
libSplash
User Manual

Last update: September 6, 2013

TU Dresden
Center for Information Services and
High Performance Computing (ZIH)
01062 Dresden
Germany

http://www.tu-dresden.de/zih

Helmholtz Zentrum Dresden Rossendorf
Bautzner Landstrasse 400
01328 Dresden
Germany

http://www.hzdr.de

http://www.tu-dresden.de/zih
http://www.hzdr.de

Contents

1 Introduction 3
1.1 About libSplash . 3
1.2 About this Manual . 3
1.3 Installation . 4

1.3.1 Requirements . 4
1.3.2 Compiling . 4
1.3.3 Linking . 4

1.4 Usage . 4

2 SerialDataCollector 5
2.1 Files . 5

2.1.1 File Structure . 5
2.1.2 Opening Files . 6
2.1.3 Closing Files . 6

2.2 Datasets . 6
2.2.1 Writing . 7
2.2.2 Reading . 7
2.2.3 Appending . 7
2.2.4 Removing . 7

2.3 Attributes . 7
2.3.1 Writing . 7
2.3.2 Reading . 8
2.3.3 Global Attributes . 8

2.4 References . 8

3 DomainCollector 9
3.1 Writing Domains . 9
3.2 Reading Domains . 9
3.3 Appending Domains . 10

4 Misc 11
4.1 splashtools . 11
4.2 Tests . 11

2

Chapter 1

Introduction

1.1 About libSplash

libSplash is a combined project of the Center for Information Services and
HPC (ZIH) of the Technical University of Dresden and the Helmholtz-Zentrum
Dresden-Rossendorf (HZDR). The project aims at developing a HDF5-based
I/O library for HPC simulations. It is created as an easy-to-use frontend for the
standard HDF5 library with support for MPI processes in a cluster environment.
While the standard HDF5 library provides detailed low-level control, libSplash
simplifies tasks commonly found in large-scale HPC simulations, such as iter-
ative computations and MPI distributed processes.

1.2 About this Manual

This manual describes the general ideas and usage modes of libSplash and
its most important classes. For a detailed explanation of all available classes,
interfaces and methods, please refer to the Doxygen HTML documentation.

3

1.3 Installation

1.3.1 Requirements

Please see the file doc/INSTALL.md for details.

1.3.2 Compiling

Please see the file doc/INSTALL.md for details.

1.3.3 Linking

Please see the file doc/INSTALL.md for details.

1.4 Usage

libSplash consists of two parts: the basic DataCollector interface and the
extended DomainCollector interface.

DataCollector is the basic interface for most operations, such as ac-
cessing files as well as reading and writing Datasets and Attributes. This inter-
face is implemented in the SerialDataCollector class.

DomainCollector extends this interface with operations on Domains which
can represent the simulation area, a logical data field or a similar logical pro-
gram structure. This is helpful to allow easy post-mortem access to the stored
data from an analysis or visualization tool.

4

Chapter 2

SerialDataCollector

2.1 Files

libSplash stores data in HDF5 files with the extension .h5. The filename struc-
ture is (common name) (mpi position).h5. common name is the name chosen
by the user for the libSplash files, e.g. ’simulation data’. mpi position is the
three-dimensional position of the MPI process creating this file, starting at (0,
0, 0). This format is chosen even if no MPI environment is used to create the
files.

Example:

� If libSplash is used from a non-parallel program using one process, only
the file simulation data 0 0 0.h5 is created.

� If libSplash is used by a MPI parallel program with 2x2 processes, the files
simulation data 0 0 0.h5, simulation data 1 0 0.h5, simulation data 0 1 0.h5
and simulation data 1 1 0.h5 are created.

2.1.1 File Structure

Each libSplash file uses a similar internal file structure which is composed from
groups (folders), datasets, attributes and references.

� header This group stores general information about this file and the cre-
ation context (e.g. the number of MPI processes participating in creating
all related files).

� data This group stores the actual (simulation) data and their annotated
attributes. Indexed sub-groups are used to reflect an iterative program
pattern. In the following example, every 10th iteration is stored using
libSplash.

– 0 Iteration 0

� dataset A
� dataset B

– 10 Iteration 10

5

� dataset A
� dataset B

– ...

� common ???

2.1.2 Opening Files

Before data can be stored or read, files must be opened by calling DataCollector::open.
This method requires the common part of the filename and an object of type
FileCreationAttr. This object defines the file access type as well as the
number of participating MPI processes, the MPI position of the calling process
and further information. The following file access types are available:

� FAT CREATE A new file is created. Any existing file with this name if
overwritten. FileCreationAttr is used to determine the MPI position
part of the filename.

� FAT WRITE An existing file is opened for reading and writing. FileCreationAttr
is used to determine the MPI position part of the filename. If the file does
not exist, it is created. Otherwise, any write access to existing datasets
will overwrite them.

� FAT READ An existing file is opened in read-only mode. FileCreationAttr
is used to determine the MPI position part of the filename. If the file does
not exist, an exception is thrown.

� FAT READ MERGED All existing files belonging to a single parallel run are
opened simultaneously in read-only mode. Data from all files can be read
transparently as if written to a single file.

2.1.3 Closing Files

After all file operations are finished and before opening or creating a new file,
already opened files must be closed by a call to DataCollector::close.
Otherwise, file information can be inconsistent and required data may not be
stored properly.

2.2 Datasets

Datasets are the general way for storing user data, e.g. simulation results
or intermediate systems states. They can be one-, two- or three-dimensional
and each element can be a basic type (e.g. int) or structured type (i.e. a
struct). Subclasses of the abstract class CollectionType are used to
define the Datatype of a Dataset when storing data (or attributes to data). The
range of available types can be easily extended by defining a new subclass
(see include/basetypes for a list of existing types).

Datasets are stored in the data group of libSplash files and must be related
to a specific index beneath this group.

6

2.2.1 Writing

To write data, use any of the DataCollector::writemethods. They require
the used datatype, the number of dimensions (rank, 1-3), the size of the actual
data, buffers and offsets in each dimension as a Dimensions object, the name
for the dataset and a pointer holding the data. Any existing dataset in this group
with the same is name is overwritten.

Please note that the user is responsible to pass a correct CollectionType
to any write call. Otherwise, user data may be interpreted incorrectly.

2.2.2 Reading

To read data, use any of the DataCollector::read methods. They work
similar to DataCollector::write but do not require a CollectionType
or rank, as these information are implicitly given from the read dataset. The
destination buffer for reading must be allocated by the user. However, read
methods can be passed a NULL pointer to not read any data but only return the
required dimensions of the destination buffer.

2.2.3 Appending

Appending data is possible only for one-dimensional datasets. It is achieved
using any of the DataCollector::append methods. In contrast to writing
a dataset, any existing data remains unchanged and new elements are ap-
pended at the end. If the dataset for appending does not exist, it is created.

2.2.4 Removing

Datasets as well as whole program iterations can be removed from a file using
DataCollector::remove. However, it may depend on the linked HDF5 li-
brary if file size actually decreases.

2.3 Attributes

Attributes are annotations to Datasets which can be used to store meta in-
formation. Attributes can be of any CollectionType but must only contain a
single element of that type (in contrast to Datasets, which are multi-dimensional
arrays). At the moment, it is not possible to annotate Attributes at groups.

2.3.1 Writing

Attributes are written using the DataCollector::writeAttributemethod.
It must be passed the location of the annotated Dataset (id and name) and the
type and name of the Attribute.

7

2.3.2 Reading

To read an Attribute, use the DataCollector::readAttribute method. It
must be passed the location of the annotated Dataset (id and name) and the
name of the Attribute. If no Attribute with this name and location exists, an
exception is thrown.

If the file has been opened for transparent merged read using FAT READ MERGED,
additionally a MPI position can be defined to specify from which subfile to read
the required Attribute. If this MPI position is set to NULL, the Attribute is read
from the file with MPI position (0, 0, 0).

2.3.3 Global Attributes

Global Attributes are not specific to a single Dataset but belong to the whole
file or to each subfile, respectively. To write and read Global Attributes, use
DataCollector::writeGlobalAttribute and
DataCollector::readGlobalAttribute methods. Reading and writing
is similar to normal Attributes, including the optional MPI position when reading
Global Attributes in FAT READ MERGED mode.

2.4 References

References are links to another Dataset within one HDF5 file. It can reference
the whole Dataset as well as a user-defined subset, specified by offset, count
and stride. After a reference is created using DataCollector::createReference,
it can be accessed like a normal Dataset.

8

Chapter 3

DomainCollector

The DomainCollector class extends SerialDataCollectorwith Domain-
specific operations. A Domain is a logical data structure which can represent
for example the simulation area of a iterative simulation program. Each MPI
process may write a sub-Domain (i.e. a sub-part) of the whole Domain area.
When accessing stored Domain data for analysis, it is possible to read data as
stored in the HDF5 file as well as requesting a part of the simulation Domain.
This request is than handled transparently by libSplash.

Domain data can be of two types:

� GridType This type is used for data stored as 1-3-dimensional arrays,
such as fields or volumes where each element has a specified position
within the domain grid.

� PolyType This type is used for unordered 1-dimensional data, e.g. parti-
cles within a volume.

3.1 Writing Domains

To write Domain data, use any of the DomainCollector::writeDomain
calls. Each requires information on the source data and buffer to read from, a
name for the Dataset, the Datatype as well as Domain information: the stored
domain offset and area and the type of data stored (GridType or PolyType).

3.2 Reading Domains

To read Domain data, use DomainCollector::readDomain. It must be
passed the name and area of the requested Domain partition (sub-Domain).
The Domain type and a DataContainer holding the read data are returned.

When reading Domain data, read calls to multiple HDF5 Datasets may be
necessary if the requested sub-Domain spans multiple Datasets. Therefor, the
returned DataContainer holds multiple DomainData objects. Each Domain-
Data object stores a part of the requested data along with sub-Domain-specific
information. If GridType data is read, only a single DomainData object may be
returned as data from multiple Datasets can be transparently combined into

9

one new array. Otherwise, when reading PolyType data, the DataContainer is
likely to hold multiple DomainData objects, one for each physical read. These
DomainData object can be queried successively or by their 1-3.dimensional
index (DataContainer::get and DataContainer::getIndex). Addition-
ally, all elements from all DomainData objects within one DataContainer can be
queried continuously using DataContainer::getNumElements and DataContainer::getElement.

3.3 Appending Domains

Appending Domain data follows the same restrictions as appending normal
Datasets (see 2.2.1).

10

Chapter 4

Misc

4.1 splashtools

splashtools is a convenience tool to check/modify/... HDF5 files created with
libSplash. Features include:

� Transparently delete timesteps in all HDF5 files belonging to a single run.

� Check files for syntactic and semantic consistency.

Run splashtools --help for a complete list of all current features.

4.2 Tests
The libSplash repository contains tests for self-testing the library. They can be found in
the tests subdirectory. To build the tests, move to the tests subdirectory and execute
mkdir build; cd build; cmake ..; make.
From the tests directory, all tests can be run using the run tests.sh shell script. To
build the tests, cppunit and OpenMPI must be installed.

11

	Introduction
	About libSplash
	About this Manual
	Installation
	Requirements
	Compiling
	Linking

	Usage

	SerialDataCollector
	Files
	File Structure
	Opening Files
	Closing Files

	Datasets
	Writing
	Reading
	Appending
	Removing

	Attributes
	Writing
	Reading
	Global Attributes

	References

	DomainCollector
	Writing Domains
	Reading Domains
	Appending Domains

	Misc
	splashtools
	Tests

