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Abstract—We present a novel Physics-Inspired Neural 
Network (Pi-NN) approach for compact modeling. 
Development of high-quality compact models for devices is 
key to connect device science with applications. One recent 
approach is to treat compact modeling as a regression 
problem in machine learning. The most common learning 
algorithm to develop compact models is the Multilayer 
Perceptron (MLP) neural network. However, device compact 
models derived using MLP neural networks often exhibit 
unphysical behavior, which is eliminated in the Pi-NN 
approach proposed in this work since the Pi-NN incorporates 
fundamental device physics. As a result, smooth, accurate and 
computationally efficient device models can be learnt from 
discrete data points by using Pi-NN. This work sheds new 
light on the future of the neural network compact modeling. 

I. INTRODUCTION 
Device compact modeling bridges device science to 

applications, therefore it plays a very important role in device 
research. There are two extremes for device modeling, one is 
purely physical and the other is purely empirical. Looking at 
these two extremes, a purely physical modeling method, such 
as NEMO [1], is computational expensive for use in circuit 
simulations, and a purely empirical modeling method, such as 
table look-up model, has limited generalization (extrapolation) 
ability. Therefore, to find a middle ground between purely 
physical and purely empirical models, the Electron Design 
Automation industry, represented by the Compact Model 
Coalition, chooses to promote physics-based compact models. 
These use fundamental device physics as the building blocks, 
then add empirical fitting to modify and merge different 
analytical physical expressions into smooth functions. 

However, developing high-quality physics-based compact 
models is very time-consuming, and therefore often not 
available for emerging devices. As an alternative, regression 
with machine learning can be used to model relationships 
between different variables with certain generalization 
abilities. Among different regression algorithms, the neural 
network modeling method has raised a lot of interests [2-4] 
given the fact that it is theoretically capable of arbitrarily 
accurate approximation to any function and its derivatives 
[5].  

Compared to another widely used data-driven model: table 
look-up model, the neural network model performs better on 
the following three aspects: 1) Scalability: in order to achieve 
certain level of accuracy, the table look-up model needs a 
large amount of data, and the space complexity increases 
exponentially with increasing dimensions. In contrast, the 
neural network model is lightweight and scalable; 2) 
Generalization: the table look-up model has poor 

 
 
Figure 1: The schematic structure of the example emerging device 
modeled in this paper: an n-type Thin-TFET [7, 8]. Its I-V curves are 
obtained by sweeping the top gate (VTG) with the back gate (VBG) 
grounded. 

 
 

Figure 2: A training procedure for Artificial Neural Network (ANN) device compact modeling. 
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generalization performance. The polynomial fitting used in 
the table look-up model often has high out-of-sample errors. 
In contrast, by using correct learning algorithms, neural 
network model can be well generalized, which make it more 
robust against noises; 3) Smoothness: an ideal compact model 
needs to be infinitely differentiable. The table look-up model 
is not infinitely differentiable due to the nature of polynomial 
fitting. While using higher order polynomial fitting will 
improve the smoothness, it is at the expense of computation 
efficiency. Therefore, the table look-up model is not possible 
to be both smooth and computationally efficient. In contrast, 
the neural network model is guaranteed to be infinitely 
differentiable.  
 

     Previous works [2-4] used Multilayer Perceptron (MLP) 
neural networks to develop compact models, which are prone 
to having unphysical behavior (see Fig. 4(e, f)). To eliminate 
the unphysical behavior, we have developed a novel neural 
network structure: Physics-Inspired Neural Network (Pi-NN), 
with fundamental device physics embedded. As a result, the 
Pi-NN can be trained to generate an accurate, smooth, and 
computational efficient device compact model.  

II. THIN-TFET AND TRAINING PROCEDURE 
 

To illustrate the principles of Pi-NN, we develop compact 
models for the DC I-V curves of a transistor. Physics-based 
device modeling is typically challenging because the I-V 
curves are highly nonlinear and requires different analytical 
physical expressions in different bias windows. Therefore, it is 
usually difficult to handcraft an infinitely differentiable 
function from these physical expressions. Since high quality 
physics-based compact models are yet unavailable for 
emerging devices, such as Tunnel Field Effect Transistors 
(TFETs) [6], the neural network modeling approach has an 
added attraction. Here we used a novel device proposed in our 
group, a Thin-TFET [7] (Two-dimensional Heterojunction 
Interlayer Tunneling Field Effect Transistor), as an example 
device for testing the neural network modeling techniques. 
The schematic device structure of an n-type Thin-TFET is 
shown in Fig. 1. The training data are simulated [7] for the top 
gate voltage (VTG) from 0 to 0.4 V and the drain-source 
voltage (VDS) from -0.1 to 0.4 V with a uniform step of 0.01 
V, while the test data are for VTG from 0.005 to 0.405 V and 
VDS from -0.095 to 0.405 V with a uniform step of 0.01 V. The 
detailed training procedure is shown in Fig. 2. In the pre-
processing step in Fig. 2, a scaler function in the form of 
𝑒𝑥𝑝(−𝑎 𝑉() + 	𝑏 ) + 1  is multiplied to the output, which 
helps improve deep sub-threshold modeling. The value of a 
and b are chosen by following the general rules described 
below: Since this scalar function is used to improve deep sub-
threshold modeling, we should choose a and b such as:  

𝑒𝑥𝑝 −𝑎 𝑉() + 	𝑏 + 1 ≅ 1			𝑤ℎ𝑒𝑛	𝑉() > 𝑉(4
≫ 1			𝑤ℎ𝑒𝑛	𝑉() < 𝑉(4

 

where VTH is the threshold voltage. Therefore |b| should be 
smaller than the threshold voltage and a is approximately the 
slope of ID–VTG curves in the deep sub-threshold region. The 
final values of a and b are fine-tuned by trial and error. For 
example, in this work, the threshold voltage of Thin-TFET is 
around 100 mV, so b is set to be -50 mV. As for a, the 
subthreshold swing for VTG < 50 mV is around 17 mV/dec, 
therefore a is set to be 1/17 ´ 2.3 = 0.135 mV-1 (where 2.3 
comes from ln(10) ≈ 2.3). 

III. MLP NEURAL NETWORK MODELING AND 
UNPHYSICAL BEHAVIOR 

In this section, we use the MLP neural network to generate 
a compact model for the DC I-V curves of the Thin-TFET. 
The MLP neural network architecture and its well-established 
learning algorithms are shown in Fig. 3 [9].  After some initial 
training, we choose to use MLP neural networks with two 

 
 
 
Figure 3: The Multiplayer Perception (MLP) neural network model.  
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hidden layers and defined its hyper-parameter as (i, j), where i 
is the number of neurons in the first hidden layer and j is the 
number of neurons in the second hidden layer. Each neuron 
uses the hyperbolic tangent function tanh(x)=(ex-e-x)/(ex+e-x) 
as the activation function. By choosing the hyper-parameter (i, 
j) to be (5, 5), (7, 7) and (9, 9), these three MLP neural 
networks were trained for 5 million epochs. Using the loss 

function defined in Fig. 3, the root-mean-squared (R.M.S) 
deviations for training data and test data are plotted in Fig. 
4(a). The test errors are used to evaluate the generalization 
ability of the model, namely how the model fit the unseen 
data. As shown in Fig. 4(a), the test errors stay close to the 
training errors, which indicated a good generalization. We 
choose to plot the I-V curves modeled by the MLP neural 
network with 7 tanh neurons in the first and second hidden 
layers as shown in Fig. 4(b), which gives a neural network 
with 15 neurons and 85 parameters in total. Figure 4(c-f) show 
the I-V curves generated by the MLP neural network compact 
model along with the training data and the test data. Good 
fitting in the linear scale is achieved for both the ID-VDS and 
the ID-VTG curves. However, if we zoom in the region near 
VDS = 0, ID is not zero when VDS is zero, indicating the ID-VDS 
relationship is unphysical around VDS = 0 (see Fig. 4(e) and 
the inset). Moreover, the ID-VTG relationship is also unphysical 
in the sub-threshold region (shown in Fig. 4(f)). The 
fundamental reason of these unphysical behaviors is that the 
MLP neural network has no knowledge of the device physics; 
therefore, the fitting is no longer physical when ID is very 
small. In order to eliminate these unphysical behaviors, we 
have to design a neural network with a priori knowledge of 
the fundamental device physics.  

IV. A PHYSICS-INPIRED NEURAL NETWORK DESIGN 
    First, we note that the inputs VDS and VTG are related to 
two different physical effects: VDS drives the current through 
the device while VTG controls the channel potential profile to 
change the magnitude of the current. Therefore, VDS and VTG 
should be fed to two different neural networks. According to 
the fundamental device physics, we know ID-VDS curves have 
a linear region at small VDS and a saturation region at large 
VDS. This behavior is similar to a tanh function. This 
indicates VDS

 should be fed into a neural network with tanh 

activation functions (tanh subnet). To ensure ID equals zero 
when VDS equals zero, all the tanh neurons in the tanh subnet 
must have no bias terms. On the other hand, the ID-VTG 
curves have an exponential turn-on in the sub-threshold 
region and then become a polynomial in the ON region. This 
is best simulated as a sigmoid function sig(x)=1/(1+e-x). 
Therefore, VTG is fed into a neural network with sigmoid 
activation functions (sig subnet). It should be noted that we 
assumed gate leakage current is negligible, so VTG would not 
change the sign of ID. The final drain current is the entrywise 
product of the outputs of the tanh subnet and the sig subnet. 
This entrywise product reflects the control of VTG on the drain 
current driven by VDS. In addition, VDS can affect the channel 
potential profile controlled by VTG due to various non-ideal 
effects such as the short channel effects. A simple but 
effective remedy for this is to add weighted connections from 
each layer in the tanh subnet to its corresponding layer in the 
sig subnet. By embedding the above device physics in a 
neural network structure, we arrive at the Physics-Inspired 
Neural Network (Pi-NN). The Pi-NN architecture and its 
pseudo-codes for the feed-forward and error back-
propagation algorithms are shown in Fig. 5. This novel neural 
network is reminiscent of the peephole Long-Short Term 

 
  
Figure 4: The compact model of the n-type Thin-TFET derived based 
on the MLP neural network widely used in previous works [2-4], (a) the 
training errors and test errors for a variety of hyper-parameters; (b) the 
MLP neural network with 7 tanh neurons in the first and second hidden 
layers. From (c) to (f), the I-V curves generated by the MLP neural 
network shown in (b) are plotted along with the training data and the test 
data: (c) ID versus VDS at different VTG; (d) ID vs. VTG at different VDS in 
linear scale; (e) ID vs. VDS at different VTG around VDS = 0, the embedded 
plot shows unphysical ID-VDS relationships around VDS equals 0; (f) ID 
vs. VTG at different VDS in semi-log scale, unphysical oscillation of ID 
around zero appears in the sub-threshold region and when VDS = 0. 
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Memory (LSTM) [10], with the notable difference that the Pi-

NN does not propagate through time. After all, the Pi-NN 
architecture can model the I-V curves of any transistor if two 
conditions are satisfied: 1) ID equals zeros if and only if VDS 
equals zero; 2) VG doesn’t change the sign of ID (i.e. the gate 
leakage current is negligible).   

 

V. PHYSICS-INSPIRED NEURAL NETWORK MODELING  
After initial training, we choose to use Pi-NNs with one 
hidden layer and define the hyper-parameter as (m, n), where 
m is the number of the tanh neurons in the hidden layer and n 
is the number of the sigmoid neurons in the same hidden 
layer. The test errors stay close to the training errors as shown 
in Fig. 6(a), which indicates good generalization. The model 
complexity is gradually increased from the hyper-parameter 
(2, 2) to (3, 4). From Fig. 6(a), the model with the hyper-
parameter (2, 3) is the simplest model with converging 
training and test error. More complex models can achieve 
smaller training and test error but the improvement is not 
significant enough to justify the increased complexity. 
Balancing between model complexity and accuracy, we 
choose the model with the hyper-parameter (2, 3) as shown in 
Fig. 6(b), which give a small Pi-NN model with only 7 
neurons and 20 parameters in total. Excellent modeling is 
demonstrated in both the ON region (shown in Fig. 6(c, d)) 
and the sub-threshold region (shown in Fig. 6(f)). The ID-VDS 
relationship around VDS equals zero is shown in Fig. 6(e). All 
the unphysical behaviors that appeared in the MLP neural 
network model have been eliminated. Moreover, thanks to the 
embedded device physics, the Pi-NN requires much less 
parameters than the MLP neural network, which results in a 
smaller, more efficient compact model. 

VI. CONCLUSIONS 
Motivated by the need of high-quality compact models for 

emerging devices, we have proposed a novel neural network: 
Pi-NN, for compact modeling. With fundamental device 
physics incorporated, the Pi-NN method can produce accurate, 
smooth and computational efficient transistor models with 
good generalization ability. Thin-TFET is presented as an 
example to illustrate the capabilities of Pi-NN: a relatively 
small compact model is achieved with excellent fitting in both 
the ON and the sub-threshold region of the Thin-TFET. The 
charge-voltage Q-V relationships in a device are highly 
desirable for circuit design. It is possible to construct Q-V 
relations from the device C-V data (not shown here).  
However, since the sign of the terminal charge density is 
dependent on both VTG and VDS, the Pi-NN architecture 
cannot be directly applied for modeling Q-V relations. The 
walk-around is to connect VTG and VDS to both the tanh subnet 
and the sig subnet in the Pi-NN, and add the bias terms in the 
tanh neurons. This modified Pi-NN is compatible with the 
adjoint neural network method for constructing Q-V relation 
from C-V measurements [2, 11]. However, this modified Pi-
NN architecture has no apparent advantage over the MLP 
architecture for Q-V modeling. Future work will focus on how 
to better integrate Q-V modeling into the Pi-NN framework. 

 
 

Figure 5: The Physics-Inspired Neural Network (Pi-NN) model. (Source 
code available at https://github.com/Oscarlight/Pi-NN) 
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Finally, the Pi-NN approach is readily implementable in 
commercial measurement and modeling systems. 
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and 3 sigmoid neurons in the hidden layer. From (c) to (f), the I-V curves 
generated by the Pi-NN model shown in (b) are plotted along with the 
training data and the test data: (c) ID versus VDS at different VTG; (d) ID vs. 
VTG at different VDS in linear scale; (e) ID vs. VDS at different VTG around 
VDS = 0, the embedded plot shows well-behaved ID-VDS relationship 
around VDS = 0; (f) ID vs. VTG at different VDS in semi-log scale, good 
fitting is achieved in the sub-threshold region. All the unphysical behaviors 
of the MLP neural network are eliminated, and the size of the neural 
network is largely reduced. 
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