
p y C u b e x R

A P y t h o n l i b r a r y t o p a r s e C u b e fi l e s

D a v i d M a r l o n G e n g e n b a c h

J u l y 8 , 2 0 2 0

C o n t e n t s

1 B a c k g r o u n d 1

1.1 Performance modeling . 1
1.2 Cube file format . 2
1.3 Related software . 4

2 T h e p y C u b e x R fi l e r e a d e r 4

2.1 Architecture . 5
2.2 Implementation . 5

3 F u t u r e w o r k 5

1 B a c k g r o u n d

An important task in the development life-cycle, especially in high-performance computing, is getting an insight into the performance
characteristics of a given program. Often, knowing how a system will scale with the input size, varying computing resources or other,
program-specific parameters is of great importance as it determines the usefulness in many applications. While the performance
of relatively simple applications can be modeled intuitively with hand-crafted benchmarks, such an approach becomes more and
more difficult with increasing complexity introduced by more distributed systems, for example. Another noticeable disadvantage
of hand-crafted benchmarks is that measured data must be evaluated manually as well, often resulting in custom file formats to
save measurements and programs to analyze them. An alternative to hand-crafted performance measurements is more standardized
solutions, such as Score-P or Extra-P, which provide a working foundation for sustainable performance measurement and analysis
in one. Since such performance modeling tools often use common file formats, such as the C u b e file format [5, 3], they also achieve
interoperability with similar software.

While there is an active ecosystem of software related to performance modeling and file formats it uses, this work aims to provide
a library to parse the aforementioned C u b e file format. The goal is to contribute a C u b e parser with minimal dependencies which
is both easy-to-use and achieves great performance.

Before presenting our contribution, the p y C u b e x R library, and our requirements, we provide more background on the motivation
for the C u b e file format and software which create or support it.

1 . 1 P e r f o r m a n c e m o d e l i n g

There are several approaches and differing granularity in benchmarking. While a simple run-time measurement provides a coarse
insight into the performance of a program, it often fails to deliver actionable information for improvement. More fine-grainedmetrics,
such as timings for single function calls in an application run, on the other hand, can result in an insurmountable amount of data.
Existing performance measurement software tries to minimize the impact of measurement and still provide a fine granularity - all
while aiming to keep the size of the measurement minimal. In the light of these efforts, a file format called C u b e was introduced.

1

1 . 2 C u b e fi l e f o r m a t

The C u b e file format1, not to be confused with the Gaussian CUBE file format2, is a container for performance measurements.
Initially, the C u b e file format was defined as part of a greater framework, also called C u b e . However, since then, several tools
started to integrate the file format without using the framework.

Apart from providing a format for structuring measured metrics, C u b e files also allow for space-efficient storage by compressing
data by default using the * . t a r . g z archive scheme. While there are multiple versions of the C u b e file format, we will focus on
version 4.4 [5].

D a t a s t o r e d i n C u b e fi l e s The main contents of a C u b e file are metrics and their measurements. A metric consists of a name, such
as E x e c u t i n g t i m e or V i s i t s , and associated measured values.

1 . 2 . 1 A r c h i v e s t r u c t u r e

As mentioned before, C u b e files are t a r . g z archives with a pre-defined structure. The archive always contains an a n c h o r . x m l

file describing the performance measurements and providing an index to parse the rest of the C u b e file. Figure 1 shows an example
of a C u b e file.

anchor.xml

0.index

0.data

10.index

10.data

profile.cubex

4	bytes
#	of	IDs	as	int

11	bytes
Prefix	as	UTF-8	text
"CUBEX.INDEX"

4	bytes
1	encoded	as	int
1

2	bytes
Version	(raw)
0x001

1	bytes
Index	type
Content:	0x001

4	Bytes
CNode	ID	as	int

Indices

Header

4	Bytes
CNode	ID	as	int

4	Bytes
CNode	ID	as	int

4	Bytes
CNode	ID	as	int

4	Bytes
CNode	ID	as	int

4	Bytes
CNode	ID	as	int

4	Bytes
CNode	ID	as	int

4	Bytes
CNode	ID	as	int

0.index

10	bytes
Prefix	as	UTF-8	text
"CUBEX.DATA"

Header

Data

X	Bytes
Metric	value	for

X	Bytes
Metric	value	for

X	Bytes
Metric	value	for

X	Bytes
Metric	value

X	Bytes
Metric	value	for

X	Bytes
Metric	value	for

X	Bytes
Metric	value	for

X	Bytes
Metric	valuer

0.data

F i g u r e 1 : C u b e fi l e s t r u c t u r e . T h e l e f t - m o s t d i a g r a m s h o w s t h e C u b e a r c h i v e s t r u c t u r e w h e r e a s t h e o t h e r t w o s h o w t h e s t r u c t u r e

o f m e t r i c i n d e x a n d d a t a fi l e s , r e s p e c t i v e l y

As we can see in Figure 2, the a n c h o r . x m l contains meta-data for the measurements and provide context for analysis. Here, we
also see that each entity in the XML has a ID which is used to reference the entity in other sections of the XML.

< m e t r i c s > s e c t i o n C u b e uses the metric IDs to name the metric data and index files, as seen in Figure 2. The metric with ID 0 ,
for example, results in metric filenames as 0 . d a t a and 0 . i n d e x . Another important thing to note is the < d t y p e > , or data type,
of a metric: these data types are needed to parse the actual measurements data files, 0 . d a t a for example.

< p r o g r a m > s e c t i o n The program section in the XML contains data about the actual program callpaths. Here, the < r e g i o n s >
provide a mapping of source code regions, such as functions, to an internal callpath tree structure, the < c n o d e s > .

A < c n o d e > , on the other hand, signifies an actual call-path node. The c a l l e e I d references the corresponding < r e g i o n > . The
distinction between c n o d e and r e g i o n is needed since a function can be called from different functions, resulting in different
call-trees. The regions provide de-duplication here - meaning that a given function must only be described once in a r e g i o n instead
of for each c n o d e . As the cnodes signify the call-tree of a program, they are nested. While a cnode with a given c a l l e e I d can
appear multiple times, the cnode i d must be unique.

< s y s t e m > s e c t i o n The system section contains information about the machines, processes, and threads that actually executed the
code. Here, a hierarchy can be defined, starting with s y s t e m t r e e n o d e s in the root and ending with l o c a t i o n s in the leaves.

Figure 3 shows the hierarchy of the < s y s t e m > entries. Please note measurements are only done at l o c a t i o n s and that the rest
of the < s y s t e m > hierarchy simply provides a mechanism to further structure measurement data.

1
h t t p s : / / w w w . s c a l a s c a . o r g / s o f t w a r e / c u b e - 4 . x / d o w n l o a d . h t m l , accessed on 28th June, 2020

2
h t t p : / / p a u l b o u r k e . n e t / d a t a f o r m a t s / c u b e / , accessed on 28th June, 2020

2

https://www.scalasca.org/software/cube-4.x/download.html
http://paulbourke.net/dataformats/cube/

1 < m e t r i c s >

2 < m e t r i c

3 i d = " 0 "

4 t y p e = " E X C L U S I V E " >

5 < d i s p _ n a m e > V i s i t s < / d i s p _ n a m e >

6 < u n i q _ n a m e > v i s i t s < / u n i q _ n a m e >

7 < d t y p e > U I N T 6 4 < / d t y p e >

8 < / m e t r i c >

9 < m e t r i c

10 i d = " 1 0 "

11 t y p e = " I N C L U S I V E " >

12 < d i s p _ n a m e > U s a g e < / d i s p _ n a m e >

13 < u n i q _ n a m e > U s a g e < / u n i q _ n a m e >

14 < d t y p e > U I N T 3 2 < / d t y p e >

15 < / m e t r i c >

16 < ! - - . . . m o r e m e t r i c s - - >

17 < / m e t r i c s >

1 < p r o g r a m >

2 < r e g i o n

3 i d = " 2 6 7 "

4 m o d = " / p a t h - t o - t h e - p r o g r a m - s o u r c e -

c o d e / s o m e _ f i l e . c p p "

5 b e g i n = " - 1 "

6 e n d = " - 1 " >

7 < n a m e > M A I N _ _ < / n a m e >

8 < m a n g l e d _ n a m e > M A I N _ _ < / m a n g l e d _ n a m e

>

9 < p a r a d i g m > c o m p i l e r < / p a r a d i g m >

10 < r o l e > f u n c t i o n < / r o l e >

11 < u r l / >

12 < d e s c r / >

13 < / r e g i o n >

14 < ! - - m o r e r e g i o n s - - >

15 < c n o d e

16 i d = " 0 "

17 c a l l e e I d = " 2 6 7 " >

18 < c n o d e

19 i d = " 1 "

20 c a l l e e I d = " 2 6 8 " >

21 < ! - - m o r e n e s t e d c n o d e s - - >

22 < / c n o d e >

23 < / c n o d e >

24 < / p r o g r a m >

1 < s y s t e m >

2 < s y s t e m t r e e n o d e

3 I d = " 0 " >

4 < n a m e > m a c h i n e A < / n a m e >

5 < c l a s s > m a c h i n e < / c l a s s >

6 < s y s t e m t r e e n o d e

7 I d = " 1 " >

8 < n a m e > n o d e A < / n a m e >

9 < c l a s s > n o d e < / c l a s s >

10 < l o c a t i o n g r o u p

11 I d = " 0 " >

12 < n a m e > M P I R a n k 0 < / n a m e >

13 < r a n k > 0 < / r a n k >

14 < t y p e > p r o c e s s < / t y p e >

15 < l o c a t i o n

16 I d = " 0 " >

17 < n a m e > M a s t e r t h r e a d < / n a m e

>

18 < r a n k > 0 < / r a n k >

19 < t y p e > t h r e a d < / t y p e >

20 < / l o c a t i o n >

21 < ! - - m o r e l o c a t i o n s - - >

22 < / l o c a t i o n g r o u p >

23 < / s y s t e m t r e e n o d e >

24 < / s y s t e m t r e e n o d e >

25 < / s y s t e m >

F i g u r e 2 : E x a m p l e a n c h o r . x m l w i t h t w o m e t r i c s (V i s i t s a n d U s a g e) a n d o n e l o c a t i o n (M a s t e r t h r e a d)

SystemTreeNode LocationGroup LocationSystem

F i g u r e 3 : a n c h o r . x m l < s y s t e m > h i e r a r c h y

* . i n d e x m e t r i c fi l e Apart from the a n c h o r . x m l , the archive also contains the actual metric measurements in a binary format.
In our example in Figure 1, the archive contains measurements for two metrics with IDs 0 and 10. Through the a n c h o r . x m l we
can find out the actual names of the metrics with these IDs. Please note that not all metrics defined in the a n c h o r . x m l have
corresponding measurements.

As we can see in Figure 1, the * . i n d e x file consists of a header and indices. The header contains a predefined string (C U B E X . I N D E X)
to identify the file and provide a sanity check. Next, it contains the number 1 encoded as a signed integer. This 1 is useful to check
the endianess3 of the data: when unpacking the binary 1 into a signed integer, it should equal 1. When it contains a different value,
the endianess with which the value was encoded in the first place is not the same as the endianess of the machine unpacking it -
resulting in wrong values. All subsequent parsed numbers, including the * . d a t a files,MUST be unpacked using the right endianess.
With a “wrong” endianess, not only the index file will be parsed wrongly but even when the unpacking is successful, the unpacked
measurement data will be wrong in all cases. Next, the * . i n d e x file contains other control fields, the version, and index type.
The version should correspond to the version defined in a n c h o r . x m l . The index type, on the other hand, defines how the index is
defined, densely, or sparse. In all our C u b e files, even when all indices were defined, only the sparse index type was used. The last
part of the header is the number of elements in the following list.

After the header, the * . i n d e x file then continues with a list of cnode IDs.

* . d a t a m e t r i c fi l e As we can see in Figure 1, the * . d a t a file also starts with a predefined string (C U B E X . D A T A). The rest of
the file bytes contain the actual measurement values for the metric. To parse the values, the data type of metric is taken from the
a n c h o r . x m l . The number of individual values depends on two factors: (1) the number of cnodes (c) as defined in the corresponding
* . i n d e x file, and (2) the number of locations (l) as defined in the a n c h o r . x m l . The * . d a t a file should contain exactly c ∗ l
values, so one value for each cnode and location.

When introducing our library in the next sections, we will provide a more high-level overview of C u b e file parsing.

3
h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / E n d i a n n e s s , accessed on 02.07.2020

3

https://en.wikipedia.org/wiki/Endianness

1 . 3 R e l a t e d s o f t w a r e

As mentioned before, the ecosystem of performance modeling is rather active and integrated. In this section, we introduce some of
the available software with the focus of its ability to parse and use the C u b e file format. In the next section, we will get into our
motivation to create a yet another parsing library instead of reusing existing ones.

S c o r e - P is software to instrument source code to enable measurements. Here, instrumentation entails changing the source code
to add measurement capabilities, often automatically by using special compilers. When running an instrumented program, the
instrumentation run-time then gathers performance data, such as the number of calls to a specific function or the time spent on
a given function. These measurements are then saved into a predefined file format, such as the C u b e or OTF2 format4. For an
explanation of the approach of Score-P, see [4].

Score-P can be found online5.

E x t r a - P Given measurements produced by Score-P, for example in the C u b e file format, Extra-P can generate performance models.
Here, instead of looking at a single measurement, the impact of a varying parameter, such as the number of used processors, on
the performance is modeled. So, the relationship between a parameter and the resulting performance is analyzed. Score-P also
allows the automatic discovery of performance bugs or critical places in the program code that get affected by a parameter change.
While the current Extra-P version is written in a mix of C++ and Python, a newer version will be ported to Python only. For more
information on the approach of Extra-P, see [1, 2, 6].

Extra-P can be found online6.

C u b e L i b is a high-performance C++ library for parsing and processing C u b e files. While CubeLib provides excellent installation
instructions, it relies on several dependencies because of its additional functionalities apart from parsing.

CubeLib can be found online7.

j C u b e R is a Java library for parsing C u b e files. It is rather easy to install and has great compatibility with the different C u b e file
format versions.

jCubeR can be found online8

c u b e x is a Python library for parsing C u b e files. While cubex also provides almost all desired functionality, unfortunately, it does
not handle the endianess of C u b e data files correctly. Another drawback regarding development is the rather complex way in which
parsing is done: parsing is performed across multiple classes which therefor act both as data containers and parsers. That said,
Cubex provided a good source for looking up how the binary C u b e file format is structured since the structure is not clearly defined
via a specification.

cubex can be found online 9.

2 T h e p y C u b e x R fi l e r e a d e r

Our goal for this work is to provide an easy-to-use and light-weight Python library to parse C u b e files. The need for such a library
arose from the decision by Extra-P to move to Python to have a more light-weight and easier-to-maintain code-base. In particular,
the requirements for the library were as follows:

• use modern Python

• parse C u b e 4.4 files

• retrieve metrics on demand

• little to no dependencies

• easy to use and extend

4For further information, see h t t p s : / / w w w . v i - h p s . o r g / p r o j e c t s / s c o r e - p /
5
h t t p s : / / w w w . v i - h p s . o r g / p r o j e c t s / s c o r e - p /

6
h t t p s : / / w w w . s c a l a s c a . o r g / s o f t w a r e / e x t r a - p

7
h t t p s : / / w w w . s c a l a s c a . o r g / s o f t w a r e / c u b e - 4 . x / d o w n l o a d . h t m l

8
h t t p s : / / w w w . s c a l a s c a . o r g / s c a l a s c a / s o f t w a r e / c u b e - 4 . x / d o w n l o a d . h t m l

9
h t t p s : / / g i t h u b . c o m / m a r s h a l l w a r d / c u b e x

4

https://www.vi-hps.org/projects/score-p/
https://www.vi-hps.org/projects/score-p/
https://www.scalasca.org/software/extra-p
https://www.scalasca.org/software/cube-4.x/download.html
https://www.scalasca.org/scalasca/software/cube-4.x/download.html
https://github.com/marshallward/cubex

The resulting product is our C u b e parser library named p y C u b e x R . While we might have extended previous libraries, for example
c u b e x , we decided on creating a new library instead to cater to our special requirements. Also, as we have seen in previous sections,
existing libraries are either implemented in differing languages or, in the case of c u b e x , work only with specific C u b e files.

Apart from our p y C u b e x R library, another major contribution is the specification of the C u b e file format in this document. To our
knowledge, the file format was only defined ad-hoc in parsing libraries and no official specification existed until now.

2 . 1 A r c h i t e c t u r e

One of themain differences to c u b e x is that our library separates the parsing from the data structures: instead of parsing a n c h o r . x m l
inside data container class, there is a separate parser function that creates simple data container with minimal knowledge of the
overall structure. In contrast, the data classes in c u b e x have access to almost the whole C u b e file, while our library aims to remove
these dependencies and move most of the logic into a separate class - thereby separating the concerns of parsing and using the
measurements.

S t e p s In particular, parsing happens in the following steps:

1. Open *.cubex file using the built-in t a r f i l e library

2. Open a n c h o r . x m l from the archive

3. Parse the contents of the a n c h o r . x m l into internal data classes

4. When measurement data is requested by the user, read in both the binary M E T R I C _ I D . i n d e x and M E T R I C _ I D . d a t a file

One thing to note is that we read in the metric index and data only on demand. This results in little to no overhead during
initialization and prevents reading in huge amounts of data that are not used. Additionally, the library still allows the user to explore
the contents of the a n c h o r . x m l via an easy interface. However, when measurements are requested and read, we save the resulting
measurements in an internal cache, so a subsequent call will not read the metric files again.

2 . 2 I m p l e m e n t a t i o n

To increase the development ease and prevent common type-based errors before running the program, we use type hints as defined
in PEP 48410 which necessitate using a Python version greater or equal to 3.5 which was released September 13th, 2015, thus most
likely having good adoption. We structured the library according to common practices using a s e t u p . p y file which enables us to
use wide-spread package managers, such as p i p , to distribute and install our work easily. During development, we checked the
results of our parsing against the results of both the C u b e G U I and the C u b e CLI11.

To parse the binary metric files, * . i n d e x and * . d a t a , we used the built-in Python library (s t r u c t). When parsing, we added
additional sanity checks to ensure that the parsed data is sensible - especially when dealing with endianess (see previous sections).

The implementation with relevant information on how to install and use our library is published on GitHub12 under the BSD
3-Clause ”New” or ”Revised” license13.

3 F u t u r e w o r k

One major feature of C u b e files is the differentiation between inclusive and exclusive metrics. While not in our scope for this project,
adding functionality to process the raw metrics before returning them to the user might prove to be useful.

Another crucial feature would be extending the automatic tests. On the same page, another interesting extension would be to allow
the creation of C u b e files. This feature could also simplify the creation of automated tests since one could just create a reference
C u b e file using the library and parse it again - checking whether the encoding/decoding pipeline works as expected.

R e f e r e n c e s

[1] Alexandru Calotoiu et al. “Fast multi-parameter performance modeling”. In: Proceedings - IEEE International Conference on
Cluster Computing, ICCC (2016), pp. 172–181. issn: 15525244. doi: 1 0 . 1 1 0 9 / C L U S T E R . 2 0 1 6 . 5 7 .

10
h t t p s : / / w w w . p y t h o n . o r g / d e v / p e p s / p e p - 0 4 8 4 /

11We also created a Docker image to simplify using the CubeGUI to prevent installing all dependencies on the host machine
12
h t t p s : / / g i t h u b . c o m / e x t r a - p / p y c u b e x r

13
h t t p s : / / c h o o s e a l i c e n s e . c o m / l i c e n s e s / b s d - 3 - c l a u s e /

5

https://doi.org/10.1109/CLUSTER.2016.57
https://www.python.org/dev/peps/pep-0484/
https://github.com/extra-p/pycubexr
https://choosealicense.com/licenses/bsd-3-clause/

[2] Alexandru Calotoiu et al. “Using automated performance modeling to find scalability bugs in complex codes”. In: International
Conference for High Performance Computing, Networking, Storage and Analysis, SC (2013). issn: 21674337. doi: 1 0 . 1 1 4 5 /
2 5 0 3 2 1 0 . 2 5 0 3 2 7 7 .

[3] Markus Geimer et al. “Scalable collation and presentation of call-path profile data with CUBE”. In: Advances in Parallel Com-
puting 15 (2008), pp. 645–652. issn: 09275452.

[4] Dieter Mey et al. “Score-P: A Unified Performance Measurement System for Petascale Applications”. In: Competence in High
Performance Computing 2010 (2012), pp. 85–97. doi: 1 0 . 1 0 0 7 / 9 7 8 - 3 - 6 4 2 - 2 4 0 2 5 - 6 .

[5] Pavel Saviankou et al. “Cube v4: From performance report explorer to performance analysis tool”. In: Procedia Computer Science
51.1 (2015), pp. 1343–1352. issn: 18770509. doi: 1 0 . 1 0 1 6 / j . p r o c s . 2 0 1 5 . 0 5 . 3 2 0 . url: h t t p : / / d x . d o i . o r g / 1 0 .
1 0 1 6 / j . p r o c s . 2 0 1 5 . 0 5 . 3 2 0 .

[6] Sergei Shudler et al. “Exascaling your library: Will your implementation meet your expectations?” In: Proceedings of the Inter-
national Conference on Supercomputing 2015-June (2015), pp. 165–175. doi: 1 0 . 1 1 4 5 / 2 7 5 1 2 0 5 . 2 7 5 1 2 1 6 .

6

https://doi.org/10.1145/2503210.2503277
https://doi.org/10.1145/2503210.2503277
https://doi.org/10.1007/978-3-642-24025-6
https://doi.org/10.1016/j.procs.2015.05.320
http://dx.doi.org/10.1016/j.procs.2015.05.320
http://dx.doi.org/10.1016/j.procs.2015.05.320
https://doi.org/10.1145/2751205.2751216

	Background
	Performance modeling
	Cube file format
	Related software

	The pyCubexR file reader
	Architecture
	Implementation

	Future work

