a fast and lightweight collaborative filtering algorithm for binary ratings
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
ml100k
src
src_mapreduce
LCBM.jar
LCBM_mapreduce.jar
LICENSE
README.md

README.md

LCBM

a fast and lightweight collaborative filtering algorithm for binary ratings.

If you use LCBM please cite the following paper:

  • F. Petroni, L. Querzoni, R. Beraldi, M. Paolucci: "LCBM: Statistics-Based Parallel Collaborative Filtering." In: Proceedings of the 17th International Conference on Business Information Systems (BIS), 2014.

###Hadoop MapReduce:

To run the project on hadoop type the following:

bin/hadoop jar /home/hduser/LCBM_mapreduce.jar train test [options]

Parameters:

  • train: the name of the file with the train data
  • test: the name of the file with the test data.

Options:

  • -k int -> specifies the multiplicative factor for the SE. Default 2.
  • -split_token char -> specifies the character that splits the dataset.
  • -output1 string -> specifies the name of the first output directory in the hdfs.
  • -output2 sting -> specifies the name of the second output directory in the hdfs.

Example

bin/hadoop jar /home/hduser/LCBM_mapreduce.jar ml100k/trace1.base ml100k/trace1.test