
A Typed Lua Calculus

Fabien Fleutot

February 16, 2013

This article proposes a sound type system for the Lua programming lan-
guage. It’s intended to be later combined with gradual typing and partial type
inference, so that users can blend statically and dynamically typed program
fragments, as best suits their development needs.

Lua [?] is a dynamic, imperative programming language, similar in expres-
siveness to other modern languages such as Python, Ruby or Javascript; com-
pared to these, Lua specifically shines by its embeddability, frugality in terms
of hardware resources, tight integration with C; its speed performances are also
noteworthy [?], especially when run through a JIT compiler [?]. Finally, there
is, by design, a proper subset of the language which is widely acknowledged as
beginner-friendly [?]. Due to those qualities, Lua is widely used in domains such
as high-performance video games, embedded devices or highly user-customizable
systems.

Static typing is not always beginner-friendly; however, a well designed, stat-
ically typed third party API is generally easier to use, because many usage
mistakes can be caught sooner, either when compiling or immediately by a
type-checking IDE. While introducing a mandatory static type system in Lua
would ruin several of the language’s key features, supporting optional types
would significantly improve the experience of many users.

We aim at offering such a fine-grained integration of static and dynamic
program fragments, by building upon the research on gradual typing [?]. As a
first step, we propose a type system, inspired by theoretical studies of records
and objects typing [?, ?], which accepts a significant proportion of idiomatic
Lua programs.

A preliminary, necessary step is the definition of a formal calculus capturing
the key semantic characteristics of Lua. Then we will propose a type system
for this calculus, which allows to check a properly annotated program against
illegal operations. We’ll then hint at ways to integrate gradual typing in this
system, and partial inference to lighten the amount of necessary annotations.

1 Calculus

This section defines a calculus, intended to capture Lua’s defining features.
A compromise shall be found between faithfulness to Lua, simplicity of the

1



semantic rules, and ability to support a type system.

1.1 Notations

• Σ[x← y], with Σ a mathematical function, denotes the function which to
x associates y, and to all other values x′ associates Σ(x′) if defined.

• E[v ← E′], with E and E′ terms, and v a variable possibly occurring in
E, denotes the term E in which all occurrences of v are replaced with E′.

• If E denotes an element of a given kind, Ē denotes a sequence of such
elements. A sequence has zero, one or several elements, which are ordered
and not necessarily unique.

• ∅ denotes an empty sequence. When it enhances understanding, it can be
subscripted with the type of elements the sequence might have contained.
For instance, an empty sequence of expressions might be denoted either
∅ or ∅E .

• (xn)∀n∈[1...m] denotes the sequence of all elements xn for successive values
of n 1, 2, ...,m. Boundaries 1 and m are inclusive.

• Sequences are concatenated with a semicolon between parentheses: (Ē1; Ē2).
They can also be concatenated with single elements: (E; Ē).

1.2 Terms definition

In a first step, we’ll introduce a calculus which captures Lua’s defining features,
such as tables, functions, multi-value returns, local variables. We will not deal
with classic structures (if/then/else statements, for loops etc.) which can be
added later in a rather straightforward way.

We also won’t explicitly support features which can be easily encoded. “...”
trailing function arguments, method invocations, globals, combined local vari-
able declaration+assignment are intentionally left out of the calculus.

We’ll also consider it mandatory for function bodies to end with a return nil,
to save a specific rule about non-returning functions (the Lua compiler performs
this transformation for the same reason).

Finally, we distinguish function applications as expressions f(x̄)E and as
statements f(x̄)S : the latter discard whatever value they might have returned.
This distinction is trivial to do when encoding a program into the calculus, and
simplifies the calculus’ semantic rules.

2



E ::= L (E-Left)
| P (E-Primitive)
| E(Ē)E (E-Apply)
| function(v̄) S̄ end (E-Function)
| { ([Ek

n] = Ev
n)∀n∈[1...m] } (E-Table)

L ::= v (E-Variable)
| E[E] (E-Index)

P ::= 〈string〉 (E-String)
| 〈number〉 (E-Number)
| true (E-True)
| false (E-False)
| nil (E-Nil)
| t (E-TableRef)
| f (E-ClosureRef)

S ::= local v̄ (S-Local)
| L̄ = Ē (S-Assign)
| E(Ē)S (S-Apply)
| return Ē (S-Return)

Expression elements are sorted into categories:

• S denotes statements;

• E encompasses all expressions;

• P denotes primary expressions: expressions which evaluate to themselves,
without side effect; we have P ⊂ E.

• L denotes left-hand-side values, i.e. values which can legally appear to the
left of a L̄ = Ē assignment statement; we have L ⊂ E and L ∩ P = { }.

Table and function references t and f aren’t part of Lua: they are what
tables and functions are evaluated to, so that the notion of identity and mutation
sharing in the calculus remain faithful to Lua.

1.3 Semantics

We’ll now describe how calculus terms are evaluated. We’ll do so in big-step
(“natural”) semantics, i.e. we give a proposition of the form “assumptions `
term to evaluate ⇒ modified assumptions, fully evaluated term”. If no such
reduction statement can be proved, then the term to evaluate is erroneous.
This differs from small-step semantics, where one defines a single reduction
step, and the evaluation of a program is defined as the repeated application of
the reduction step until no more reduction is possible.

3



More formally, the proposition Σ0, X0 ⇒ Σ1, X1 reads “element X0, when
evaluated under environment Σ0, reduces to X1 and changes the environment

into Σ1”. To clarify rules, this operator has been separated into
E⇒, Ē⇒, S⇒, S̄⇒

,
L⇒, L̄⇒ depending on the kind of terms on which it operates.

Rules will be presented the usual way in logic: as fraction bars, with the
premises over the bar, and the proved conclusion under it. a b c

d means that
proposition d is proved if we can provide a proof of propositions a, b and c (the
“premises”). A rule with nothing above the line, such as d , is an axiom: a
proposition considered true with no need for any further proof. A complete
proof is therefore a tree of propositions, with the goal proposition as the tree’s
root, and axioms as its leaves.

Identity of tables and closures In Lua, tables and functions have an iden-
tity, i.e. two structurally equal tables are not equal, unless they’re a shared
reference to a same local variable (or table element) holding the same value.
For instance, in “a={ }; b={ }”, a and b are not equal. Similarly, extension-
ally equal functions are not equal in the Lua sense.

To reflect this in the calculus, we’ll let (E-Function) and (E-Table) terms
evaluate to a fresh reference f or t every time they’re evaluated; the association
between the reference and its definition will be kept in the environment store
Σ. As a result, equality works in the calculus as in Lua; for instance, in “a={
}; b=a”, a and b are indeed equal.

Moreover, in order to make mutable variables and first class functions co-
habit seamlessly, Lua defines up-values, i.e. local variables which outlive their
syntactical scope. To faithfully represent this in the calculus, we’ll perform
an α-renaming to fresh variable names every time we encounter a “local v̄”
statement. This way, all variables live forever in the calculus, although only
up-values might be referred to out of their scope. Put otherwise, the formal
calculus never performs garbage collection.

Program environment The program’s environment, i.e. the assumptions
under which a term is evaluated, is represented by a triplet of functions (ΣL,ΣT ,ΣF ).
They keep track respectively of local variables’ content, tables’ content and clo-
sures. Since in most cases the details of the environment don’t matter, the
triplet is often shortened as Σ.

Formally, the three functions have the following types:

• ΣL : v 7→ P is a function from variable names to the evaluated expressions
they hold;

• ΣT : (t× P ) 7→ P is a function from table references and key expressions,
to the value expressions held under this key in this table;

• ΣF : f 7→ (v̄ × S̄) is a function from function references f to function
definitions function(v̄) S̄ end.

4



The environment could also be used capture I/O operations, to describe side
effects other than variable value changes. This wouldn’t significantly change the
calculus’ semantic properties, though, and hence will be left out.

Assignment to environment To properly define variable assignment, we’ll
need an operator⇐ on environments, which denotes the update of what’s bound
to variables and table fields in Σ. Indeed, an assignment statement can update a
mix of local variables and table contents, so we need to describe the simultaneous
update of ΣL and ΣT . The operator (ΣL,ΣT ) ⇐ (L̄, P̄ ) is defined inductively
as follows:

(ΣL,ΣT )⇐ (∅L, P̄ ) = (ΣL,ΣT ) (A-∅L)
(ΣL,ΣT )⇐ (L̄,∅P ) = (ΣL,ΣT )⇐ (L̄, nil) (A-∅P )

(ΣL,ΣT )⇐ ((v; L̄), (P ; P̄ )) = (ΣL[v ← P ],ΣT )⇐ (L̄; P̄ ) (A-Local)
(ΣL,ΣT )⇐ (t[Pk], L̄;Pv, P̄ ) = (ΣL,ΣT [(t, Pk)← Pv])⇐ (L̄; P̄ ) (A-Table)

Intuitively, ⇐ stores variable assignments in ΣL and table writings in ΣT ,
thanks to the two last rules (the two first ones are structural). It expects its third
argument to be a list of left-values, i.e. either variables or indexing of a primitive
term by another. As a notation facility, we’ll allow to transparently pass an
extra ΣF argument to⇐. This lets use it directly on complete environments Σ.
Formally, the operator is overloaded as follows:

(ΣL,ΣT ,ΣF )⇐ (L̄, P̄ ) = (ΣL
? ,Σ

T
? ,Σ

F ) iff (ΣL,ΣT )⇐ (L̄, P̄ ) = (ΣL
? ,Σ

T
? )

.

TODO: forbid EL[nil] = ER

Statements sequences evaluation ∅S denotes an empty sequence of state-
ments. It is also the result of a sequence which didn’t return anything:

Σ,∅S
S̄⇒ Σ,∅S

(ES-∅)

If the first element of a sequence doesn’t evaluate into a return, then the result
of the sequence is that of the following statements (plus any side effect caused
on Σ by the first statement):

Σ, S1 S⇒ Σ1,∅ Σ1, S̄
S̄⇒ Σ2, S

?

Σ, (S1; S̄)
S̄⇒ Σ2, S?

(ES-∅̄)

However, if a statement evaluates to return, the rest of the sequence isn’t
evaluated:

Σ, S1 S⇒ Σ1, return P̄

Σ, (S1; S̄)
S̄⇒ Σ1, return P̄

(ES-return)

5



Statements

Return statements Return statements evaluate their returning values.
When a function body evaluates to return P̄ , it will be “unwrapped” back
into a P̄ by (EE-Apply).

Σ, Ē
Ē⇒ Σ1, P̄

Σ, return Ē
S⇒ Σ1, return P̄

(ES-Return)

Local variables creation Local variable creations are immediately α-
renamed:(

ΣL
[
w̄ ← nil

]
,ΣT ,ΣF

)
, S̄[v̄ ← w̄]

S̄⇒ Σ1, S
? w̄ free in ΣL

(ΣL,ΣT ,ΣF ), (local v̄; S̄)
S̄⇒ Σ1, S?

(ES-Local)

The point is to handle upvalues (references to variables defined outside of the
function body) correctly. Consider for instance the following program, featuring
an up-value u:

local u=1

local f = function(x)

u=u+1

return x+u

end

_ENV["a"], _ENV["b"] = f(1), f(2)

The first line local u will be evaluated only once, and therefore occurrences
of u in f will all be α-renamed to the same fresh variable: they will indeed be
shared as expected. Conversely, in the following program:

local f = function(x)

local u; u=1

u=u+1

return x+u

end

_ENV["a"], _ENV["b"] = f(1), f(2)

The local u statement will be evaluated twice, each time being renamed in
a different fresh variable, and no sharing can occur.

Evaluation of assignment contains a subtlety: the value-receiving fields and
variables, on the left of the “=” sign, must not be fully evaluated. Instead,
they need to be reduced to a “left-normal” form (variables or index to a table),

which is done by a distinct evaluation operator
L̄⇒; once both left and right sides

of “=” are evaluated, modifying the environment adequately is left to the ⇐
operator defined above:

6



Σ, L̄
L̄⇒ Σ1, L̄

? Σ1, Ē
Ē⇒ Σ2, P̄

Σ1, L̄ = Ē
S⇒ (Σ2 ⇐ (L̄?, P̄ )),∅S

(ES-Assign)

We’ll define
L̄⇒ in terms of

L⇒, which operates on a single expression. Vari-
ables are considered fully evaluated when the occur on the left of “=”:

Σ, v
L⇒ Σ, v

(EL-v)

Indexed values have the table and its key evaluated, but the field-content-
accessing operation isn’t performed:

Σ, ET
E⇒ Σ1, (P

1
T ; P̄T ) Σ1, Ek

E⇒ Σ2, (P
1
k ; P̄k)

Σ, ET [Ek]
L⇒ Σ2, P 1

T [P 1
k ]

(EL-Index)

With this we can easily define
L̄⇒, which chains

L⇒ operations by stringing
their environment modifications together:

Σ, L1
L⇒ Σ1, L

?
1 Σ1, L̄

L̄⇒ Σ2, L̄
?

Σ, (L1; L̄)
L̄⇒ Σ2, (L?

1; L̄?)
(EL-L̄)

Σ,∅L
L̄⇒ Σ,∅L

(EL-∅)

Function applications in statment contexts Function application in
a statement context is pretty similar to function application in an expression
context, except that any returned result is thrown out. The actual β-reduction
is therefore delegated to (EE-Apply), defined later:

Σ, Ef (Ē)E
E⇒ Σ1, P̄

Σ, Ef (Ē)S
S⇒ Σ1,∅S

(ES-Apply)

Expression sequences In Lua, when a single expression evaluates into sev-
eral results, only the first result is kept, except for the last one which is en-
tirely appended to the resulting multi-value. For instance, if we consider f =

function(a,b,c) return a,b,c end, the sequence f(10,11,12), f(20,21,22),

f(30,31,32) will evaluate to 10, 20, 30, 31, 32.
The rule below chains expression evaluations by stringing their environment

modifications together, and discards extraneous returned values:

(∀n ∈ [1...m]) Σn−1, En
E⇒ Σn, (P

1
n ; P̄n)

Σ0, (En)∀n∈[1...m] Ē⇒ Σm, ((P 1
n)∀n∈[1...m]; P̄m)

(EE-Sequence)

Expressions

7



Variables and primitives Variables are replaced by their content from
the store; primitives are their own evaluation:

ΣL(v) = P

(ΣL,ΣT ,ΣF ), v
E⇒ P

(EE-v)
Σ, P

E⇒ Σ, P
(EE-Primitive)

Function application For function applications, function definitions are
retrieved from ΣF . We define the evaluation by transforming the function pa-
rameters into local variables, assigned to the arguments’ values. Notice that the
arguments are evaluated before their assignment, although (EE-Assign) would
have evaluated them anyway. The reason is, the arguments need to be evaluated
outside of the function’s scope; otherwise, capture problems could occur (think
for instance of f=function(x) return x end; local x; f(x)):

Σ, Ef
E⇒ (ΣL

1 ,Σ
T
1 ,Σ

F
1 ), f

ΣF
1 (f) = function(v̄) S̄ end

(ΣL
1 ,Σ

T
1 ,Σ

F
1 ), Ē

Ē⇒ Σ2, P̄

Σ2, (local v̄; v̄ = P̄ ; S̄)
S̄⇒ Σ3, return P̄

Σ, Ef (Ē)E
E⇒ Σ3, P̄

(EE-Apply)

Function creations As seen in (EE-Apply), function definitions are re-
trieved from ΣF . They’re stored in it, under a fresh name f , when the function
... end expression is found:

Ef = function(v̄) S̄ end f free in ΣF

(ΣL,ΣT ,ΣF ), Ef
E⇒ (ΣL,ΣT ,ΣF [f ← Ef ]), f

(EE-Function)

Literal tables To evaluate a literal table, we evaluate every key and value
in order, chaining environment modifications, then store the (key, value) evalu-
ated pairs in ΣT :

t free in ΣT
2m

(∀n ∈ [1...m])

{
Σ2n−2, E

n
k ⇒ Σ2n−1, (P

n
k ; P̄n

k )
Σ2n−1, E

n
v ⇒ Σ2n , (Pn

v ; P̄n
v )

ΣT
? = ΣT

2m[(t, Pn
k )← Pn

v ]∀n∈[1...m]

Σ0, ([En
k ] = En

v )∀n∈[1...m] E⇒ (ΣL
2m,Σ

T
? ,Σ

F
2m), t

(EE-Table)

Accessing table contents When a value is indexed, it must evaluate to a
table reference; then the value associated with the corresponding key is retrieved
from the store ΣT :

8



Σ, ET ⇒ Σ1, t Σ1, Ek ⇒ Σ2, (P
1
k ; P̄k) ΣT

2 (t, P 1
k ) = Pv

Σ, ET [Ek]⇒ Σ2, Pv
(EE-Index)

In Lua, a key which has never been set in a table is associated with value
nil. To reflect this, an evaluation must start with all table/key pairs associated
with nil:

(∀t)(∀P ) ΣT (t, P ) = nil

1.4 How evaluation can fail

The operational semantics above defines the result of programs, as long as they:

• don’t get stuck in infinite recursion;

• don’t try to index a non-table (cf. premises of (EE-Index), which is the
only evaluation rule applying to terms of the form E[E], and requires the
indexed object to be a reference to a table);

• don’t try to apply a non-function (cf. premises of (EE-Apply), which is
the only evaluation rule applying to terms of the form E(Ē), and requires
the applied object to be a reference to a function;);

• always return a value from a function, i.e. all function bodies, when pa-
rameters are substituted with arguments, evaluate to a return P̄ state-
ment value. It’s easily proved that by appending a return nil at the end
of the function’s body, a function body evaluating to ∅S will evaluate to
return nil instead.

The last point is very easily addressed, and the first one is well known as
undecidable; the most reasonable definition of static correctness, for a program,
is to provably perform no indexing of a non-table value, and no function call
on a non-function. A sound type system for the present calculus will provide
formal proofs that a given term cannot involve such incorrect sub-terms. The
design of such a type system is the subject of the next section.

2 Static type system

In the previous section, we’ve seen that we wanted a type system to prevent
indexing of non-tables as well as application of non-functions. We’ve also men-
tioned that a type system which eliminates all incorrect terms will also eliminate
some correct ones (a direct consequence of the calculus’ Türing-completeness,
easily demonstrated by encoding the λ-calculus in it). This section will try to
find a reasonable compromise: a type system which accepts a lot of “reasonable”
terms, catches all incorrect ones, and doesn’t force too much book-keeping on
users.

9



2.1 Notations

<: denotes subtyping. T1 <: T2 means that T1 is a subtype of T2, i.e. a term
of type T1 can be used everywhere a term of type T2 is expected.

2.2 Type System

E ::= [P : F|F] (TE-Table)
| P (TE-Primitive)
| Ē→ Ē (TE-Function)
| > (TE-Top)

P ::= nil | boolean | number | string

F ::= just E (TF-Just)
| currently E (TF-Currently)
| var E (TF-Var)
| const E (TF-Const)
| field (TF-Field)

S ::= return Ē (TS-Return)
| ∅S (TS-None)

Lua key features to respect The type system should capture as many
Lua-specific idioms as possible. Tables are of course central in Lua, and quite
similar in some respects to objects of calculi such as Abadi & Cardelli’s [?],
Fisher Honsell & Mitchell [?], or Rémy’s [?]. Among others, they are defined
with no native notion of classes. The most striking Lua-specific features are:

• Lua tables—and therefore Lua itself—are deeply imperative. There are
primitives in Lua to alter a table, but neither to copy nor to functionally
update it; despite closures and tail-call optimization, idiomatic Lua code
is not functional. This contrasts with most theoretical studies of object-
oriented calculi, which inherit from λ-calculus a preference for functional
primitives and idioms.

• Lua tables are arbitrary value→value hashtables, whereas object calculi
typically index object fields with labels taken from a separate (enumerable)
set. In the first version of our type system, we’ll only type tables whose
keys have primitive types string, number or boolean. Homogeneously
typed hashtables should be easy to add at a later stage—they mostly
behave as simplified functions, type-wise; but arbitrarily mixed tables,
acting as a raw mix of records and hashtables, are untypable in general.

• Lua makes a distinction between statements and expressions. This means
that two distinct type kinds S and E are defined. This is again in contrast
with most theoretical calculi, which are purely expression-based.

10



• There’s no notion of “undefined label”: all table keys except nil are
defined in all tables; keys which haven’t been explicitly assigned are asso-
ciated with the value nil.

• A key consequence is that an table’s type changes during its lifetime: when
created all its fields have type nil, then these field types are modified as
meaningful values are put in them. Whereas most calculi allow to add
fields to object, ours will allow to change their type.

• Lua functions take multiple arguments, and return multiple values.

• Expressions can be collected into expression sequences, to be used in as-
signments, function calls and function results. They get their dedicated
type kind Ē.

Beyond those specific needs, the type system will include many staples of
modern type systems, such as structural subtyping, functions contravariant in
their arguments and covariant in their results, covariant read-only table fields,
invariant read+write fields.

Types will not be nullable (there won’t be any legal way to derive nil <:
E for any E other than nil): catching “NPE” (Null Pointer Exceptions, as
nicknamed by traumatized Java developers) has been done for ages in ML-
inspired languages; Hoare himself, who first introduced implicitly nullable types
in Algol, called them “my billion dollar mistake” [?]. However, since nullable
function arguments and results are an important idiom in Lua, future versions
of the calculus will have to support either an explicit nullable type modifier, or
a generic union type, allowing to type e.g. an optional number as nil|number.

Tables Lua tables accept all values as keys except nil, and there’s no notion
of unset/undefined key; it’s legal to request foo["bar"] even if the key "bar"

has never been set in foo: it will return nil. So in practice, all but a finite
set of keys in a given table will return a value other than nil. To reflect
this in the type system, a table type will contain a default field type, shared
by all but a finite number of its fields; this type will usually be set to some
variant of nil. The other key/type pairs are listed explicitly. For instance,
["x" : const number|const nil] describes a table such as {["x"]=1}, with a
field "x" of type const number, and all other fields left to nil.

In the current version, field keys are limited to values of atomic types string,
number or boolean. Tables using other keys will not be typable statically. Some
future extensions are possible, and will be studied separately.

In contrast with type systems inspired by Abadi & Cardelli’s, we won’t
introduce a ζ(s) self-type binder in the type system [?]: it substantially compli-
cates it, mostly to allow a functional-style use of objects that doesn’t seem to
correspond to any widespread Lua idiom.

Table types are considered equal modulo fields reordering, and expansion of
the default field type; the following types are all considered equal:

11



[P1 : F1;P2 : F2|Fd]
= [P2 : F2;P1 : F1|Fd] (reordering)
= [P1 : F1;P2 : F2;P3 : Fd|Fd] (default expansion)

Moreover, it’s illegal for a field key to appear more than once in the same
table: [P1 : F1;P1 : F2|Fd] is not a well-formed type.

Finally, we’ll admit as a shortcut that [P : F] means [P : F|field].

Field types Field types are expression types with a prefix modifier: just E,
currently E, var E, const E, and simply field without a type parameter.
They give control over field variance, i.e. they prevent some operations, but
in exchange allow more permissive subtyping, and hence allow to use tables
in more contexts. var, const and field will be familiar to people who stud-
ied structural subtyping, and offer the expected variance properties. just E
and currently E are more unusual, and allow to change a value’s type for an
unrelated one, under specific conditions.

Read-write fields var E is the type of a field which can be read and
written with values of type E. It’s not covariant, i.e. even if E1 <: E2, we don’t
have [P : var E1] <: [P : var E2]. To see why, let’s consider the subtyping
relationship positive <: number 1. If we had [P : var positive] <: [P :
var number], we could take a table of type [P : var positive], partially forget
its type through subtyping into [P : var number], then write a negative number
in its field P . Other parts of the program, which retained the more precise
type [P : var positive] for the same table, might break because they take for
granted that P ’s content is positive.

Read-only fields If we promise not to overwrite a field, however, we can
make it covariant. This is the purpose of const E fields: the type system will
prevent from updating such fields, but in exchange, whenever we have E1 <:
E2, we also get const E1 <: const E2. Adapting the previous example, [P :
const positive] is a subtype of [P : const number], because when reading its
P field, one gets a positive which is indeed a number; since we can’t write in it,
there’s no danger of putting a negative number where the type system expects
to find only positive ones.

Contravariant fields Symmetrically, we could promise not to read a
field, and get contravariance in exchange (whenever E1 <: E2, we get [P :
writeonly E2] <: [P : writeonly E1]). However, this seems of limited practi-
cal use, so we’ll leave this out of the type system.

1Positive numbers are numbers, but not the other way around. This example of subtyping
has been chosen because it’s hopefully familiar and intuitive for everyone; but it’s only intended
to illustrate variance issues, and the calculus won’t have a specific positive type.

12



All fields If we promise neither to read nor to write a given field, it be-
comes bivariant: whether E1 <: E2 or E2 <: E1, or even if E1 and E2 are
incomparable, we’d still have field E1 <: field E2. We’ll therefore simply
write it field: no need to keep E in it, since it isn’t used anyway. It’s the
super-type of all other type fields, and it acts as the private modifier does in
C++ inspired languages: you can neither override nor use a field of this type.

Type-changing field types currently E means that a field currently
has type E, but that this type can be changed without breaking the program.
This is an unusually liberal typing rule, and as such, it will only be allowed
under strictly controlled circumstances. Most notably, a table type with some
currently fields will have to be used linearly: if several variables allowed access
to the same currently field, one variable could change the field’s content type
without the other variable’s knowledge, and break the program in unpredictable
ways. Hence, it will be mandatory to weaken the type of currently E fields
into field, before using them in non-linear ways, thus preventing both read
and write operations on it.

currently E field types are intended to allow idioms such as “x={ };x.f 1=

E1; ...; x.f n=En”; the type of x in this program will change at each state-
ment of this sequence, from [|currently nil] to ["f 1" : currently E1; ...;
"f n" : currently En|currently nil].

We mentioned a criterion of linearity: there must be at most one reference
to a currently E field. Otherwise, one reference might change the type of the
field’s content without the other references’ knowledge. The typing rules will be
designed in such a way that whenever extra references to it are created, these
will be typed as field, i.e. inaccessible.

Unreferenced field types Finally, we need a type indicating that an
object is completely unreferrenced, and can therefore be stored safely into a
currently E field. For instance, in x={foo=1}, if the right-hand-side table
was typed ["foo" : currently number|currently nil], it would have to be
weakened into [|field] before being stored in x, in case there was already a
reference to it.

Therefore, we distinguisg currently E the type of a field referenced once,
and just E the type of a field which isn’t referenced at all. In the exam-
ple above, the right-hand-side is typed ["foo" : just number|just nil], and
weakened into ["foo" : currently number|currently nil] when stored into x.
A further y=x statement would see the type stored in y weakened to [|field].

2.3 Subtyping rules

The subtyping relationship is a partial order, defined as the smallest transitive
closure of the rules listed in this subsection.

13



Structural rules The subtyping relationship, defined over expression, field
and statement types, is reflexive and transitive; > is the biggest expression type:

E <: >
(<: >)

E <: E F <: F S <: S
(<:Refl)

E1 <: E2 E2 <: E3

E1 <: E3

F1 <: F2 F2 <: F3

F1 <: F3

S1 <: S2 S2 <: S3

S1 <: S3

(<: Trans)

Fields subtyping We have var E <: const E, const’s covariance, and
field the top field type:

F <: field
(<:Field)

var E <: const E
(<:Const)

E1 <: E2

const E1 <: const E2
(<:Const+)

just E <: currently E
(<:Currently)

just E <: var E
(<:Var)

E1 <: E2

just E1 <: just E2
(<:Just+)

We do not have currently E <: var E. Indeed, mutable field types are not
a special case of variable fields: the latter can be used with less restrictions when
linearity cannot be guaranteed. For instance, if x : [var number], its content can
be assigned to y with “x=y”, and y will also have type [var number]. However,
if x had type [currently number], y would only get type [field], because the
following statement might be e.g. “x=false”: one cannot count on y keeping
its number type.

Functions subtyping Functions are contravariant in their arguments, and
covariant in their results:

Ē2
? <: Ē1

? Ē1
! <: Ē2

!

Ē1
? → Ē1

! <: Ē2
? → Ē2

!

(<:Function)

Tables subtyping Subtyping between tables is directly lifted from field sub-
typing; unreferenced tables, marked with a prime, can be considered as regular
table whenever suitable.

(∀n ∈ [0...m]) Fa
n <: Fb

n

[(Pn : Fa
n)∀n∈[1...m]|Fa

0 ] <: [(Pn : Fb
n)∀n∈[1...m]|Fa

0 ]
(<:Table)

14



Expression sequences subtyping Subtyping between expression sequences
is only defined between sequences of the same length. Typing rules will pad
sequence with nils on the right whenever appropriate:

(∀n ∈ [1...m]) En
1 <: En

2

(En
1 )∀n∈[1...m] <: (En

2 )∀n∈[1...m]
(<: Ē)

Statements subtyping Statement types are either ∅S, or of the form return Ē.
In the latter case, subtyping is lifted from expression sequences subtyping:

Ē1 <: Ē2

return Ē1 <: return Ē2
(<:Return)

2.4 Typing rules

This section gives the typing rules, which allow to determine the belonging of
terms to certain types. To do that, we’ll enrich the calculus with a couple of
type annotations. We won’t discuss the possibility to algorithmically infer some
of those.

Typing environments The rules exposed below use typing environments
Γ : v 7→ F, functions from variables to field types (rather than, as one could
have expected, expression types). Indeed, being able to separate constants from
variables in the type system is valuable, and more importantly, the linearity
issues handled by the currently modifier occur with local variables as well as
with table fields.

This section won’t address variable shadowing issues2: since we work on
static terms which we don’t evaluate, an appropriate α-renaming before typing
can ensure that no such shadowing occurs.

Notations

• Γ[v ← F] is the function which, to v, associates F, and to all other values
w ∈ dom(Γ)\{v} associates Γ(w).

• This definition is extended homomorphically to sequences of variables and
values Γ[v̄ ← F̄].

• The empty environment, i.e. the function with an empty domain, is writ-
ten ∅Γ.

• Γ ` T : T means that under the assumptions in environment Γ, term T
has type T.

2i.e. homonymies, as in “local x; x=function(x) return x end”, where there are two
distinct variables which both share the name x.

15



• The notation Γ ` E ∴ F describes the types of left-hand sides operands
in “=” assignment statements; these variables and table fields must re-
tain field types rather than expression types, because their field qualifier
indicates whether and how they can be updated. It means “under the
assumptions Γ, and in an assignment’s left-hand side context, expression
E has type F”.

• We’ll refer to expressions which can syntactically appear on the left-hand-
side of an assignments, and in a “∴” judgment, as “slots”. Those are local
variables (E-Variable) and indexed tables (E-Index ).

Calculus extensions The untyped calculus is extended with a couple of an-
notations which will allow to insert typing hints at appropriate places in pro-
grams. Syntactically, typing annotations will make heavy use of the pound #
ascii character. This character, unused in Lua where type annotations may oc-
cur, will hopefully make typing annotations stand out visually, and make it easy
to preprocess them out of a program’s sources, so that it can be used by other
interpreters.

• statement #return Ē; S̄ weakens the type of statements sequence S̄ to
statement type return Ē.

• function(v #E) S̄ end allows to give type annotations to function pa-
rameters, which are notoriously hard to infer effectively.

• Left-hand sides of assignments take a type field, allowing to handle currently
field type updates, and linearity issues: L #F = Ē.

Σ, (#return Ē; S̄)⇒ Σ,∅S

Σ1, function(v̄) S̄ end⇒ Σ2, f

Σ1, function(v #E) S̄ end⇒ Σ2, f

Σ1, (local L̄ = Ē; S̄)⇒ Σ2, S

Σ1, (local L #F = Ē; S̄)⇒ Σ2, S

Expression sequences Expressions in Lua can evaluate into multiple values.
When concatenating expressions in a sequence, Lua only keeps the first value
of each expression’s evaluation, except for the last one which is expanded (EE-
Sequence). For instance, if we have a : (E1

a;E2
a), b : (E1

b ;E2
b) and c : (E1

c ;E2
c),

then the type of the sequence (a; b; c) is (E1
a;E1

b ;E1
c ;E2

c). A noteworthy property
is that the number of elements in the type might be bigger than the number
of expressions in the sequence. Another is that appending niltypes at the end
of a sequence type doesn’t change it: number, number, nil must be treated
as equal to number, number. This will be ensured by every rule effectively
combining expression type sequences.

(∀n ∈ [1...m]) Γ ` En : (E1
n; Ēn)

Γ ` Ē : (E1
n)∀n∈[1...m]; Ēm

(TR-Ē)

16



Primitive expressions

Γ ` 〈number〉 : number Γ ` 〈string〉 : string

Γ ` true : boolean Γ ` false : boolean
(TR-P)

Statement sequences Statement sequences appear in function bodies. What
we need to know about them, besides the fact that they don’t fail during eval-
uation, is the type of the expression sequences they return. Therefore we have
two families of statement types: ∅S for terms which don’t return, and return Ē
for terms returning a sequence of expressions of type Ē.

Γ ` S : ∅S Γ ` S̄ : S
Γ ` (S; S̄) : S

(TR-∅S)
Γ ` S : return Ē

Γ ` (S; S̄) : return Ē
(TR-return)

Γ ` S̄ : return Ē1 Ē1 <: Ē2

Γ ` (#return Ē2; S̄) : return Ē2
(TR-#return)

Variables Variable types are remembered in the environment Γ. They’re
slots, and have a field type F rather than an expression type E. This allows to
use them on the left-hand-side of assignements, to remember whether they’re
constant, private, or whether their current type can be updated. Field type
judgments use the operator “∴”, to avoid being confused with expression type
judgments using “:”.

Γ(v) = F
Γ ` v ∴ F

(TR-∴)

When a slot L is used as a normal expression rather than an assignment’s
left-hand-side, its field type can be projected into an expression type:

Γ ` L ∴ currently E
Γ ` L : E

Γ ` L ∴ var E
Γ ` L : E

Γ ` L ∴ const E
Γ ` L : E

(TR-L)

There’s no rule to project type field: it’s never legal to use such a field in
an expression’s context. We’ll see that no rule to project just types is needed
either, because there’s no legal way to derive a just type for a left-hand=side
expression.

Table fields In this rule, the variable φ denotes a set of key/field types, plus
the table’s default type.

Γ ` ET : [P : FK ;φ]

Γ ` ET [P ] ∴ FK
(TR-[ ])

In some cases, an expansion of the default field type might be needed, e.g. we

have Γ`E:[|const nil]

Γ`E["x"]∴const nil , because [|const nil] = ["x" : const nil|const nil].

17



Literal tables Literal tables have all their fields typed with just modifiers.
When the literal table will be stored in a variables, the field types will be
weakened into either currently, var, const or field types.

(∀n ∈ [1...m]) Γ ` En : (E1
n; Ēn)

Γ ` {([Pn] = En)∀n∈[1...m]} : [(Pn : just E1
n)∀n∈[1...m]|just nil]

(TR-Table)

Local variable declarations Unlike in most type systems, newly created
variables are given the nil type, rather than the type of their future content.
This is because assignment statements change the type of the variables on which
they operate, as we’ll see below. Besides, typing as non-nil a variable while it
contains nil wouldn’t be sound.

Γ[v̄ ← currently nil] ` S : S
Γ ` (local v̄; S̄) : S

(TR-Local)

Assignments Assignments can change the type of currently variables and
fields in Γ; they can also perform weakenings, essentially changing var field
types into consts. They must be preventing from altering const and field

slots. To type them, we’ll need two auxiliary predicates:

• Γ ` update(L,F) = [σ] checks whether variable/field L is allowed to have
its current type changed into F. If it is, it returns a substitution [σ] over
environments, so that Γ[σ] is the typing environment in effect after the
assignment has been performed.

• FL B FR checks whether the content of slot of type FR can be stored in
a slot of type FL. It is, as we’ll see, a subset of :> the opposite of the
subtyping relationship.

The former will prevent from changing the type of var fields, and from
changing the content of field or const fields: there will be no rule allowing
to derive Γ ` update(L, const E) = [σ]; moreover, Γ ` update(L, var E) = [ ]
will only be derivable from Γ ` L ∴ var E, and will only produce empty
type substitutions [ ]. Once update() has allowed an assignment based on the
field’s former and new types, B checks that the content put in the field is
consistent with the new type, to prevent such unsound assignments as v #var

number="abc".
The following rule allows to change the content of a var slot, as long as its

type isn’t changed:

Γ ` L ∴ var E
Γ ` update(L, var E) = [ ]

(UP-var)

currently slots can change the type of the value they contain, but the slot
type itself can also be changed, into a var, a const or even a field.

18



Γ ` v ∴ currently E
Γ ` update(v,F) = [v ← F]

(UP-cur)

currently fields within tables pose an additional difficulty: if the field’s
type changes, the type of the table containing it also changes. Therefore, the
table itself must also be stored in a currently slot, etc. recursively until we
reach a top-level currently variable. The typing of assignments to those fields
is therefore defined recursively, with (UP-cur) as a base case, and (UP-cur[ ])
below as the inductive rule:

Γ ` L ∴ currently [P : currently E;φ]
Γ ` update(L, currently [P : F;φ]) = [σ]

Γ ` update(L[P ],F) = [σ]
(UP-cur[ ])

As a usage example, let’s consider an object x with a field y currently con-
taining a number, and updated to a string variable. To make the proof tree
terser, we’ll use the following definitions for x’s former type F1, its new type F2,
and the typing environment before assignment Γ respectively:

F1 = currently ["y" : currently number]
F2 = currently ["y" : var string]
Γ = {x 7→ F1}

The soundness of environmnent substitution [x← F2] is computed by (UP-cur)
over x; from there, it’s concluded by (UP-cur[ ]) that x["y"] can also cause
this substitution, because both x and x["y"] are currently slots:

Γ(x) = F1

Γ ` x ∴ F1
(TR-∴)

Γ(x) = F1

Γ ` x ∴ F1
(TR-∴)

Γ ` update(x,F2) = [x← F2]
(UP-cur)

Γ ` update(x["y"],F2) = [x← F2]
(UP-cur[ ])

Because currently fields are only usable when they’re inside other currently
fields all the way up to a variable, there’s no point having types such as v ∴
var [P : currently E;φ]: it wouldn’t allow anything more than v ∴ var [P :
var E;φ].

FL B FR checks whether what’s stored in a field has an appropriate expres-
sion type. It also keeps track of linearity, forcing to transform just E into
currently E, and currently E into field. The relation is expressed between
two fields rather than a field and an expression, to ease its recursive over tables
(last rule below):

currently EB just E fieldB currently E

var EB var E const EB const E

19



(∀n ∈ [0...m]) FL
n B FR

n

currently [(Pn : FL
n)∀n∈[1...m]|FL

0 ] B just [(Pn : FR
n )∀n∈[1...m]|FR

0 ]

FL B FR1 FR1 :> FR2

FL B FR2

(Accept)

Notice that although B is a subset of :>, it isn’t an order relayionship: it
isn’t idempotent (e.g. just E 6 Bjust E). By using the composition with :>,
we can choose to store a just field inside a table into either a currently or
a var one; the former will allow to change the field’s type, but any copy of it
can’t be used (it will have to be further weakened into field); the latter will
lock the type’s content, but allows to make and use further copies.

It is possible, but pointless, to put a currently field in a var one: the outer
var one will prevent from modifying the inner one, thus making it strictly less
usable than a var field (no type modification and no usable copy).

Equipped with these rules, we can now type assignments. But as an interme-
diate step, we’ll spell the simpler rule for the special case where both left-hand
side and right-hand side sequences have only one element:

Γ ` E : E FB just E Γ ` update(L,F) = [σ] Γ[σ] ` S̄ : S
Γ ` (L #F = E; S̄) : S

To paraphrase, it must be possible (1) E must be well typed; (2) this type
must be legal to store in a field of L’s new type F; (3) it must be legal to
substitute L’s former type with the new one F; (4) the rest of the sequence S̄
must be typable with the type substitution [σ] applied in Γ.

The actual rule, although more intimidating because it deals with sequences
of possibly different lengths, is not more sophisticated. The two upper premices
define a type Ē corresponding to E above, with some nil-padding if needed to
match the right-hand-side’s length. The lower one involving B and update()
corresponds to premices (2) and (3), applied to each (left, right) pair; and the
final premice chains all substitutions together to type the following statements:

(∀n ∈ [1...p]) Γ ` En : En (∀n ∈ [p+ 1...m]) En = nil

(∀n ∈ [1...m]) Fn B just En and Γ ` update(Ln,Fn) = [σn]
Γ[σ1...σn] ` S̄ : S

Γ ` ((Ln #Fn)∀n∈[1...m] = (En)∀n∈[1...p]; S̄) : S
(TR-Assign)

TODO: Substitution conflicts within an assignment aren’t
handled, e.g. x #[|currently nil] = { }; x.a, x.b = "A",

"B". The simplest solution is to mandate that substitutions have
disjoint domains within an assignment.

20



Functions Functions break linearity: they assign arguments to parameters,
which can create a second reference to a table. Moreover, due to Lua’s support
for full closures, they capture variables defined outside of them (these variables
are called “upvalues” in Lua). Functions don’t use upvalues’ content immedi-
ately, where the function is defined; instead, they’ll use them whenever they’re
called, and in between, the content of a currently field or variable might have
been changed arbitrarily.

For this reason, when typing the function’s body, we weaken every upvalue
through B, so that it doesn’t rely on any variable having a field type of the
form currently E. We elect to type parameters as var slots, thus allowing
to change their content in the function’s body. It would have been possible to
forbid it by typing them with const3.

Γin B Γout Γin[v̄ ← var Ē?] ` S̄ : return Ē!

Γout ` function(v #E?) S̄ end : E? → Ē!

(TR-Function)

(this rule generalizes B over environments, in the obvious way: Γ1 B Γ2 iff Γ1

has the same domain D as Γ2, and (∀v ∈ D) Γ1(v) B Γ2(v))

Function applications As we did for (TR-Assign), let’s demystify the func-
tion application rule, by first giving the simplified version with one parameter,
one argument and one result: (1) what’s applied must be a function, (2) the
argument must be well typed, and (3) this argument type must be compatible
with the parameter:

Γ ` Ef : (E?)→ (E!) Γ ` E : Ea Ea <: E?

Γ ` Ef (Ea)E : (E!)

This rule is extended to multiple parameters / arguments / results almost
trivially; the only point to take care of is that the argument types sequence might
be padded with nil types, if it’s shorter than the parameter types sequence:

Γ ` Ef : (E?
n)∀n∈[1...m] → (E!

n)∀n∈[1...p]

(∀n ∈ [1...q]) Γ ` Ea
n : Ea

n (∀n ∈ [q + 1...m]) Ea
n = nil

(∀n ∈ [1...m]) Ea
n <: E?

n

Γ ` Ef ((Ea
n)∀n∈[1...q])E : (E!

n)∀n∈[1...p]
(TR-Apply-E)

Finally, function applications in a statement context are typed by discarding
applying (TR-Apply-E ), then forgetting the results and replacing them with the
non-returning-statement type ∅S:

Γ ` Ef (Ē)E : Ē
Γ ` Ef (Ē)S : ∅S

(TR-Apply-S)

3I wonder whether typing parameters as currently inside the function’s body would have
been admissible. It’s not trivial: we must not allow to change a field in a table, so we must
be sure there’s no currently table fields.

21



3 Future work

This section sums up a list tasks remaining to be completed, in order to turn
this calculus into a useful type-checker for actual Lua programs.

• Implement a type checker for the existing calculus.

• Produce a soundness proof (formal demonstration that a typed term can’t
cause a runtime type error).

• Combine with gradual typing.

• Define a pragmatic syntax: allow to omit easily guessed type annotations,
have sensible defaults for missing indications such as field type modifiers,
etc.

• Consider an alternative, Lua compatible syntax for types which fits into
Lua comments. This version would be backward-compatible with plain
Lua compilers, and would certainly present similarities with Luadoc-like
tools.

• Support for (limited) type inference. Unwritten types must not be all
interpreted as dynamic types; otherwise, no type checking at all would
occur in programs which aren’t fully annotated. A reasonable compromize
would probably be that unannotated function parameters are dynamic,
but unnanotated locals are to be guessed through inference.

• Clarify what typed programs look like. Not all Lua programming styles
will be supported: for instance, modules which pollute global variables
will probably not be accepted. The choices about what’s acceptable for
the type system must not only be made: their rationales and their price
must be carefully justified.

• Extend the calculus with missing parts of Lua. Some should be easy to
incorporate in the type system (loop statements, pseudo-fields based on
__index tables); others would have to remain dynamically typed (binary
operators, varargs...). Here gradual typing really saves the day: constructs
which no current type system handles satisfactorily, such as covariant
binary operators, can be left dynamically typed without making the whole
type system fall apart.

22


