Skip to content

ezhan94/calibratable-style-consistency

master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
lib
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Learning Calibratable Policies using Programmatic Style-Consistency (arXiv)

Demo

The demo will be live during ICML 2020 here.

Code

Code is written in Python 3.7.4 and PyTorch v.1.0.1. Will be updated for PyTorch 1.3 in the future.

Usage

Train models with:

$ python run_single.py -d <device id> --config_dir <config folder name>

Not specifying a device will use CPU by default. See JSONs in configs\ to see examples of config files.

Test Run

$ python run_single.py --config_dir test --test_code should run without errors.

Data

[Update 11/25/20] The basketball dataset is now available on AWS Data Exchange. Please make sure to acknowledge Stats Perform if you use the data for your research.

Download the basketball data into util/datasets/bball/data/ (currently contains mock data).

To use your own data, you will need to create a new dataset in util/datasets/ and create a new config folder in configs/.

Scripts

$ python scripts/check_dynamics_loss.py -f <config folder name> will compute and visualize the dynamics model error, where applicable.

$ python scripts/compute_stylecon_ctvae.py -f <config folder name> will compute the style-consistency.

$ python scripts/visualize_samples_ctvae.py -f <config folder name> will sample and save trajectories for each label class.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages