = σ1 and G(σ0) = σ0, R is a gold
action;

5. If G(σ0) = σ0 but G(β0) 6= β0, L is not a
gold action;

6. If G(σ0) = σ0 but G(σ1) 6= σ1, R is not a
gold action.

In the implicit segmentation strategy, the segment
boundaries are inserted via the standard Left-Arc
transition, so no adjustment to the training oracle
is required. In the explicit strategy, the new Break
transition is used to insert the segment boundaries.

The Break transition is gold-standard if and
only if its pre-conditions are met, and the word
on top of the stack and the word at the start of the
buffer do not belong to the same segment. If this
is the case, B is the only gold-standard action.

5 Experiments

We use the Switchboard portion of the Penn Tree-
bank (Marcus et al., 1993), as described in Section
2.1, to train and evaluate our models. Unfortu-
nately, this complicates comparison with most of
the prior work on utterance segmentation, which
used the RT’04 shared-task data distributed by
DARPA. The RT’04 data covers part of the Switch-
board corpus text, but was reanalysed for segmen-
tation and disfluency detection, with slightly dif-
ferent annotation conventions. Previous work has
found it difficult to reconcile the RT annotations
with those provided by the Penn Treebank (Bies
et al., 2006). We use the Switchboard corpus for
consistency with previous work on disfluency de-
tection and parsing (Qian and Liu, 2013; Rasooli
and Tetreault, 2013; Honnibal and Johnson, 2014).

We follow the pre-processing and dependency
conversion steps described in Section 2.1: the
text was lower-cased, partial words were removed,
and the phrase-structure trees were converted into
projective-dependency parses using the Stanford
Dependency Converter (de Marneffe et al., 2006).
We use the standard train/dev/test split from Char-
niak and Johnson (2001). We follow Honni-
bal and Johnson (2014) in using the SPARSE-
VAL (Roark et al., 2006a) metric to evaluate our
parser, which measures the dependency accuracy
of words marked fluent in the gold-standard.

We follow Johnson and Charniak (2004) and
others in restricting our disfluency evaluation to
speech repairs, which we identify as words that
have a node labelled EDITED as an ancestor in the
Switchboard phrase-structure trees. We also fol-
low them in training only on the MRG files, giving



us 619,236 words of training data instead of the
1,482,845 used by other disfluency detection sys-
tems, such as Qian and Liu (2013).

We test for statistical significance in our results
by training 20 models for each experimental con-
figuration, using different random seeds. The ran-
dom seeds control how the sentences are shuf-
fled during training, which the perceptron model
is quite sensitive to. We use the Wilcoxon rank-
sums non-parametric test.

The main hyper-parameter of our model is the
beam-width. Our beam is notably narrower than
Honnibal and Johnson (2014), who employ a
beam-width of 64. We found that only small ac-
curacy improvements were obtained with beams
wider than 8. We use a beam-width of 12.

5.1 Features
We base our feature set on the arc-hybrid features
used by Goldberg and Nivre (2013), with the ad-
ditional disfluency features used by Honnibal and
Johnson (2014). Our specific feature templates are
provided in the supplementary materials.

The templates refer to various combinations of
the word-form, part-of-speech tag, and the Brown
cluster (Brown et al., 1992) of various tokens in
the context. The tokens are the top three words
of the stack, the left and right subtree of the top
word of the stack, the first three words of the
buffer, and the left subtree of the first word of
the buffer. Additionally, we follow Honnibal and
Johnson (2014) in using the leftmost and right-
most edge of the top word of the stack and the first
word of the buffer as contextual tokens. We used
the Brown cluster mapping computed by Liang
(2005). We follow Honnibal and Johnson (2014)
in using 4- and 6-bit prefixes of the clusters in our
feature templates, as initially suggested by Koo
and Collins (2010).

5.2 Qian and Liu (2013) Disfluency Detector
Our parser performs disfluency detection jointly
during parsing, using the Edit transition described
by Honnibal and Johnson (2014). For compari-
son, we also trained and evaluated the disfluency
detection system of Qian and Liu (2013) on both
segmented and unsegmented input.

The Qian and Liu (2013) system uses a cascade
of M3N sequence-tagging models. The first pass
detects filler-words, the next pass uses the filler-
word predictions as features, and two subsequent
passes detect disfluencies. The system is a good

Segmentation
Acc. P R F

CRF 96.6 87.4 78.0 82.4
Joint (explicit) 96.9 84.0 85.9 84.9
Joint (implicit) 96.9 83.9 86.2 85.0

Table 3: Segmentation evaluation on the development set,
for the CRF model and our joint approaches.

comparison point because it achieves equivalent,
state-of-the-art accuracy to the Honnibal and John-
son (2014) system, with a very different algorithm.

Because the system does not require
syntactically-annotated training data, it can
be trained from the DPS files, which make more
training data available than the syntactically-
annotated MRG files. Qian and Liu (2013) train
and evaluate their model from the DPS annota-
tions. However, to promote direct comparison
against our syntactic disfluency detectors, we
trained the system from the MRG files, and
followed the syntactic disfluency annotations (i.e.,
words were marked disfluent if they were part
of the yield of an EDITED node). Interestingly,
this resulted in slightly higher accuracy than Qian
and Liu (2013) report. It seems that the MRG

annotated speech repairs are easier to detect than
the DPS annotations.

5.3 CRF Segmenter
To evaluate our joint model, we prepared a
sequence-based segmentation system, following
the approach of Liu et al. (2005). We used
the CRF implementation provided by the Wapiti
toolkit (Lavergne et al., 2010). The segmenta-
tion problem was modelled as a binary classifi-
cation task, with segment-initial tokens labelled 1
and all other tokens labelled 0. Features referred
to the word, part-of-speech tag, prefix, and suf-
fix of the target and surrounding tokens, as well
as the previous two labelling decisions. Weights
were learned using the L-BFGS algorithm, with an
elastic-net penalty tuned on the development data.
The pattern file, which describes the exact feature-
templates, is attached in the supporting materials.

6 Development Results

6.1 Segmentation Accuracy
Table 3 compares the per-token segmentation ac-
curacy of the three systems, along with their
precision, recall and F -measure at identifying
segment-initial words. Low recall indicates under-
segmentation, while low precision indicates over-



Segmented Unsegmented
System P R F P R F

Qian & Liu ’13 90.6 80.7 85.3 83.8 76.5 80.0
Pipeline 92.4 76.8 84.1 81.9 73.6 77.6
Joint (explicit) n/a 88.4 68.6 77.2
Joint (implicit) n/a 88.3 68.9 77.5

Table 4: Disfluency detection evaluation on the develop-
ment set, with and without gold segment boundaries.

System UAS LAS

Gold → Parser 90.9 88.0
CRF → Parser 86.2 83.4
Joint (explicit) 87.9 85.1
Joint (implicit) 88.1 85.3

Table 5: Unlabelled and labelled (parse) attachment scores
on the development data.

segmentation. Our segmentation evaluation ex-
cludes disfluent words. When a disfluent word be-
gins a segment, we move its segment label back to
the first fluent word.

The two syntactic systems achieve equivalent
accuracy, with similar precision/recall bias. Be-
cause the parser is incremental, it is easy to cap-
ture the information available to the CRF system,
with the added advantage of long-range syntactic
features. This gives the parsing models a small but
statistically significant accuracy advantage.

6.2 Disfluency Detection Accuracy
Table 4 shows the accuracy of the systems at de-
tecting speech-repair disfluencies. We first follow
previous work in evaluating our model given gold-
standard segment boundaries (Segmented). The
Pipeline system is the parsing model described
in Section 3, which is based on the Honnibal and
Johnson (2014) model, but makes use of the arc-
hybrid transition system, with a feature set ad-
justed accordingly. We also train the model to de-
tect other disfluency types during parsing, by split-
ting the Edit transition with different labels.

While Honnibal and Johnson (2014) found that
their system achieved slightly higher accuracy
than Qian and Liu (2013), our model’s accuracy
is slightly lower. It may be that the Edit transition
does not work as well with the arc-hybrid system
as it does with the arc-eager system that Honnibal
and Johnson employ. Alternatively, our feature set
may be less well-tuned for disfluency detection.

When the gold-standard segment boundaries
were replaced with predictions from the CRF

model, precision fell substantially, with only a
small decrease in recall. It seems that the parser

dealt with segmentation errors by applying the
Edit transition, since the input was ungrammatical.
This suggests that there may be a way to train the
model to adjust to segmentation mistakes, should
a pipeline architecture prove desirable.

The two joint models achieved similar disflu-
ency F -measure to the pipeline system, but with
higher precision, and lower recall. The differences
in F -measure were not statistically significant. We
suspect that the syntactic disfluency models are
sensitive to parse accuracy, which is reduced in
the absence of gold-standard segment boundaries.
However, the drop in performance of the Qian and
Liu (2013) system on unsegmented input, from
85.3 to 80.0 F -measure suggests that the segment
boundaries are also informative clues for disflu-
ency detection in their own right.

6.3 Parsing Accuracy
Table 5 shows labelled (LAS) and unlabelled
(UAS) dependency accuracies on the development
data. With gold-standard segmentation, the sys-
tem achieves 90.9% UAS, matching the state-of-
the-art accuracy reported by Honnibal and John-
son (2014). When the same system was given in-
put segmented by the CRF model described in Sec-
tion 5.3, accuracy fell to 86.2%.

Both of the joint models, Joint (explicit)
and Joint (implicit), achieve substantially higher
parse accuracies than the pipeline system. We at-
tribute the pipeline system’s loss of accuracy to
error-propagation problems: segmentation errors
mean that the parser will be supplied ungrammat-
ical input, leading to low quality parses. The
joint models allow the parser to segment the in-
put while assigning the dependency parse, either
by employing an explicit transition, or by simply
attaching segment-governors to the root node. The
two strategies yield similar accuracy, with a small
but statistically significant advantage to the im-
plicit segmentation.

7 Final Evaluation

Table 6 shows the final evaluation, using unseg-
mented inputs from the test set. We compare the
implicit and explicit strategies for joint segmen-
tation and parsing against the pipeline system on
segmentation, speech-repair disfluency detection,
and unlabelled parse accuracy. We also evaluate
the state-of-the-art Qian and Liu (2013) disfluency
detection system on unsegmented input, and eval-



System Seg. Disfl. UAS w/s
Qian & Liu ’13 — 79.2 — 1,161
CRF → Parser 96.7 76.4 85.9 948
Joint (explicit) 97.3 76.9 87.8 890
Joint (implicit) 97.2 76.7 87.9 893

Table 6: Final evaluation scores, for segmentation, disflu-
ency detection, parsing and efficiency, on unsegmented input.

uate the efficiency of the systems, measured in
words per second.1

The two joint strategies performed similarly on
all evaluations. The difference in segmentation ac-
curacy was statistically significant, while the dif-
ferences in parse accuracy (UAS) and disfluency
detection F -measure were not. We conclude that
the way in which the segmentation decisions are
encoded into the transition system is relatively
unimportant, so long as the decisions are made
jointly during parsing.

The advantage of joint modelling over the
pipeline approach (CRF → Parser) is clear, par-
ticularly on the parsing evaluation, where the
Joint (implicit) model achieved 2.0% higher UAS.

Interestingly, the joint models’ small advan-
tage in segmentation accuracy over the CRF sys-
tem widened on the test data: on the development
data, the joint models scored 96.9%, while the
CRF model scored 96.6%. On the test data, the
best joint model segmented with 97.3% accuracy,
while the CRF model scored 96.7%. Both differ-
ences were statistically significant.

The differences in disfluency detection F -
measure between the three syntactic systems were
not statistically significant. The state-of-the-art
Qian and Liu (2013) system achieved significantly
better accuracy. We attribute this to the loss of
parse quality for the syntactic models on unseg-
mented input, which is linked to their disfluency
detection accuracy due to their joint approach.

Finally, we note that there is little loss in effi-
ciency from parsing the unsegmented input, and
that the joint models are almost as efficient as
the Qian and Liu (2013) sequence-tagging system,
which only performs disfluency detection.

8 Related Work

Our model draws directly on the work of Hon-
nibal and Johnson (2014), who showed that a
joint transition-based model achieved superior re-
sults to a pipeline approach for disfluency detec-

1All systems were run on a 2.4GHz Intel Xeon, with a
single thread.

tion and parsing. We describe a similar model,
which we extend to utterance segmentation. They
report 90.9% UAS and 85.8 disfluency detec-
tion F -measure on the development data, given
gold-standard segmentation. Our model achieves
90.9% and 84.1 on these evaluations. We attribute
the difference in disfluency detection to a lack of
feature tuning in our model.

Rasooli and Tetreault (2013) and Rasooli and
Tetreault (2014) also describe joint transition-
based models of dependency parsing and disflu-
ency detection. However, their system is limited
to greedy search, and their disfluency detection
transition operates slightly differently. The Ra-
sooli and Tetreault (2014) system achieves 88.4%
UAS and 82.6% disfluency F -measure, given gold-
standard segmentation and POS tags. Although
their system differs in several minor ways, it seems
likely that the biggest factor in their lower accu-
racy is the lack of beam-search.

Zhang and Clark (2011) show that the gen-
eralised perceptron with beam-search architec-
ture could be successfully applied to a range
of tasks, including joint word segmentation and
POS tagging for Chinese. Their results anticipate
the recent interest in joint transtion-based depen-
dency parsing models, such as the work of Zhang
et al. (2013), who describe a joint transition-based
model of dependency parsing and punctuation pre-
diction. We based our Break transition, described
in Section 4.2, on their work. Although our mod-
els are similar, there are no directly comparable
results, as Zhang et al. (2013) did not investigate
the effect of segmentation on parse accuracy, and
did not apply their model to conversational speech.

The impact of utterance segmentation on parse
quality was investigated by Kahn et al. (2004), in
the context of a PCFG parsing model. They com-
pared the effect on parse accuracy of three sen-
tence segmentation systems: oracle segmentation,
an HMM system, and naive pause-based segmen-
tation. They showed that the HMM segmentation
system achieved a 7% improvement in bracket
precision and recall over the baseline segmenter,
and scored 5% below the oracle segmenter.

A weakness of the pipeline architecture em-
ployed by Kahn et al. (2004) and others is error-
propagation, which arises because the earlier com-
ponents forward only a single hypothesis. One
way of mitigating this problem is re-ranking,
which Johnson and Charniak (2004); Johnson



et al. (2004) used to improve disfluency detection,
and Roark et al. (2006b) used to improve utterance
segmentation. The re-ranking architecture allows
subsequent models to search some of the hypoth-
esis space from earlier in the pipeline, i.e. a dis-
fluency or segmentation analysis can be selected
in light of the parse structure it permits. We in-
stead adopt a fully joint approach, made tractable
by recent advances in incremental parsing.

9 Conclusion

Segmentation and disfluency detection make
speech parsing particularly difficult, relative to un-
derstanding written text. Both disfluency detec-
tion and segmentation require syntactic features,
but standard polynomial-time parsing algorithms
cannot be applied accurately before segmentation
and disfluency detection have been conducted. We
have shown that recent advances in transition-
based parsing offer a solution to this chicken-
and-egg problem. We model all three problems
jointly, so that the combined problem-space can be
searched for a good hypothesis. We demonstrate
a 2% improvement in dependency parse accuracy
over the pipeline approach. Our model currently
makes use of no acoustic features, which would
be interesting to explore for future work. It would
also be interesting to apply the model to spoken
language understanding problems, as it is efficient
enough to operate in real-time, and it is the first
model to achieve high parsing accuracies on un-
segmented spoken language transcripts.
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tics, Montréal, Canada.

Liang Huang and Kenji Sagae. 2010. Dynamic
programming for linear-time incremental pars-
ing. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguis-
tics (ACL), pages 1077–1086.

Mark Johnson and Eugene Charniak. 2004. A
TAG-based noisy channel model of speech re-
pairs. In Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Lin-
guistics, pages 33–39.

Mark Johnson, Eugene Charniak, and Matthew
Lease. 2004. An improved model for recog-
nizing disfluencies in conversational speech. In
Rich Transcription 2004 Fall workshop (RT-
04F). Palisades, NY.



Jeremy G. Kahn, Mari Ostendorf, and Ciprian
Chelba. 2004. Parsing conversational speech
using enhanced segmentation. In Daniel Marcu
Susan Dumais and Salim Roukos, editors,
HLT-NAACL 2004: Short Papers, pages 125–
128. Association for Computational Linguis-
tics, Boston, Massachusetts, USA.

Terry Koo and Michael Collins. 2010. Efficient
third-order dependency parsers. In Proceedings
of the 48th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 1–
11.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and
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