$See \ discussions, stats, and author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/311524013$

Physics-Inspired Neural Networks (Pi-NN) for Effcient Device Compact Modeling

Article · December 2016

DOI: 10.1109/JXCDC.2016.2636161

CITATIONS 3		reads 37	
4 authors, including:			
	Mingda Li Tianjin University 364 PUBLICATIONS 4,050 CITATIONS	۲	Claire Cardie Cornell University 198 PUBLICATIONS 10,736 CITATIONS
ę	SEE PROFILE Huili grace Xing Cornell University 340 PUBLICATIONS SEE PROFILE		SEEPROFILE

Some of the authors of this publication are also working on these related projects:

Project fwsh@hactcm.edu.cn View project

Physics-Inspired Neural Networks (Pi-NN) for Effcient Device Compact Modeling

Mingda Li¹, Ozan İrsoy², Claire Cardie² and Huili Grace Xing¹

1. School of Electrical and Computer Engineering, Cornell University, NY 14850, USA

2. Department of Computer Science, Cornell University, NY 14860, USA

Emails: ml888@cornell.edu, grace.xing@cornell.edu

Abstract—We present a novel Physics-Inspired Neural Network (Pi-NN) approach for compact modeling. Development of high-quality compact models for devices is key to connect device science with applications. One recent approach is to treat compact modeling as a regression problem in machine learning. The most common learning algorithm to develop compact models is the Multilayer Perceptron (MLP) neural network. However, device compact models derived using MLP neural networks often exhibit unphysical behavior, which is eliminated in the Pi-NN approach proposed in this work since the Pi-NN incorporates fundamental device physics. As a result, smooth, accurate and computationally efficient device models can be learnt from discrete data points by using Pi-NN. This work sheds new light on the future of the neural network compact modeling.

I. INTRODUCTION

Device compact modeling bridges device science to applications, therefore it plays a very important role in device research. There are two extremes for device modeling, one is purely physical and the other is purely empirical. Looking at these two extremes, a purely physical modeling method, such as NEMO [1], is computational expensive for use in circuit simulations, and a purely empirical modeling method, such as table look-up model, has limited generalization (extrapolation) ability. Therefore, to find a middle ground between purely physical and purely empirical models, the Electron Design Automation industry, represented by the Compact Model Coalition, chooses to promote physics-based compact models. These use fundamental device physics as the building blocks, then add empirical fitting to modify and merge different analytical physical expressions into smooth functions. However, developing high-quality physics-based compact models is very time-consuming, and therefore often not available for emerging devices. As an alternative, regression with machine learning can be used to model relationships between different variables with certain generalization abilities. Among different regression algorithms, the neural network modeling method has raised a lot of interests [2-4] given the fact that it is theoretically capable of arbitrarily accurate approximation to any function and its derivatives [5].

Compared to another widely used data-driven model: table look-up model, the neural network model performs better on the following three aspects: 1) *Scalability:* in order to achieve certain level of accuracy, the table look-up model needs a large amount of data, and the space complexity increases exponentially with increasing dimensions. In contrast, the neural network model is lightweight and scalable; 2) *Generalization:* the table look-up model has poor

Figure 1: The schematic structure of the example emerging device modeled in this paper: an n-type Thin-TFET [7, 8]. Its I-V curves are obtained by sweeping the top gate (V_{TG}) with the back gate (V_{BG}) grounded.

Figure 2: A training procedure for Artificial Neural Network (ANN) device compact modeling.

1

^{2329-9231 (}c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

generalization performance. The polynomial fitting used in the table look-up model often has high out-of-sample errors. In contrast, by using correct learning algorithms, neural network model can be well generalized, which make it more robust against noises; 3) *Smoothness:* an ideal compact model needs to be infinitely differentiable. The table look-up model is not infinitely differentiable due to the nature of polynomial fitting. While using higher order polynomial fitting will improve the smoothness, it is at the expense of computation efficiency. Therefore, the table look-up model is not possible to be both smooth and computationally efficient. In contrast, the neural network model is guaranteed to be infinitely differentiable.

Previous works: Multilayer Perceptron (MLP) Neural Network

Previous works [2-4] used Multilayer Perceptron (MLP) neural networks to develop compact models, which are prone to having unphysical behavior (see Fig. 4(e, f)). To eliminate the unphysical behavior, we have developed a novel neural network structure: Physics-Inspired Neural Network (Pi-NN), with fundamental device physics embedded. As a result, the Pi-NN can be trained to generate an accurate, smooth, and computational efficient device compact model.

II. THIN-TFET AND TRAINING PROCEDURE

To illustrate the principles of Pi-NN, we develop compact models for the DC I-V curves of a transistor. Physics-based device modeling is typically challenging because the I-V curves are highly nonlinear and requires different analytical physical expressions in different bias windows. Therefore, it is usually difficult to handcraft an infinitely differentiable function from these physical expressions. Since high quality physics-based compact models are vet unavailable for emerging devices, such as Tunnel Field Effect Transistors (TFETs) [6], the neural network modeling approach has an added attraction. Here we used a novel device proposed in our group, a Thin-TFET [7] (Two-dimensional Heterojunction Interlayer Tunneling Field Effect Transistor), as an example device for testing the neural network modeling techniques. The schematic device structure of an n-type Thin-TFET is shown in Fig. 1. The training data are simulated [7] for the top gate voltage (V_{TG}) from 0 to 0.4 V and the drain-source voltage (V_{DS}) from -0.1 to 0.4 V with a uniform step of 0.01 V, while the test data are for V_{TG} from 0.005 to 0.405 V and V_{DS} from -0.095 to 0.405 V with a uniform step of 0.01 V. The detailed training procedure is shown in Fig. 2. In the preprocessing step in Fig. 2, a scaler function in the form of $exp(-a(V_{TG} + b)) + 1$ is multiplied to the output, which helps improve deep sub-threshold modeling. The value of a and b are chosen by following the general rules described below: Since this scalar function is used to improve deep subthreshold modeling, we should choose a and b such as:

$$exp(-a(V_{TG} + b)) + 1 \begin{cases} \cong 1 & when V_{TG} > V_{TH} \\ \gg 1 & when V_{TG} < V_{TH} \end{cases}$$

where V_{TH} is the threshold voltage. Therefore |b| should be smaller than the threshold voltage and *a* is approximately the slope of I_D–V_{TG} curves in the deep sub-threshold region. The final values of *a* and *b* are fine-tuned by trial and error. For example, in this work, the threshold voltage of Thin-TFET is around 100 mV, so *b* is set to be -50 mV. As for *a*, the subthreshold swing for V_{TG} < 50 mV is around 17 mV/dec, therefore *a* is set to be $1/17 \times 2.3 = 0.135$ mV⁻¹ (where 2.3 comes from $ln(10) \approx 2.3$).

III. MLP NEURAL NETWORK MODELING AND UNPHYSICAL BEHAVIOR

In this section, we use the MLP neural network to generate a compact model for the DC I-V curves of the Thin-TFET. The MLP neural network architecture and its well-established learning algorithms are shown in Fig. 3 [9]. After some initial training, we choose to use MLP neural networks with two

^{2329-9231 (}c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Figure 4: The compact model of the n-type Thin-TFET derived based on the MLP neural network widely used in previous works [2-4], (a) the training errors and test errors for a variety of hyper-parameters; (b) the MLP neural network with 7 *tanh* neurons in the first and second hidden layers. From (c) to (f), the I-V curves generated by the MLP neural network shown in (b) are plotted along with the training data and the test data: (c) I_D versus V_{DS} at different V_{TG}; (d) I_D vs. V_{TG} at different V_{DS} in linear scale; (e) I_D vs. V_{DS} at different V_{TG} around V_{DS} = 0, the embedded plot shows unphysical I_D-V_{DS} relationships around V_{DS} equals 0; (f) I_D vs. V_{TG} at different V_{DS} in semi-log scale, unphysical oscillation of I_D around zero appears in the sub-threshold region and when V_{DS} = 0.

hidden layers and defined its hyper-parameter as (i, j), where *i* is the number of neurons in the first hidden layer and *j* is the number of neurons in the second hidden layer. Each neuron uses the hyperbolic tangent function $tanh(x)=(e^{x}-e^{-x})/(e^{x}+e^{-x})$ as the activation function. By choosing the hyper-parameter (i, j) to be (5, 5), (7, 7) and (9, 9), these three MLP neural networks were trained for 5 million epochs. Using the loss

function defined in Fig. 3, the root-mean-squared (R.M.S) deviations for training data and test data are plotted in Fig. 4(a). The test errors are used to evaluate the generalization ability of the model, namely how the model fit the unseen data. As shown in Fig. 4(a), the test errors stay close to the training errors, which indicated a good generalization. We choose to plot the I-V curves modeled by the MLP neural network with 7 tanh neurons in the first and second hidden layers as shown in Fig. 4(b), which gives a neural network with 15 neurons and 85 parameters in total. Figure 4(c-f) show the I-V curves generated by the MLP neural network compact model along with the training data and the test data. Good fitting in the linear scale is achieved for both the I_D - V_{DS} and the I_D-V_{TG} curves. However, if we zoom in the region near $V_{DS} = 0$, I_D is not zero when V_{DS} is zero, indicating the I_D - V_{DS} relationship is unphysical around $V_{DS} = 0$ (see Fig. 4(e) and the inset). Moreover, the I_D-V_{TG} relationship is also unphysical in the sub-threshold region (shown in Fig. 4(f)). The fundamental reason of these unphysical behaviors is that the MLP neural network has no knowledge of the device physics; therefore, the fitting is no longer physical when I_D is very small. In order to eliminate these unphysical behaviors, we have to design a neural network with *a priori* knowledge of the fundamental device physics.

IV. A PHYSICS-INPIRED NEURAL NETWORK DESIGN

First, we note that the inputs V_{DS} and V_{TG} are related to two different physical effects: V_{DS} drives the current through the device while V_{TG} controls the channel potential profile to change the magnitude of the current. Therefore, V_{DS} and V_{TG} should be fed to two different neural networks. According to the fundamental device physics, we know I_D - V_{DS} curves have a linear region at small V_{DS} and a saturation region at large V_{DS}. This behavior is similar to a *tanh* function. This indicates V_{DS} should be fed into a neural network with tanh activation functions (tanh subnet). To ensure I_D equals zero when V_{DS} equals zero, all the *tanh* neurons in the *tanh subnet* must have no bias terms. On the other hand, the I_D - V_{TG} curves have an exponential turn-on in the sub-threshold region and then become a polynomial in the ON region. This is best simulated as a sigmoid function $sig(x)=1/(1+e^{-x})$. Therefore, V_{TG} is fed into a neural network with sigmoid activation functions (sig subnet). It should be noted that we assumed gate leakage current is negligible, so V_{TG} would not change the sign of I_D. The final drain current is the entrywise product of the outputs of the *tanh subnet* and the sig subnet. This entrywise product reflects the control of V_{TG} on the drain current driven by V_{DS} . In addition, V_{DS} can affect the channel potential profile controlled by V_{TG} due to various non-ideal effects such as the short channel effects. A simple but effective remedy for this is to add weighted connections from each layer in the tanh subnet to its corresponding layer in the sig subnet. By embedding the above device physics in a neural network structure, we arrive at the Physics-Inspired Neural Network (Pi-NN). The Pi-NN architecture and its pseudo-codes for the feed-forward and error backpropagation algorithms are shown in Fig. 5. This novel neural network is reminiscent of the peephole Long-Short Term

^{2329-9231 (}c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Figure 5: The Physics-Inspired Neural Network (Pi-NN) model. (Source code available at https://github.com/Oscarlight/Pi-NN)

Memory (LSTM) [10], with the notable difference that the Pi-

NN does not propagate through time. After all, the Pi-NN architecture can model the I-V curves of any transistor if two conditions are satisfied: 1) I_D equals zeros if and only if V_{DS} equals zero; 2) V_G doesn't change the sign of I_D (i.e. the gate leakage current is negligible).

V. PHYSICS-INSPIRED NEURAL NETWORK MODELING

After initial training, we choose to use Pi-NNs with one hidden layer and define the hyper-parameter as (m, n), where *m* is the number of the *tanh* neurons in the hidden layer and *n* is the number of the sigmoid neurons in the same hidden layer. The test errors stay close to the training errors as shown in Fig. 6(a), which indicates good generalization. The model complexity is gradually increased from the hyper-parameter (2, 2) to (3, 4). From Fig. 6(a), the model with the hyperparameter (2, 3) is the simplest model with converging training and test error. More complex models can achieve smaller training and test error but the improvement is not significant enough to justify the increased complexity. Balancing between model complexity and accuracy, we choose the model with the hyper-parameter (2, 3) as shown in Fig. 6(b), which give a small Pi-NN model with only 7 neurons and 20 parameters in total. Excellent modeling is demonstrated in both the ON region (shown in Fig. 6(c, d)) and the sub-threshold region (shown in Fig. 6(f)). The I_D-V_{DS} relationship around V_{DS} equals zero is shown in Fig. 6(e). All the unphysical behaviors that appeared in the MLP neural network model have been eliminated. Moreover, thanks to the embedded device physics, the Pi-NN requires much less parameters than the MLP neural network, which results in a smaller, more efficient compact model.

VI. CONCLUSIONS

Motivated by the need of high-quality compact models for emerging devices, we have proposed a novel neural network: Pi-NN, for compact modeling. With fundamental device physics incorporated, the Pi-NN method can produce accurate, smooth and computational efficient transistor models with good generalization ability. Thin-TFET is presented as an example to illustrate the capabilities of Pi-NN: a relatively small compact model is achieved with excellent fitting in both the ON and the sub-threshold region of the Thin-TFET. The charge-voltage Q-V relationships in a device are highly desirable for circuit design. It is possible to construct Q-V relations from the device C-V data (not shown here). However, since the sign of the terminal charge density is dependent on both V_{TG} and V_{DS}, the Pi-NN architecture cannot be directly applied for modeling Q-V relations. The walk-around is to connect V_{TG} and V_{DS} to both the *tanh* subnet and the sig subnet in the Pi-NN, and add the bias terms in the tanh neurons. This modified Pi-NN is compatible with the adjoint neural network method for constructing Q-V relation from C-V measurements [2, 11]. However, this modified Pi-NN architecture has no apparent advantage over the MLP architecture for Q-V modeling. Future work will focus on how to better integrate Q-V modeling into the Pi-NN framework.

^{2329-9231 (}c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Finally, the Pi-NN approach is readily implementable in commercial measurement and modeling systems.

Figure 6: The compact model of the n-type Thin-TFET derived based on the Pi-NN developed in this work, (a) the training errors and test errors for a variety of hyper-parameters. (b) the Pi-NN model with 2 *tanh* neurons and 3 *sigmoid* neurons in the hidden layer. From (c) to (f), the I-V curves generated by the Pi-NN model shown in (b) are plotted along with the training data and the test data: (c) I_D versus V_{DS} at different V_{TG}; (d) I_D vs. V_{TG} at different V_{DS} in linear scale; (e) I_D vs. V_{DS} at different V_{TG} around V_{DS} = 0, the embedded plot shows well-behaved I_D-V_{DS} relationship around V_{DS} = 0; (f) I_D vs. V_{TG} at different V_{DS} in semi-log scale, good fitting is achieved in the sub-threshold region. All the unphysical behaviors of the MLP neural network are eliminated, and the size of the neural network is largely reduced.

ACKNOWLEDGMENT

This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA, and the National Science Foundation and Air Force Office of Scientific Research under Grant EFRI 2-DARE (1433490).

REFERENCES

- Steiger, Sebastian, et al. "NEMO5: a parallel multiscale nanoelectronics modeling tool." (2011).
- [2] Xu, Jianjun, and David E. Root. "Advances in artificial neural network models of active devices." 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE, 2015.
- [3] Hammouda, H. Ben, et al. "Neural based models of semiconductor devices for SPICE simulator." American Journal of Applied Sciences 5.4 (2008): 385-391.
- [4] Wang, Fang, and Qi-Jun Zhang. "Knowledge-based neural models for microwave design." IEEE Transactions on Microwave Theory and Techniques 45.12 (1997): 2333-2343.
- [5] Hornik, Kurt. "Approximation capabilities of multilayer feedforward networks." *Neural networks* 4.2 (1991): 251-257.
- [6] Seabaugh, Alan C., and Qin Zhang. "Low-voltage tunnel transistors for beyond CMOS logic." *Proceedings of the IEEE* 98.12 (2010): 2095-2110.
- [7] Li, Mingda Oscar, et al. "Two-dimensional heterojunction interlayer tunneling field effect transistors (Thin-TFETs)." *IEEE Journal of the Electron Devices Society* 3.3 (2015): 200-207.
 [8] Li, Mingda Oscar, et al. "Single particle transport in two-dimensional
- [8] Li, Mingda Oscar, et al. "Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor." *Journal of Applied Physics* 115.7 (2014): 074508.
- [9] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating errors." *Cognitive modeling* 5.3 (1988): 1.
- [10] Gers, Felix A., Nicol N. Schraudolph, and Jürgen Schmidhuber. "Learning precise timing with LSTM recurrent networks." *Journal of machine learning research* 3. Aug (2002): 115-143.
- [11] Xu, Jianjun, et al. "Exact adjoint sensitivity analysis for neural-based microwave modeling and design." IEEE Transactions on Microwave Theory and Techniques 51.1 (2003): 226-237.