Welcome

Jianjun Xu

Modeling and Measurement Technology Program (MMTP) Measurement Research Laboratories Agilent Technologies, Inc.

David Root

Measurement-Based FET Modeling using Artificial Neural Networks (ANNs)

Jianjun Xu and David E. Root

Modeling and Measurement Technology Program (MMTP) Measurement Research Laboratories Agilent Technologies, Inc.

Presentation Outline

- Introduction
- NeuroFET Modeling Flow Details
- Examples and Model Validation
- Summary

"All models are wrong, but some are useful."

- statistician George Box

"All models are approximations. Some models are useful."

- attributed to Mike Golio and others

Purpose of Webinar

Introduce Agilent's first measurement-based modeling solution based on artificial neural networks (ANN) – *NeuroFET*

Three interoperable components:

Agilent developed each component; designed them to work together
Deployed for Agilent proprietary III-V MMIC technology at HFTC
Commercialized in collaboration with Agilent EEsof EDA Division

NeuroFET components

(1) Automated, adaptive characterization system for FETs

Benefits:

Data Acquisition:

Supports common gate and common source layouts Minimizes impact of device degradation during characterization

NeuroFET components

(2) Unique and powerful Agilent ANN Training Technology

Benefits:

Advanced ANN training creates accurate & general model functions
Same flow can fit very different looking device characteristics

NeuroFET components

(3) Built-in (compiled) nonlinear transistor model in ADS

Benefits:

- •Fast & accurate nonlinear simulation with robust convergence
- •Model usable in all bias conditions (even $V_{DS} \le 0$ for switch / mixers) •Model works for HEMT, MESFET and other types of FETs

Pin (dBm)

Conventional Transistor Modeling Flow

Alternative: *Measurement-based models*

"The Device knows best!"

Directly construct nonlinear model functions from data (DC + S-parameters)

- Table-based models (e.g. HP/Agilent FET (Root) Model)
- Artificial Neural Network (ANN) models (e.g. NeuroFET)

Models can be both general and accurate Conventional I-V, Q-V model development and parameter extraction replaced by ANN training

NeuroFET: Measurement-Based FET Modeling using ANNs

NeuroFET: Measurement-Based FET Modeling using ANNs

Advantages:

- Model is general and accurate
- Easy to extract (train)
- Technology independent; easy to maintain
- The model computation is fast
- Infinitely differentiable and smooth

NeuroFET: Measurement-Based FET Modeling using ANNs

IC-CAP: NeuroFET Modeling Flow

Agilent EEsof EDA

Data Acquisition

Parasitic Extraction/De-embedding

Model Generation (ANN Training)

Verification

Agilent Technologies

NeuroFET: Data Acquisition

Why is a good Data Acquisition Routine important?

For measurement-based model,

- (1) it is important to get data everywhere.
- (2) the acquisition routine should be intelligent and flexible to preserve the device for integrity.

NeuroFET: Data Acquisition

It works for both common-source FET and common-gate FET

NeuroFET: Data Acquisition

NeuroFET Model

NeuroFET: Parasitic Extraction & De-embedding

Before and After De-embedding

NeuroFET: Intrinsic Model

Intrinsic FET

NeuroFET (Intrinsic) is a non-quasi-static model that accounts for

- (1) Static I-V characteristics
- (2) Terminal charges
- (3) Frequency dispersion

Frequency dispersion of small-signal characteristics

NeuroFET: Intrinsic Model Formulation

NeuroFET: Intrinsic Model Formulation

NeuroFET: Intrinsic Model Formulation

NeuroFET: Intrinsic Model - DC

$$I_g = I_g^{dc}(V_{gs}, V_{ds})$$

 $I_d = I_d^{dc}(V_{gs}, V_{ds})$

NeuroFET: Intrinsic Model - RF

NeuroFET: Intrinsic Model - RF (small signal)

NeuroFET: Intrinsic Model - RF (small signal)

Constitutive Relations are Modeled by ANNs

- Universal Approx. Thm: Can fit any nonlinear function of many variables
- The model computation is very fast.
- Infinitely differentiable.
- Can be trained on non-gridded data in any number of dimensions.

Model Training (I_g^{dc} I_d^{dc} **)** - Standard Neural Network Training

$$I_d^{dc} = f_{ANN}^{I_d^{dc}}(V_{gs}, V_{ds}, w)$$

Model Training (Q_g **)** - Adjoint Neural Network Training

Model Training (Q_g **)** - Adjoint Neural Network Training

Jianjun Xu, M.C.E. Yagoub, Runtao Ding and Q.J. Zhang,

"Exact adjoint sensitivity analysis for neural based microwave modeling and design," *IEEE Transactions on Microwave Theory and Techniques*, vol. 51, pp.226-237, 2003.

Model Training (Q_g **)** - Adjoint Neural Network Training

NeuroFET: Intrinsic Model

Advanced Model Extrapolation Routine

- for robust convergence

• Measured Data (training data)

NeuroFET Model is compiled into ADS

The model, together with extrapolation routine, is compiled into ADS.

- Same use model as any other transistor model.
- Model has simple scaling rules with gate width and number of fingers.

Example 1

A 0.25um GaAs pHEMT device (Width=150um) was extracted:

- DC IV
- $Q_{g,} Q_{d,}$ and I_{d}^{ac}
- S-parameters versus bias and frequency
- One-tone Harmonic Distortion
- Two-tone Intermodulation

NeuroFET: Training I_d^{dc}

🥶 NeuroFET Modeling:1								
File View Plot Run Help	1							
Navigation View Navigation View Configuration Initialization InstrumentSettings Pre MeasurementSettings Pre Measure/Verify PortR/Open/Short DC Sp Ideality and Parasitics Ideality Factor Parasitics Data Acquisition Model Generation	Id: Drain Current Source Select Task Define ANN Train ANN Test ANN Sweep ANN	Train Neural Model Training Settings Training Type Standard NN Max Iterations 10000 Stop Tolerance 0.0 # of Weight Segments Used						
Ig Id Qg Od		1 Veighting (# of Pts. = 1)	106)					
NeuroFET: Training Progress								
Training Name	Training Error History	Current Error / Target Error	Training Progress	Training Iteration	Time			
1 NeuroFET_Id_Train		0.001608 / 0		1760 / 10000	00:05:22			
SampleN in Xaxis Plot Close Plots								

Model Validations - DC

Vds (V)

NeuroFET: Training Q_g

SeuroFET Modeling:	1				
File View Plot Run I	Help				
Navigation View Project Configuration Initialization InstrumentSettings Pre MeasurementSettin Pre Measure/Verify PortR/Open/Sh DC Sp Ideality and Parasit Ideality and Parasitics Data Acquisition Parasitics Data Acquisition Model Generation Id Qg Qu Idbf	egs Og: Gate Charge Select Task Define ANN Train ANN Test ANN Sweep ANN	Train Neural Model Training Settings Training Type Adjoint NN Max Iterations 3000 Stop Tolerance 0.0 # of Weight Segments Used 1 Output Weighting (# of Pts. = 11)	06)	cdDaldWae	
euroFET: Training Prog	ress				
Training Name	Training Error History	Current Error / Target Error	Training Progress	Training Iteration	Time
Neurone I_Qg_Irain		0.0079270		52073000	00:00:39
		Qg dQg/dVgs (Imag(Y11)/w)	0 0 0.1 0.8 Plot Show Range S	1 3 Set Range Close Plots	

Model Validations -Charge Q_g

Model Validations -Charge Q_d

Model Validations

Frequency dispersion of small-signal characteristics

Example 2

A 0.25um GaN HEMT device (Width=400um) was extracted:

- DC IV
- S-parameters versus bias and frequency
- One-tone Harmonic Distortion
- Two-tone Intermodulation

Model Validations - DC

Vds (V)

Frequency : 0.5 GHz to 50 GHz

Frequency : 0.5 GHz to 50 GHz

Frequency : 0.5 GHz to 50 GHz

Model Validations - One-tone Harmonic Distortion (Freq=2GHz)

Model Validations

- Two-tone Intermodulation (Freq1=2GHz, Freq2=2.005GHz)

Summary: NeuroFET Easy to use, fast to simulate, accurate

- Flexible, automated, data acquisition system takes data where needed
 Minimizes impact of device degradation on resulting model
- Advanced Agilent ANN-training creates accurate & general model functions
- Compiled ADS model works for HEMT, MESFET and other types of FETs
 - Robust DC and RF convergence, compared to table-based models; fast to simulate
 - Improved distortion simulation compared to table-based models
 - Better power-added efficiency (PAE) and S-parameters versus bias over the entire range of device operation, compared to many compact models for wide range of technologies
 - Model can be used in all bias conditions (including $V_{DS} \le 0$ for mixers and switches)
- Instrument control and powerful ANN training available in Agilent's ICCAP Modeling Software
- FET simulation model available in Agilent's Advanced Design System (ADS), the industry standard RF simulator

References

- J. Xu, D. Gunyan, M. Iwamoto, A. Cognata, and D. E. Root, "Measurement-Based Non-Quasi-Static Large-Signal FET Model Using Artificial Neural Networks," 2006 IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, USA, June 2006.
- J. Xu, D. Gunyan, M. Iwamoto, J. Horn, A. Cognata, and D. E. Root, "Drain-Source Symmetric Artificial Neural Network-Based FET Model with Robust Extrapolation Beyond Training Data," 2007 IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, HI, USA, June 2007.
- J. Xu, J. Horn, M. Iwamoto, and D. E. Root, "Large-signal FET model with multiple time scale dynamics from nonlinear vector network analyzer data," IEEE MTT-S International Microwave Symposium Digest, May, 2010.
- J. Xu, M.C.E. Yagoub, R. Ding, and Q.J. Zhang, "Exact adjoint sensitivity analysis for neural based microwave modeling and design," IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp.226-237, 2003.
- D. E. Root, J. Xu, J. Horn, and M. Iwamoto, "The Large-Signal Model: theoretical foundations, practical considerations, and recent trends," in **Nonlinear Transistor Model Parameter Extraction Techniques**, Cambridge University Press, 2011, eds. Rudolph, Fager, & Root
- D.J.McGinty, D.E.Root, and J.Perdomo, "A Production FET Modeling and Library Generation System," in IEEE GaAs MANTECH Conference Technical Digest, San Francisco, CA, July, 1997 pp. 145-148.
- D.E.Root, D.McGinty, B.Hughes, "Statistical Circuit Simulation with Measurement-Based Active Device models: Implications for Process Control and IC Manufacturability," 1995 GaAs IC Symposium Technical Digest, San Diego, pp. 124-127.
- Root, D.E., Fan, S., Meyer, J. "Technology Independent Non Quasi-Static FET Models by Direct Construction from Automatically Characterized Device Data" 21st European Microwave Conf. Proceedings, Stuttgart, Germany, Sept 1991, pp 927-932.

Agilent measurement-based modeling and design solutions Electronic design Agilent Nonlinear Vector automation software Network Analyzer MO 11 + RQ 5 5 C 2 4 6 6 0 9 5 Simulation & Measurements Design Customer Modeling Applications **Examples:** •HP/Agilent (Root) models •AgilentHBT model and extraction module •X-parameters / NVNA •NeuroFET

Where to find Information about NeuroFET

• IC-CAP NeuroFET Webpage:

http://www.agilent.com/find/eesof-neurofet

IC-CAP Device Modeling Software:

http://www.agilent.com/find/eesof-iccap

Questions and Answers

You are invited

Innovations in EDA Webcast Series **RF Power Amplifier Design Series** Part 2: End-to-End Design and Simulation of Handset Modules March 1 · 10 AM (Pacific Time)

> Presented by: Agilent Technologies

> > licr wave.

Free 1-hour Webcast

You can find more webcasts www.agilent.com/find/eesof-innovations-in-eda www.agilent.com/find/eesof-webcasts-recorded

Dr. Hongxiao Shao Skyworks

Dr. Peter Zampardi Skyworks

