Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

gnuper

gnuper is an open source python package for the preprocessing of mobile phone metadata whilst keeping privacy in mind. It is being developed by the spin-off project knuper of the Freie Universität Berlin. The package creates features on antenna level off of mobile phone metadata like simple incoming to outgoing ratios of calls or sms as well as entropy and isolation indicators of antennas. Additionally one can include antenna averages of the bandicoot individual indicators developed by the MIT. Further information on this toolkit can be found here.

Prerequisites

  • Python3
  • Apache Spark

Structural Overview

The following tree diagram shows the entire process from raw mobile phone meta data to final features on antenna level. In order to keep the process fast and the intermediate tables as small as possible, several mid-aggregations are taking place. We call these intermediate steps levels. Each level represents another aggregation or transformation step. The color coding signifies the privacy risk. Orange is on user level, blue on antenna (single tower GPS coordinate) level.

Data Levels
  • Level 0

This level simply unifies and preprocesses (kick out unnecessary information) the raw format. Also obvious machines are being filtered as well as the files restructured into chunks of users.

  • Level 1

For each user a home antenna is being estimated and then interactions aggregated on user level per day and hour. Also bandicoot variables might be calculated if the flag is set.

  • Level 2

Antenna level. Users are being allocated to their home antenna and then aggregated in three different categories. First, for each week between weekend or holidays and working days. Second, for every hour of the day irrespective of the date. And third, for all interactions between each pair of antennas.

  • Level 3

Features are being created for several categories: alltime (ratios & scaled) - over the whole time period variance (variances over weeks) - to catch regional variation daily (outgoing vs. incoming, week parts) - differences between working days and weekends/holidays hourly (workday, peaks) - differences between the usual working day and several peaks interactions (distance, isolation, entropy) - network and geolocation related active users (per home antenna) - number of users allocated to an antenna as their home antenna For the exact formulas, have a look at the specific queries.

  • Level 4

Unite the feature categories with the bandicoot features (aggregated on antenna level) to one final dataset, ready for analysis.

Sample Data

In order to create a small synthetic CDR sample data set (<20MB) run the ipython script cdr_mockup.ipynb e.g. with Jupyter.

Spark

The package has been built using SPARK version 2.2.1.

Instructions on how to install Spark in Ubuntu (tested with 18.04):

  1. install java environment sudo apt-get install default-jre
  2. install scala sudo apt-get install scala
  3. download spark wget http://archive.apache.org/dist/spark/spark-2.2.1/spark-2.2.1-bin-hadoop2.7.tgz
  4. unzip sudo tar -zxvf spark-2.2.1-bin-hadoop2.7.tgz
  5. and remove rm spark-2.2.1-bin-hadoop2.7.tgz

About

Preprocessing mobile phone meta data to features aggregated on antenna level

Resources

License

Releases

No releases published

Packages

No packages published