Skip to content


Subversion checkout URL

You can clone with
Download ZIP
Tree: c0b4bb49ef
Ezra Zygmuntowicz
45 lines (38 sloc) 1.336 kB
; Abstraction of a binary tree. Each tree is recursively defined as a list
; with the entry (data), left subtree and right subtree. Left and right can
; be null.
(define (entry tree) (car tree))
(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))
(define (make-tree entry left right)
(list entry left right))
(define (make-new-set)
(define (element-of-set? x set)
((null? set) #f)
((= x (entry set)) #t)
((< x (entry set)) (element-of-set? x (left-branch set)))
((> x (entry set)) (element-of-set? x (right-branch set)))))
(define (adjoin-set x set)
((null? set) (make-tree x '() '()))
((= x (entry set)) set)
((< x (entry set))
(make-tree (entry set)
(adjoin-set x (left-branch set))
(right-branch set)))
((> x (entry set))
(make-tree (entry set)
(left-branch set)
(adjoin-set x (right-branch set))))))
(define myset
(adjoin-set 25
(adjoin-set 13
(adjoin-set 72
(adjoin-set 4 (make-new-set))))))
(write (element-of-set? 4 myset))
(write (element-of-set? 5 myset))
(write (element-of-set? 26 myset))
(write (element-of-set? 25 myset))
Jump to Line
Something went wrong with that request. Please try again.