
Wrapyfi: A Python Wrapper for Integrating Robots, Sensors,
and Applications across Multiple Middleware

Fares Abawi, Philipp Allgeuer, Di Fu and Stefan Wermter
Knowledge Technology, Department of Informatics, University of Hamburg www.knowledge-technology.info

Objectives
Wrapyfi is a middleware communication wrap-
per for transmitting data across nodes, without
altering the operation pipeline of your Python
scripts. Switching between middleware, such
as ROS [1], ROS 2 [2], YARP [3], and ZeroMQ [4]
can be easily achieved by simply replacing one
middleware with another. Wrapyfi also aims to:

•Minimize modifications to existing code.
• Support the Publish/Subscribe and
Request/Reply communication patterns.
• Support multiple deep learning frameworks.
• Serialize images, audio, arrays and tensors for
enabling a vast array of applications.
• Introduce three communication schemes for
flexibly adapating code structure.

Communication Schemes
Mirroring enables synchronized communica-
tion across clients and servers or publishers and
subscribers, ensuring method returns are con-
sistently replicated on all sides.

Forwarding acts as a relay between entities un-
able to communicate directly, facilitating mes-
sage exchange by passing information through
intermediary servers or publishers.

Channeling combines elements of mirroring
and forwarding, enabling the selective transmis-
sion ofmultiple objects across a network, where
objects can bemirrored tomaintain consistency
while also allowing for the targeted forwarding
of specific data streams as required.

Overview

FORWARDINGMIRRORING CHANNELING

IMAGE FRAMES AUDIO CHUNKS

SOUNDDEVICE

NATIVE OBJECTS, ARRAYS, AND TENSORS

REQUEST / REPLY PUBLISH / SUBSCRIBE

 ROBOTS SENSORS APPLICATIONS
* Chat client / server
* Head pose estimation
* Facial expression recognition
* Robot simulation
* ...

Pepper
iCub

Webcam

Eye tracker

Microphone

Nao

Overview of the Wrapyfi framework. From top to bottom: 1) Data types are encoded or decoded
depending on the transmission mode; 2) Encoded objects are prepared for transmission using the
Request/Reply or Publish/Subscribe communication pattern; 3) Messages are transmitted through
the selected middleware protocol; 4) Messages sequenced according to the communication scheme.

Evaluation

PIL Image

Pandas
TensorFlow

JAX MXNet
MXNet GPU

PyTorch
PyTorch GPU

PaddlePaddle

PaddlePaddle GPU

NumPy

1

10

100

1000
Middleware

ROS
ZeroMQ
YARP
ROS 2

La
te

nc
y

(m
s)

Latency between publishing and receiving 200×200 tensors of 32-bit floats, transmitted using each
middleware independently with blocking methods (subscriber awaits publisher). 2000 trials are con-
ducted with a publishing rate of 100 Hz for eachmiddleware and plugin combination. Latency indicates
the time difference in milliseconds between transmission and reception, including de/serialization.

Use Cases

Facial expression imitation on the Pepper and
iCub robots by utilizing the forwarding scheme.

Head and eye movement imitation using either
an IMU-fitted eye tracker or a head pose estima-
tion model by utilizing the channeling scheme.

References
[1] Quigley et al. “ROS: An open-source Robot Operating System”.

In: IEEE International Conference on Robotics and Automation
Workshop on Open Source Software (ICRAOSS). 2009.

[2] Macenski et al. “Robot Operating System 2: Design, architecture,
and uses in thewild”. In: Science Robotics 7.66 (2022), eabm6074.

[3] Metta et al. “YARP: Yet Another Robot Platform”. In: International
Journal of Advanced Robotic Systems 3.1 (2006), p. 8.

[4] Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly
Media, Inc., 2013.

Acknowledgements & Code
The authors gratefully acknowl-
edge partial support from the Ger-
man Research Foundation DFG un-
der project CML (TRR 169).

http://www.knowledge-technology.info

