Skip to content
๐Ÿ”ฎ A refreshing functional take on deep learning, compatible with your favorite libraries
Python Cuda Shell
Branch: master
Clone or download
adrianeboyd Set Embed shape to (nV, nO) (#311)
* Set Embed shape to (nV, nO)

Use `nV` rather than `nV + 1` as the first dimension to remove all
whiffs of OOV handling from `Embed`.

* Update Embed tests
Latest commit 81f8ae0 Feb 14, 2020

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy, Prodigy and FastAPI

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

Azure Pipelines codecov Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

๐Ÿ”ฅ Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends, including JAX support (experimental).
  • Read more โ†’

๐Ÿš€ Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip.

pip install thinc==8.0.0a1

โš ๏ธ Note that Thinc 8.0 is currently in alpha preview and not necessarily ready for production yet.

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

๐Ÿ““ Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks โ€“ to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more โ†’

๐Ÿ“– Documentation & usage guides

Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

๐Ÿ—บ What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy, cupy and jax.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

๐Ÿ Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

๐Ÿ‘ทโ€โ™€๏ธ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone
cd thinc
python -m venv .env
source .env/bin/activate
export PYTHONPATH=`pwd`
pip install -r requirements.txt
python build_ext --inplace

๐Ÿšฆ Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line โ€“ we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

You canโ€™t perform that action at this time.