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Objectives
Wrapyfi is a middleware communication wrap-
per for transmitting data across nodes, without
altering the operation pipeline of your Python
scripts. Switching between middleware, such
as ROS [1], ROS 2 [2], YARP [3], and ZeroMQ [4]
can be easily achieved by simply replacing one
middleware with another. Wrapyfi also aims to:

•Minimize modifications to existing code.
• Support the Publish/Subscribe and
Request/Reply communication patterns.
• Support multiple deep learning frameworks.
• Serialize images, audio, arrays and tensors for
enabling a vast array of applications.
• Introduce three communication schemes for
flexibly adapating code structure.

Communication Schemes
Mirroring enables synchronized communica-
tion across clients and servers or publishers and
subscribers, ensuring method returns are con-
sistently replicated on all sides.

Forwarding acts as a relay between entities un-
able to communicate directly, facilitating mes-
sage exchange by passing information through
intermediary servers or publishers.

Channeling combines elements of mirroring
and forwarding, enabling the selective transmis-
sion ofmultiple objects across a network, where
objects can bemirrored tomaintain consistency
while also allowing for the targeted forwarding
of specific data streams as required.

Overview
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* Chat client / server
* Head pose estimation
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* Robot simulation
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Overview of the Wrapyfi framework. From top to bottom: 1) Data types are encoded or decoded
depending on the transmission mode; 2) Encoded objects are prepared for transmission using the
Request/Reply or Publish/Subscribe communication pattern; 3) Messages are transmitted through
the selected middleware protocol; 4) Messages sequenced according to the communication scheme.

Evaluation
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Latency between publishing and receiving 200×200 tensors of 32-bit floats, transmitted using each
middleware independently with blocking methods (subscriber awaits publisher). 2000 trials are con-
ducted with a publishing rate of 100 Hz for eachmiddleware and plugin combination. Latency indicates
the time difference in milliseconds between transmission and reception, including de/serialization.

Use Cases

Facial expression imitation on the Pepper and
iCub robots by utilizing the forwarding scheme.

Head and eye movement imitation using either
an IMU-fitted eye tracker or a head pose estima-
tion model by utilizing the channeling scheme.
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